Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: December 2011

41 - T-cell-based therapies for multiple sclerosis

from Section III - Clinical trials of multiple sclerosis therapies

Summary

Initial use of alemtuzumab in multiple sclerosis (MS) was in patients with secondary progressive disease. Just as the efficacy experience of alemtuzumab generated some novel concepts of MS biology, such as the possibility of neuroprotective autoimmunity, so too has exploration of its adverse effects. The most significant adverse effect of alemtuzumab is secondary autoimmunity. A straightforward conclusion from the experience of using alemtuzumab, both open-label and within trials, is that it has the potential to be one of the most efficacious treatments of MS to date. A key lesson from the history of alemtuzumab treatment of MS has been that the disease is only vulnerable to such anti-inflammatory treatments early in its course, before the conditions that predispose to neurodegeneration, and secondary progression, have been set up. The finding of disability improvement after alemtuzumab suggests a new treatment paradigm in MS. There is no signal that alemtuzumab causes neoplasia.

References

1. Zhang J, Weiner HL, Hafler DA. Autoreactive T-cells in multiple sclerosis. Int Rev Immunol 1992; 9:183–201.
2. Raine CS. The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 1994; 36 Suppl:S61–72.
3. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47:707–17.
4. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T-cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179:973–84.
5. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970; 169:1042–9.
6. Bretscher PA. A two-step, two-signal model for the primary activation of precursor helper T-cells. Proc Natl Acad Sci USA 1999; 96:185–90.
7. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001; 1:220–8.
8. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature 1987; 328:267–70.
9. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348:15–23.
10. Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med 2005; 353:362–68.
11. Langer-Gould A, Atlas SW, Bollen AW, Pelletier D. Progressive Multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 2005.
12. Kleinschmidt-Demasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 2005.
13. Hafler DA, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Fukaura H. Oral administration of myelin induces antigen-specific TGF-beta 1 secreting T-cells in patients with multiple sclerosis. Ann N Y Acad Sci 1997; 835:120–31.
14. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T-cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996; 98:70–7.
15. Minguela A, Torio A, Marin L, et al. Implication of Th1, Th2, and Th3 cytokines in liver graft acceptance. Transplant Proc 1999; 31:519–20.
16. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions [see comments]. Ann Neurol 1995; 37:424–35.
17. Hofman FM, von Hanwehr RI, Dinarello CA, Mizel SB, Hinton D, Merrill JE. Immunoregulatory molecules and IL 2 receptors identified in multiple sclerosis brain. J Immunol 1986; 136:3239–45.
18. Woodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 1993; 5:583–8.
19. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4 +T-cells via CD40 ligand. Proc Natl Acad Sci USA 1997; 94:599–603.
20. Comabella M, Balashov K, Issazadeh S, Smith D, Weiner HL, Khoury SJ. Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 1998; 102:671–8.
21. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T-cells. J Immunol 1995; 155:5483–6.
22. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T-cells. Immunity 2006; 24:179–89.
23. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T-cells. Nature 2006; 441:235–8.
24. Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441:231–4.
25. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T-cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278:1910–14.
26. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T-cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233–40.
27. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T-cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133–41.
28. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4 +effector T-cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123–32.
29. Kebir H, Ifergan I, Alvarez JI, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 2009; 66:390–402.
30. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 2005; 11:335–9.
31. Vanderlugt CL, Begolka WS, Neville KL, et al. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol Rev 1998; 164:63–72.
32. Sprent J, Surh CD. T-cell memory. Annu Rev Immunol 2002; 20:551–79.
33. Dutton RW, Bradley LM, Swain SL. T-cell memory. Annu Rev Immunol 1998; 16:201–23.
34. Byrne JA, Butler JL, Cooper MD. Differential activation requirements for virgin and memory T-cells. J Immunol 1988; 141:3249–57.
35. Kuiper H, Brouwer M, de Boer M, Parren P, van Lier RA. Differences in responsiveness to CD3 stimulation between naive and memory CD4+ T-cells cannot be overcome by CD28 costimulation. Eur J Immunol 1994; 24:1956–60.
