Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:41:48.362Z Has data issue: false hasContentIssue false

Chapter 14 - Electrophysiological Biomarkers for Mood Disorders

from Section 4 - Novel Approaches in Brain Imaging

Published online by Cambridge University Press:  12 January 2021

Sudhakar Selvaraj
Affiliation:
UTHealth School of Medicine, USA
Paolo Brambilla
Affiliation:
Università degli Studi di Milano
Jair C. Soares
Affiliation:
UT Harris County Psychiatric Center, USA
Get access

Summary

To more effectively investigate, diagnose, and treat mood disorders, there is a need to move beyond standard clinical characterizations. While symptom-based nosology has provided a reliable and pragmatic framework for clinical practice, advances in neuroimaging research have permitted the possibility of identifying neurophysiologic biomarkers that index underlying pathophysiologic processes and provide an effective complement to clinical symptoms. Functional magnetic resonance imaging (fMRI) is one of the common state-of-the-art neuroimaging approaches for investigating brain disorders and has been very useful in providing a functional neuroanatomic account of neural disturbances in mood disorders.

Type
Chapter
Information
Mood Disorders
Brain Imaging and Therapeutic Implications
, pp. 175 - 191
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Woodman, GF. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys [Internet]. 2010 November; 72(8): 20312046. Available from: www.ncbi.nlm.nih.gov/pubmed/21097848Google Scholar
Vandoolaeghe, E, van Hunsel, F, Nuyten, D, Maes, M. Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude. J Affect Disord. 1998 March; 48(2–3): 105113.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Wenegrat, BG, Ford, JM, Roth, WT, Kopell, BS. Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroencephalogr Clin Neurophysiol. 1984 April; 59(2): 104124.Google Scholar
Diner, BC, Holcomb, PJ, Dykman, RA. P300 in major depressive disorder. Psychiatry Res. 1985 July; 15(3): 175184.Google Scholar
Bange, F, Bathien, N. Visual cognitive dysfunction in depression: An event-related potential study. Electroencephalogr Clin Neurophysiol. 1998 September; 108(5): 472481.CrossRefGoogle ScholarPubMed
Schlegel, S, Nieber, D, Herrmann, C, Bakauski, E. Latencies of the P300 component of the auditory event-related potential in depression are related to the Bech-Rafaelsen melancholia scale but not to the Hamilton Rating Scale for Depression. Acta Psychiatr Scand. 1991 June; 83(6): 438440.CrossRefGoogle Scholar
Pierson, A, Ragot, R, Van Hooff, J, et al. Heterogeneity of information-processing alterations according to dimensions of depression: an event-related potentials study. Biol Psychiatry. 1996; 40(2): 98115.Google Scholar
Bruder, GE, Kroppmann, CJ, Kayser, J, et al. Reduced brain responses to novel sounds in depression: P3 findings in a novelty oddball task. Psychiatry Res. 2009; 170(2–3): 218223.Google Scholar
Friedman, D, Simpson, G, Hamberger, M. Age‐related changes in scalp topography to novel and target stimuli. Psychophysiology. 1993; 30(4): 383396.CrossRefGoogle ScholarPubMed
Tenke, CE, Kayser, J, Stewart, JW, Bruder, GE. Novelty P3 reductions in depression: characterization using principal components analysis (PCA) of current source density (CSD) waveforms. Psychophysiology. 2010; 47(1): 133146.Google Scholar
Fu, L, Xiang, D, Subodh, D, et al. Auditory P300 study in patients with convalescent bipolar depression and bipolar depression. Neuroreport. 2018 August; 29(11): 968973.CrossRefGoogle ScholarPubMed
