Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 7 - Tissue regeneration and repair in multiple sclerosis: the role of neural stem cells

from Section 1 - Basic mechanisms


1. TelloF. La influencia del neurotropismo en la regeneraciòn de los centros nerviosos. Trab Lab Invest Biol Univ Madr 1911;9:123–59
2. Ramón y CajalS. Neuronismo o reticularismo? Las pruebas objectivas de la unidad anatòmica de las cèlulas nerviosas. Arch Neurobiol 1933; 13:217–91
3. MartinoG. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol 2004;3:372–8
4. MartinoG, AdoriniL, RieckmannP, et al. Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 2002;1:499–509
5. MartinoG, PluchinoS. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006; 7:395–406
6. MartinoG, HartungH P. Immunopathogenesis of multiple sclerosis: the role of T cells. Curr Opin Neurol 1999; 12:309–21
7. KieseierB C, HartungH P. Multiple paradigm shifts in multiple sclerosis. Curr Opin Neurol 2003;16:247–52
8. BarkhofF, RoccaM, FrancisG, et al. Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis and response to interferon beta-1a. Ann Neurol 2003;53:718–24
9. PatrikiosP, StadelmannC, KutzelniggA, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 2006;129:3165–72
10. FranklinR J M. Why does remyelination fail in multiple sclerosis?Nat Rev Neurosci 2002;3:705–14
11. IvanovaN B, DimosJ T, SchanielC, et al. A stem cell molecular signature. Science 2002;298:601–4
12. WeissS, ReynoldsB A, VescoviA L, et al. Is there a neural stem cell in the mammalian forebrain?Trends Neurosci 1996; 19:387–93
13. DoetschF. The glial identity of neural stem cells. Nat Neurosci 2003;6:1127–34
14. MingG L, SongH. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005;28:223–50
15. DoetschF, CailleI, LimD A, Garcia-VerdugoJ M, Alvarez-BuyllaA. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999;97:703–16
16. MennB, Garcia-VerdugoJ M, YaschineC, et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006; 26:7907–18
17. PalmerT D, WillhoiteA R, GageF H. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000;425:479–94
18. SeriB, Garcia-VerdugoJ M, McEwenB S, Alvarez-BuyllaA. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001;21:7153–60
19. MercierF, KitasakoJ T, HattonG I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 2002;451:170–88
20. YagitaY, KitigawaK, OhtsukiT, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 2001;32:1890–6
21. TureyenK, VemugantiR, SailorK A, BowenK K, DempseyR J. Transient focal cerebral ischemia-induced neurogenesis in the dentate gyrus of the adult mouse. J Neurosurg 2004;101:799–805
22. ZhangR, ZhangZ, ZhangC, et al. Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 2004; 24:5810–5
23. CarmichaelS T. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol 2003;16:699–704
24. ZhangR, ZhangZ, WangL, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 2004;24:441–8
25. ZhuD Y, LauL, LiuS H, WeiJ S, L uY M. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2004;101:9453–7
26. JinK, MinamiM, LanJ Q, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 2001; 98:4710–5
27. ZhangR L, ZhangZ G, LuM, et al. Reduction of the cell cycle length by decreasing G1 phase and cell cycle reentry expand neuronal progenitor cells in the subventricular zone of adult rat after stroke. J Cereb Blood Flow Metab 2006; 26:857–63
28. ThoredP, WoodJ, ArvidssonA, et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 2007; 38:3032–9
29. JinK, WangX, LinX, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 2006; 103:13198–202
30. KeY, ChiaL, XuaR, et al. Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 2006; 24:1011–19
31. YangH, LuP, McKayH, et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 2006;26:2157–66
32. BrundinL, BrismarH, DanilovA I, OlssonT, JohanssonC B. Neural stem cells: a potential source for remyelination in neuroinflammatory disease. Brain Pathol 2003;13:322–8
33. Picard-RieraN, DeckerL, DelarasseC, et al. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 2002;99:13–211–16
34. Nait-OumesmarB, Picard-RieraN, KerninonC, et al. Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proc Natl Acad Sci USA 2007; 104:4694–9
35. EliasB E. Oligodendrocyte development and the natural hystory of mulitple sclerosis. Arch Neurol 1987;44:1294–9
36. MartinoG, PluchinoS. Neural stem cells: guardians of the brain. Nat Cell Biol 2007; 9:1031–4
37. LimD A, TramontinA D, TrevejoJ M, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000;28:713–26
38. ButovskyO, ZivY, SchwartzA, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006;31:149–60
39. VallieresL, CampbellI L, GageF H, SawchenkoP E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 2002;22:486–92
40. PluchinoS, ZanottiL, RossiB, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005;436:266–71
41. PieraniA, Brenner-MortonS, ChiangC, JessellT M. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 1999;97:903–15
42. SeifertT, BauerJ, WeissertR, FazekasF, StorchM K. Differential expression of sonic hedgehog immunoreactivity during lesion evolution in autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2005;64:404–11
43. IrvinD K, NakanoI, PaucarA, KornblumH I. Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res 2004;75:330–43
44. JohnG R, ShankarS L, Shafit-ZagardoB, et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002; 8:1115–21
45. StidworthyM F, GenoudS, LiW-W, et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 2004;127:1928–41
46. MonjeM L, TodaH, PalmerT D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302:1760–5
47. ZivY, RonN, ButovskyO, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9:268–75
48. LeeM A, SmithS, PalaceJ, et al. Spatial mapping of T2 and gadolinium-enhancing T1 lesion volumes in multiple sclerosis: evidence for distinct mechanisms of lesion genesis?Brain 1999;122 (7):1261–70
49. SimF J, GoldmanS A. White matter progenitor cells reside in an oligodendrogenic niche. Ernst Schering Res Found Workshop 2005;61–81
50. AdamsC W, AbdullaY H, TorresE M, PostonR N. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol 1987;13:141–52