36. Lee WT, Yin XM, Vitetta ES. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T-cells. J Immunol 1990; 144:3288–95.
37. Ehlers S, Smith KA. Differentiation of T-cell lymphokine gene expression: the in vitro acquisition of T-cell memory. J Exp Med 1991; 173:25–36.
38. Bird JJ, Brown DR, Mullen AC, et al. Helper T-cell differentiation is controlled by the cell cycle. Immunity 1998; 9:229–37.
39. Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28- costimulation-independent T-cells in multiple sclerosis. J Clin Invest 2001; 108:1185–94.
40. Stephens LA, Mottet C, Mason D, Powrie F. Human CD4(+)CD25(+) thymocytes and peripheral T-cells have immune suppressive activity in vitro. Eur J Immunol 2001; 31:1247–54.
41. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T-cells with regulatory properties from human blood. J Exp Med 2001; 193:1303–10.
42. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001; 167:1245–53.
43. Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193:1295–302.
44. Koide J, Engleman EG. Differences in surface phenotype and mechanism of action between alloantigen-specific CD8+ cytotoxic and suppressor T-cell clones. J Immunol 1990; 144:32–40.
45. Bacchetta R, Bigler M, Touraine JL, et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 1994; 179:493–502.
46. Kitani A, Chua K, Nakamura K, Strober W. Activated self-MHC-reactive T-cells have the cytokine phenotype of Th3/T regulatory cell 1 T-cells. J Immunol 2000; 165:691–702.
47. Roncarolo MG, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000; 12:676–83.
48. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T-cells in patients with multiple sclerosis. J Exp Med 2004; 199:971–9.
49. Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG. Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28- suppressor cell. Ann Neurol 1991; 30:42–7.
50. Crucian B, Dunne P, Friedman H, Ragsdale R, Pross S, Widen R. Alterations in levels of CD28-/CD8 +suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Clin Diagn Lab Immunol 1995; 2:249–52.
51. Bielekova B, Martin R. Antigen-specific immunomodulation via altered peptide ligands. J Mol Med 2001; 79:552–65.
52. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T-cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179:973–84.
53. Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T-cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247:718–21.
54. Chou YK, Bourdette DN, Offner H, et al. Frequency of T-cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992; 38:105–13.
55. Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T-cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 1997; 100:1114–22.
56. Wucherpfennig KW, Hafler DA, Strominger JL. Structure of human T-cell receptors specific for an immunodominant myelin basic protein peptide: positioning of T-cell receptors on HLA-DR2/peptide complexes. Proc Natl Acad Sci USA 1995; 92:8896–900.
57. Karin N, Mitchell DJ, Brocke S, Ling N, Steinman L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T-cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J Exp Med 1994; 180:2227–37.
58. Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6:1167–75.
59. Kappos L, Comi G, Panitch H, et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000; 6:1176–82.
60. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995; 45:1268–76.
61. Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology 2000; 54:813–17.
62. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. 1995. Neurology 2001; 57:S16–24.
63. Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105:967–76.
64. Fridkis-Hareli M, Teitelbaum D, Arnon R, Sela M. Synthetic copolymer 1 and myelin basic protein do not require processing prior to binding to class II major histocompatibility complex molecules on living antigen-presenting cells. Cell Immunol 1995; 163:229–36.
65. Racke MK, Martin R, McFarland H, Fritz RB. Copolymer-1-induced inhibition of antigen-specific T-cell activation: interference with antigen presentation. J Neuroimmunol 1992; 37:75–84.
66. Schmied M, Duda PW, Krieger JI, Trollmo C, Hafler DA. In vitro evidence that subcutaneous administration of glatiramer acetate induces hyporesponsive T-cells in patients with multiple sclerosis. Clin Immunol 2003; 106:163–74.
67. Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci USA 2000; 97:11472–7.
68. Weber MS, Prod'homme T, Youssef S, et al. Type II monocytes modulate T-cell-mediated central nervous system autoimmune disease. Nat Med 2007; 13:935–43.