Bersani, FS, Minichino, A, Fattapposta, F, et al. P300 component in euthymic patients with bipolar disorder type I, bipolar disorder type II and healthy controls: A preliminary event-related potential study. Neuroreport. 2015 March; 26(4): 206210.CrossRefGoogle ScholarPubMed
Bruder, GE, Kayser, J, Tenke, CCE. Event-related brain potentials in depression: clinical, cognitive and neurophysiologic implications. Oxford Handb event-related potential components [Internet]. 2012; 2012: 563592. Available from: http://psychophysiology.cpmc.columbia.edu/pdf/bruder2009a.pdfGoogle Scholar
Karaaslan, F, Gonul, AS, Oguz, A, Erdinc, E, Esel, E. P300 changes in major depressive disorders with and without psychotic features. J Affect Disord. 2003; 73(3): 283287.CrossRefGoogle ScholarPubMed
Li, Y, Hu, Y, Liu, T, Wu, D. Dipole source analysis of auditory P300 response in depressive and anxiety disorders. Cogn Neurodyn. 2011; 5(2): 221229.CrossRefGoogle ScholarPubMed
Li, Y, Wang, W, Liu, T, et al. Source analysis of P3a and P3b components to investigate interaction of depression and anxiety in attentional systems. Sci Rep. 2015; 5: 17138.CrossRefGoogle ScholarPubMed
Hetzel, G, Moeller, O, Evers, S, et al. The astroglial protein S100B and visually evoked event-related potentials before and after antidepressant treatment. Psychopharmacology (Berl). 2005; 178(2–3): 161166.Google Scholar
Hansenne, M, Ansseau, M. P300 event-related potential and serotonin-1A activity in depression. Eur psychiatry. 1999; 14(3): 143147.Google Scholar
Jaworska, N, Protzner, A. Electrocortical features of depression and their clinical utility in assessing antidepressant treatment outcome. Can J Psychiatry. 2013; 58(9): 509514.Google Scholar
Arns, M, Drinkenburg, WH, Fitzgerald, PB, Kenemans, JL. Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul [Internet]. 2012; 5(4): 569576. Available from: http://dx.doi.org/10.1016/j.brs.2011.12.003Google Scholar
Tripathi, SM, Mishra, N, Tripathi, RK, Gurnani, KC. P300 latency as an indicator of severity in major depressive disorder. Ind Psychiatry J. 2015; 24(2): 163167.CrossRefGoogle ScholarPubMed
Scheffers, MK, Coles, MGH. Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Vol. 26, Journal of Experimental Psychology: Human Perception and Performance. US: American Psychological Association; 2000. 141151.Google Scholar
Olvet, DM, Hajcak, G. The error-related negativity (ERN) and psychopathology: Toward an Endophenotype. Clin Psychol Rev [Internet]. 2008 December 9; 28(8): 13431354. Available from: www.ncbi.nlm.nih.gov/pmc/articles/PMC2615243/Google Scholar
Schoenberg, PLA. The error processing system in major depressive disorder: Cortical phenotypal marker hypothesis. Biol Psychol. 2014 May; 99: 100114.Google Scholar
Ruchsow, M, Herrnberger, B, Wiesend, C, et al. The effect of erroneous responses on response monitoring in patients with major depressive disorder: A study with event-related potentials. Psychophysiology. 2004 November; 41(6): 833840.Google Scholar
Schrijvers, D, Hulstijn, W, Sabbe, BGC. Psychomotor symptoms in depression: A diagnostic, pathophysiological and therapeutic tool. J Affect Disord. 2008 July; 109(1–2): 120.Google Scholar
Schrijvers, D, de Bruijn, ERA, Maas, Y, et al. Action monitoring in major depressive disorder with psychomotor retardation. Cortex. 2008 May; 44(5): 569579.Google Scholar
Schrijvers, D, De Bruijn, ERA, Maas, YJ, et al. Action monitoring and depressive symptom reduction in major depressive disorder. Int J Psychophysiol. 2009 March; 71(3): 218224.CrossRefGoogle ScholarPubMed