69. Karandikar NJ, Crawford MP, Yan X, et al. Glatiramer acetate (Copaxone) therapy induces CD8(+) T-cell responses in patients with multiple sclerosis. J Clin Invest 2002; 109:641–9.
70. Burnet M. The clonal selection theory of acquired immunity. In: Vanderbilt University Press; 1959; Nashville, Tennessee, USA, 1959.
71. Faria AM, Weiner HL. Oral tolerance. Immunol Rev 2005; 206:232–59.
72. Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259:1321–4.
73. Faria AM, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 1999; 73:153–264.
74. Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc Natl Acad Sci USA 1999; 96:3842–7.
75. de Seze J, Edan G, Labalette M, Dessaint JP, Vermersch P. Effect of glatiramer acetate (Copaxone) given orally in human patients: interleukin-10 production during a phase 1 trial. Ann Neurol 2000; 47:686.
76. Medaer R, Stinissen P, Truyen L, Raus J, Zhang J. Depletion of myelin-basic-protein autoreactive T-cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 1995; 346:807–8.
77. Zhang JZ, Rivera VM, Tejada-Simon MV, et al. T-cell vaccination in multiple sclerosis: results of a preliminary study. J Neurol 2002; 249:212–18.
78. Achiron A, Lavie G, Kishner I, et al. T-cell vaccination in multiple sclerosis relapsing-remitting nonresponders patients. Clin Immunol 2004; 113:155–60.
79. Van Der Aa A, Hellings N, Medaer R, et al. T-cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T-cells: results from a pilot study. Clin Exp Immunol 2003; 131:155–68.
80. Hermans G, Medaer R, Raus J, Stinissen P. Myelin reactive T-cells after T-cell vaccination in multiple sclerosis: cytokine profile and depletion by additional immunizations. J Neuroimmunol 2000; 102:79–84.
81. Zhang J, Medaer R, Stinissen P, Hafler D, Raus J. MHC-restricted depletion of human myelin basic protein-reactive T-cells by T-cell vaccination. Science 1993; 261:1451–4.
82. Zhang J, Vandevyver C, Stinissen P, Raus J. In vivo clonotypic regulation of human myelin basic protein-reactive T-cells by T-cell vaccination. J Immunol 1995; 155:5868–77.
83. Hermans G, Denzer U, Lohse A, Raus J, Stinissen P. Cellular and humoral immune responses against autoreactive T-cells in multiple sclerosis patients after T-cell vaccination. J Autoimmun 1999; 13:233–46.
84. Offner H, Vandenbark AA. T-cell receptor V genes in multiple sclerosis: increased use of TCRAV8 and TCRBV5 in MBP-specific clones. Int Rev Immunol 1999; 18:9–36.
85. Kotzin BL, Karuturi S, Chou YK, et al. Preferential T-cell receptor beta-chain variable gene use in myelin basic protein-reactive T-cell clones from patients with multiple sclerosis. Proc Natl Acad Sci USA 1991; 88:9161–5.
86. Oksenberg JR, Panzara MA, Begovich AB, et al. Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 1993; 362:68–70.
87. Lozeron P, Chabas D, Duprey B, Lyon-Caen O, Liblau R. T-cell receptor V beta 5 and V beta 17 clonal diversity in cerebrospinal fluid and peripheral blood lymphocytes of multiple sclerosis patients. Mult Scler 1998; 4:154–61.
88. Vandenbark AA, Chou YK, Whitham R, et al. Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 1996; 2:1109–15.
89. Vandenbark AA. TCR peptide vaccination in multiple sclerosis: boosting a deficient natural regulatory network that may involve TCR-specific CD4+CD25 +Treg cells. Curr Drug Targets Inflamm Allergy 2005; 4:217–29.
90. Bourdette DN, Whitham RH, Chou YK, et al. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J Immunol 1994; 152:2510–19.
91. Vandenbark AA, Culbertson NE, Bartholomew RM, et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2008; 123:66–78.
92. Killestein J, Olsson T, Wallstrom E, et al. Antibody-mediated suppression of Vbeta5.2/5.3(+) T-cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol 2002; 51:467–74.
93. Olsson T, Edenius C, Ferm M, et al. Depletion of Vbeta5.2/5.3 T-cells with a humanized antibody in patients with multiple sclerosis. Eur J Neurol 2002; 9:153–64.
94. Rose J, Klein H, Greenstein J, McFarlin D, Gerber L, McFarland H. Lymphocytapheresis in chronic progressive multiple sclerosis: results of a preliminary trial. Ann Neurol 1983; 14:593–4.
95. Hauser SL, Fosburg M, Kevy SV, Weiner HL. Lymphocytapheresis in chronic progressive multiple sclerosis: immunologic and clinical effects. Neurology 1984; 34:922–6.
96. Medaer R, Eeckhout C, Gautama K, Vermijlen C. Lymphocytapheresis therapy in multiple sclerosis, a preliminary study. Acta Neurol Scand 1984; 70:111–15.
97. Ghezzi A, Zaffaroni GA, Caputo D, et al. Lymphocytoplasmapheresis in multiple sclerosis: one-year results in 6 patients. Ital J Neurol Sci 1986; 7:119–23.
98. Maida E, Hocker P, Mann E. Long-term lymphocytapheresis therapy in multiple sclerosis. Preliminary observations. Eur Neurol 1986; 25:225–32.
99. Cook SD, Devereux C, Troiano R, et al. Effect of total lymphoid irradiation in chronic progressive multiple sclerosis. Lancet 1986; 1:1405–9.
100. Cook SD, Devereux C, Troiano R, et al. Total lymphoid irradiation in multiple sclerosis: blood lymphocytes and clinical course. Ann Neurol 1987; 22:634–8.
101. Troiano R, Devereux C, Oleske J, et al. T-cell subsets and disease progression after total lymphoid irradiation in chronic progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 1988; 51:980–3.
102. Rohowsky-Kochan C, Molinaro D, Devereux C, et al. The effect of total lymphoid irradiation and low-dose steroids on T lymphocyte populations in multiple sclerosis: correlation with clinical and MRI status. J Neurol Sci 1997; 152:182–92.
103. van Oosten BW, Lai M, Hodgkinson S, et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 1997; 49:351–7.
104. Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346:1692–8.
105. Ochi H, Abraham M, Ishikawa H, et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T-cells. Nat Med 2006; 12:627–35.
106. Abraham M, Karni A, Dembinsky A, et al. In vitro induction of regulatory T-cells by anti-CD3 antibody in humans. J Autoimmun 2008; 30:21–8.
107. Khoury SJ, Akalin E, Chandraker A, et al. CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J Immunol 1995; 155:4521–4.
108. Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006; 24:233–8.
109. Schiff M, Keiserman M, Codding C, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 2008; 67:1096–103.
110. Genovese MC, Becker JC, Schiff M, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005; 353:1114–23.
111. Kremer JM, Genant HK, Moreland LW, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med 2006; 144:865–76.
112. Ruperto N, Lovell DJ, Quartier P, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008; 372:383–91.
113. Abrams JR, Kelley SL, Hayes E, et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 2000; 192:681–94.
114. Karni A, Koldzic DN, Bharanidharan P, Khoury SJ, Weiner HL. IL-18 is linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4(+) T-cells via CD40-CD40 ligand interactions. J Neuroimmunol 2002; 125:134–40.
115. Gerritse K, Laman JD, Noelle RJ, et al. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 1996; 93:2499–504.
116. Filion LG, Matusevicius D, Graziani-Bowering GM, Kumar A, Freedman MS. Monocyte-derived IL12, CD86 (B7–2) and CD40L expression in relapsing and progressive multiple sclerosis. Clin Immunol 2003; 106:127–38.
117. Jensen J, Krakauer M, Sellebjerg F. Increased T-cell expression of CD154 (CD40-ligand) in multiple sclerosis. Eur J Neurol 2001; 8:321–8.