Weinberg, A, Liu, H, Shankman, SA. Blunted neural response to errors as a trait marker of melancholic depression. Biol Psychol. 2016 January; 113: 100107.Google Scholar
Chiu, PH, Deldin, PJ. Neural evidence for enhanced error detection in major depressive disorder. Am J Psychiatry. 2007; 164(4): 608616.CrossRefGoogle ScholarPubMed
Gorka, SM, Lieberman, L, Shankman, SA, Phan, KL. Startle potentiation to uncertain threat as a psychophysiological indicator of fear-based psychopathology: An examination across multiple internalizing disorders. J Abnorm Psychol. 2017; 126(1): 8.CrossRefGoogle ScholarPubMed
Alexopoulos, GS. The vascular depression hypothesis: 10 years later. Vol. 60, Biological Psychiatry . United States; 2006. pp. 13041305.Google Scholar
Fissler, M, Winnebeck, E, Schroeter, TA, et al. Brief training in mindfulness may normalize a blunted error-related negativity in chronically depressed patients. Cogn Affect Behav Neurosci. 2017 December; 17(6): 11641175.CrossRefGoogle ScholarPubMed
Hegerl, U, Juckel, G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis* 1. Biological Psychiatry. 1993; 33: 173187.Google Scholar
Juckel, G, Molnar, M, Hegerl, U, Csepe, V, Karmos, G. Auditory-evoked potentials as indicator of brain serotonergic activity–first evidence in behaving cats. Biol Psychiatry. 1997 June; 41(12): 11811195.Google Scholar
Juckel, G, Hegerl, U, Molnar, M, Csepe, V, Karmos, G. Auditory evoked potentials reflect serotonergic neuronal activity–a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology. 1999 December; 21(6): 710716.Google Scholar
Jacobs, BL, Wilkinson, LO, Fornal, CA. The role of brain serotonin: A neurophysiologic perspective. Neuropsychopharmacology. 1990; 3(5–6): 473479.Google Scholar
Aghajanian, GK, Vandermaelen, CP. Specific Systems of the Reticular Core: Serotonin [Internet]. Comprehensive Physiology. 2011. (Major Reference Works). Available from: https://doi.org/10.1002/cphy.cp010404CrossRefGoogle Scholar
Lewis, DA, Campbell, MJ, Foote, SL, Morrison, JH. The monoaminergic innervation of primate neocortex. Hum Neurobiol [Internet]. 1986; 5(3): 181188. Available from: http://europepmc.org/abstract/MED/3533864Google Scholar
Wutzler, A, Winter, C, Kitzrow, W, et al. Loudness dependence of auditory evoked potentials as indicator of central serotonergic neurotransmission: Simultaneous electrophysiological recordings and in vivo microdialysis in the rat primary auditory cortex. Neuropsychopharmacology [Internet]. 2008 May 7; 33: 3176. Available from: http://dx.doi.org/10.1038/npp.2008.42Google Scholar
Ruohonen, EM, Astikainen, P. Brain responses to sound intensity changes dissociate depressed participants and healthy controls. Biol Psychol [Internet]. 2017; 127: 7481. Available from: www.sciencedirect.com/science/article/pii/S0301051117301060Google Scholar
Gopal, K V, Bishop, CE, Carney, L. Auditory measures in clinically depressed individuals. II. Auditory evoked potentials and behavioral speech tests. Int J Audiol. 2004 October; 43(9): 499505.Google Scholar
Linka, T, Sartory, G, Bender, S, Gastpar, M, Müller, BW. The intensity dependence of auditory ERP components in unmedicated patients with major depression and healthy controls. An analysis of group differences. J Affect Disord [Internet]. 2007; 103(1): 139145. Available from: www.sciencedirect.com/science/article/pii/S0165032707000201CrossRefGoogle ScholarPubMed
Park, Y-M, Lee, S-H, Kim, S, Bae, S-M. The loudness dependence of the auditory evoked potential (LDAEP) in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorder, and healthy controls. Prog Neuro-Psychopharmacology Biol Psychiatry. 2010; 34(2): 313316.Google Scholar
Chen, T-J, Yu, YW-Y, Chen, M-C, et al. Serotonin dysfunction and suicide attempts in major depressives: An auditory event-related potential study. Neuropsychobiology. 2005; 52(1): 2836.CrossRefGoogle ScholarPubMed
Fitzgerald, PB, Mellow, TB, Hoy, KE, et al. A study of intensity dependence of the auditory evoked potential (IDAEP) in medicated melancholic and non-melancholic depression. J Affect Disord. 2009; 117(3): 212216.Google Scholar
Jaworska, N, Blier, P, Fusee, W, Knott, V. Scalp- and sLORETA-derived loudness dependence of auditory evoked potentials (LDAEPs) in unmedicated depressed males and females and healthy controls. Clin Neurophysiol [Internet]. 2012 September; 123(9): 17691778. Available from: http://dx.doi.org/10.1016/j.clinph.2012.02.076Google Scholar
Lee, B-H, Park, Y-M, Lee, S-H, Shim, M. Prediction of long-term treatment response to selective serotonin reuptake inhibitors (SSRIs) using scalp and source loudness dependence of auditory evoked potentials (LDAEP) Analysis in patients with major depressive disorder. Int J Mol Sci [Internet]. 2015; 16(3): 62516265. Available from: www.mdpi.com/1422–0067/16/3/6251CrossRefGoogle ScholarPubMed
Mulert, C, Juckel, G, Augustin, H, Hegerl, U. Comparison between the analysis of the loudness dependency of the auditory N1/P2 component with LORETA and dipole source analysis in the prediction of treatment response to the selective serotonin reuptake inhibitor citalopram in major depression. Clin Neurophysiol [Internet]. 2002; 113(10): 15661572. Available from: www.sciencedirect.com/science/article/pii/S1388245702002523Google Scholar
Jaworska, N, Blondeau, C, Tessier, P, et al. Response prediction to antidepressants using scalp and source-localized loudness dependence of auditory evoked potential (LDAEP) slopes. Prog Neuro-Psychopharmacology Biol Psychiatry [Internet]. 2013; 44: 100107. Available from: www.sciencedirect.com/science/article/pii/S0278584613000146Google Scholar
Gallinat, J, Bottlender, R, Juckel, G, et al. The loudness dependency of the auditory evoked N1/P2-component as a predictor of the acute SSRI response in depression. Psychopharmacology (Berl) [Internet]. 2000 March; 148(4): 404411. Available from: https://doi.org/10.1007/s002130050070Google Scholar
Gur, E, Lerer, B, Dremencov, E, Newman, ME. Chronic repetitive transcranial magnetic stimulation induces subsensitivity of presynaptic serotonergic autoreceptor activity in rat brain. Neuroreport [Internet]. 2000; 11(13). Available from: https://journals.lww.com/neuroreport/Fulltext/2000/09110/Chronic_repetitive_transcranial_magnetic.19.aspxCrossRefGoogle ScholarPubMed
Gur, E, Lerer, B, Van de Kar, LD, Newman, ME. Chronic rTMS induces subsensitivity of post-synaptic 5-HT1A receptors in rat hypothalamus. Int J Neuropsychopharmacol [Internet]. 2004 September 1; 7(3): 335340. Available from: http://dx.doi.org/10.1017/S1461145703003985Google Scholar
Sibon, I, Strafella, AP, Gravel, P, et al. Acute prefrontal cortex TMS in healthy volunteers: Effects on brain 11 C-αMtrp trapping. Neuroimage [Internet]. 2007; 34(4): 16581664. Available from: www.sciencedirect.com/science/article/pii/S1053811906008846Google Scholar
Lee, S, Jang, K-I, Chae, J-H. Association of the loudness dependence of auditory evoked potentials with clinical changes to repetitive transcranial magnetic stimulation in patients with depression. J Affect Disord. 2018 October; 238: 451457.Google Scholar