118. Teleshova N, Bao W, Kivisakk P, Ozenci V, Mustafa M, Link H. Elevated CD40 ligand expressing blood T-cell levels in multiple sclerosis are reversed by interferon-beta treatment. Scand J Immunol 2000; 51:312–20.
119. Windhagen A, Newcombe J, Dangond F, et al. Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 1995; 182:1985–96.
120. van Boxel-Dezaire AH, Hoff SC, van Oosten BW, et al. Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis [see comments]. Ann Neurol 1999; 45:695–703.
121. Nicoletti F, Patti F, Cocuzza C, et al. Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol 1996; 70:87–90.
122. Ferrante P, Fusi ML, Saresella M, et al. Cytokine production and surface marker expression in acute and stable multiple sclerosis: altered IL-12 production and augmented signaling lymphocytic activation molecule (SLAM)-expressing lymphocytes in acute multiple sclerosis. J Immunol 1998; 160:1514–21.
123. Wang X, Chen M, Wandinger KP, Williams G, Dhib-Jalbut S. IFN-beta-1b inhibits IL-12 production in peripheral blood mononuclear cells in an IL-10-dependent mechanism: relevance to IFN-beta-1b therapeutic effects in multiple sclerosis. J Immunol 2000; 165:548–57.
124. Byrnes AA, McArthur JC, Karp CL. Interferon-beta therapy for multiple sclerosis induces reciprocal changes in interleukin-12 and interleukin-10 production. Ann Neurol 2002; 51:165–74.
125. Makhlouf K, Comabella M, Imitola J, Weiner HL, Khoury SJ. Oral salbutamol decreases IL-12 in patients with secondary progressive multiple sclerosis. J Neuroimmunol 2001; 117:156–65.
126. Khoury SJ, Healy BC, Kivisakk P, et al. A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol; 67:1055–61.
127. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995; 37:424–35.
128. Selmaj K, Raine CS, Cannella B, Brosnan CF. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 1991; 87:949–54.
129. Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 1989; 170:607–12.
130. Andrews T, Zhang P, Bhat NR. TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res 1998; 54:574–83.
131. Huberman M, Shalit F, Roth-Deri I, Gutman B, Kott E, Sredni B. Decreased IL-3 production by peripheral blood mononuclear cells in patients with multiple sclerosis. J Neurol Sci 1993; 118:79–82.
132. van Oosten BW, Barkhof F, Scholten PE, von Blomberg BM, Ader HJ, Polman CH. Increased production of tumor necrosis factor alpha, and not of interferon gamma, preceding disease activity in patients with multiple sclerosis. Arch Neurol 1998; 55:793–8.
133. Zipp F, Weber F, Huber S, et al. Genetic control of multiple sclerosis: increased production of lymphotoxin and tumor necrosis factor-alpha by HLA-DR2 +T-cells. Ann Neurol 1995; 38:723–30.
134. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 1988; 78:318–23.
135. Spuler S, Yousry T, Scheller A, et al. Multiple sclerosis: prospective analysis of TNF-alpha and 55 kDa TNF receptor in CSF and serum in correlation with clinical and MRI activity. J Neuroimmunol 1996; 66:57–64.
136. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 1999; 53:457–65.
137. van Oosten BW, Barkhof F, Truyen L, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 1996; 47:1531–4.
138. Balashov KE, Comabella M, Ohashi T, Khoury SJ, Weiner HL. Defective regulation of IFNgamma and IL-12 by endogenous IL-10 in progressive MS. Neurology 2000; 55:192–8.
139. Becher B, Giacomini PS, Pelletier D, McCrea E, Prat A, Antel JP. Interferon-gamma secretion by peripheral blood T-cell subsets in multiple sclerosis: correlation with disease phase and interferon-beta therapy. Ann Neurol 1999; 45:247–50.
140. Noronha A, Toscas A, Jensen MA. Interferon beta decreases T-cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol 1993; 46:145–53.
141. Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; 1:893–5.
142. Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 1987; 37:1097–102.
143. Calabresi PA, Fields NS, Maloni HW, et al. Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 1998; 51:289–92.
144. Kopp JB, Factor VM, Mozes M, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 1996; 74:991–1003.