Fox, MD, Buckner, RL, White, MP, Greicius, MD, Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012 October; 72(7): 595603.CrossRefGoogle ScholarPubMed
Korb, AS, Cook, IA, Hunter, AM, Leuchter, AF. Brain electrical source differences between depressed subjects and healthy controls. Brain Topogr. 2008; 21(2): 138146.Google Scholar
Pollock, VE, Schneider, LS. Topographic quantitative EEG in elderly subjects with major depression. Psychophysiology [Internet]. 1990 July 1; 27(4): 438444. Available from: https://doi.org/10.1111/j.1469–8986.1990.tb02340.xGoogle Scholar
Lopes da Silva, F., Vos, J., Mooibroek, J, Rotterdam, A van. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol. 1980; 50(5–6): 449456.Google Scholar
Suffczynski, P. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol. 2001; 43(1): 2540.Google Scholar
Chaumon, M, Busch, NA. Prestimulus neural oscillations inhibit visual perception via modulation of response gain. J Cogn Neurosci [Internet]. 2014 April 17; 26(11): 25142529. Available from: https://doi.org/10.1162/jocn_a_00653Google Scholar
Laufs, H, Krakow, K, Sterzer, P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. 2003;(October) PNAS September 16, 2003 100 (19) 11053–11058.Google Scholar
Gonçalves, SI. Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. NeuroImage (Orlando, Fla). 2006; 30(1): 203213.Google Scholar
Laufs, H, Holt, J, Elfont, R, et al. Where the BOLD signal goes when alpha EEG leaves. NeuroImage (Orlando, Fla). 2006; 31(4): 14081418.Google ScholarPubMed
de Munck, JC. The hemodynamic response of the alpha rhythm: An EEG/fMRI study. NeuroImage (Orlando, Fla). 2007; 35(3): 11421151.Google Scholar
Klimesch, W, Sauseng, P, Hanslmayr, S. EEG alpha oscillations : The inhibition – timing hypothesis. 2006; 3. Brain Research Reviews. Volume 53, Issue 1, January 2007, Pages 63–88.Google Scholar
Näpflin, M, Wildi, M, Sarnthein, J. Test-retest reliability of resting EEG spectra validates a statistical signature of persons. Vol. 118, Clinical Neurophysiology. Sarnthein, Johannes: Universitatsspital Zurich, Zurich, Switzerland, CH-8091, : Elsevier Science; 2007. pp. 25192524.Google Scholar
Begić, DD, Mahnik-Miloš, M, Grubišin, J. EEG characteristics in depression, “negative” and “positive” schizophrena. Psychiatr Danub. 2009; 21(4): 579584.Google Scholar
Carlsson, A. The dopamine theory revisited. Schizophrenia. 1995; 379400.Google Scholar
Olbrich, S, Van Dinteren, R, Arns, M. Personalized medicine: Review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder. Neuropsychobiology. 2016; 72(3–4): 229240.CrossRefGoogle Scholar
Roemer, RA, Shagass, C, Dubin, W, Jaffe, R, Siegal, L. Quantitative EEG in elderly depressives. Brain Topogr. 1992; 4(4): 285290.Google Scholar
Begic, D, Popovic-Knapic, V, Grubisin, J, et al. Quantitative electroencephalography in schizophrenia and depression. Psychiatr Danub. 2011 December; 23(4): 355362.Google Scholar
Jaworska, N, Blier, P, Fusee, W, Knott, V. α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. J Psychiatr Res [Internet]. 2012; 46(11): 14831491. Available from: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3463760&tool=pmcentrez&rendertype=abstractGoogle Scholar
Grin-Yatsenko, V a, Baas, I, Ponomarev, V a, Kropotov, JD. EEG power spectra at early stages of depressive disorders. J Clin Neurophysiol. 2009; 26(6): 401406.Google Scholar
Bruder, GE, Sedoruk, JP, Stewart, JW, et al. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre- and post-treatment findings. Biol Psychiatry. 2008; 63(12): 11711177.Google Scholar
Davidson, RJ. Cerebral asymmetry, emotion, and affective style. In: Brain asymmetry. Cambridge, MA, US: The MIT Press; 1995. pp. 361387.Google Scholar
Davidson, RJ, Henriques, J. Regional brain function in sadness and depression. In: The Neuropsychology of Emotion. New York, NY, US: Oxford University Press; 2000. pp. 269297. (Series in affective science.).Google Scholar
Davidson, RJ, Lewis, DA, Alloy, LB, et al. Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry [Internet]. 2002; 52(6): 478502. Available from: www.sciencedirect.com/science/article/pii/S0006322302014580Google Scholar
Tomarkenand, AJ, Keener, AD. Frontal brain asymmetry and depression: A self-regulatory perspective. Cogn Emot [Internet]. 1998 May 1; 12(3): 387420. Available from: https://doi.org/10.1080/026999398379655Google Scholar
Micoulaud-Franchi, J-A, Richieri, R, Cermolacce, M, et al. Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: A preliminary study. J Affect Disord [Internet]. 2012; 137(1): 156160. Available from: www.sciencedirect.com/science/article/pii/S0165032711007932Google Scholar
Chang, JS, Yoo, CS, Yi, SH, et al. An integrative assessment of the psychophysiologic alterations in young women with recurrent major depressive disorder. Psychosom Med. 2012 June; 74(5): 495500.CrossRefGoogle ScholarPubMed
Henriques, JB, Davidson, RJ. Left frontal hypoactivation in depression. J Abnorm Psychol. 1991 November; 100(4): 535545.Google Scholar
Schaffer, CE, Davidson, RJ, Saron, C. Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects. Biol Psychiatry. 1983 July; 18(7): 753762.Google Scholar
Kemp, AH, Griffiths, K, Felmingham, KL, et al. Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol Psychol [Internet]. 2010; 85(2): 350354. Available from: http://dx.doi.org/10.1016/j.biopsycho.2010.08.001Google Scholar
Beeney, JE, Levy, KN, Gatzke-Kopp, LM, Hallquist, MN. EEG asymmetry in borderline personality disorder and depression following rejection. Personal Disord Theory, Res Treat. 2014; 5(2): 178185.Google Scholar
Gollan, JK, Hoxha, D, Chihade, D, et al. Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol Psychol [Internet]. 2014; 99: 198208. Available from: www.sciencedirect.com/science/article/pii/S0301051114000623Google Scholar
Olbrich, S, Arns, M. EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response. Int Rev Psychiatry. 2013; 25(5): 604618.Google Scholar
van der Vinne, N, Vollebregt, MA, van Putten, MJAM, Arns, M. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage Clin. 2017; 16(July): 7987.Google Scholar
Davidson, RJ. Affect, cognition, and hemispheric specialization. In: Emotions, Cognition, and Behavior. New York, NY, US: Cambridge University Press; 1985. pp. 320365.Google Scholar
Kelley, NJ, Hortensius, R, Schutter, DJLG, Harmon-Jones, E. The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: A review of studies manipulating frontal asymmetry. Int J Psychophysiol [Internet]. 2017; 119: 1930. Available from: www.sciencedirect.com/science/article/pii/S0167876017301770Google Scholar
Debener, S, Beauducel, A, Nessler, D, et al. Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology. 2000; 41(1): 3137.Google Scholar
Pizzagalli, DA, Nitschke, JB, Oakes, TR, et al. Brain electrical tomography in depression: the importance of symptom severity, anxiety, and melancholic features. Biol Psychiatry [Internet]. 2002; 52(2): 7385. Available from: www.sciencedirect.com/science/article/pii/S0006322302013136CrossRefGoogle ScholarPubMed
Allen, JJB, Coan, JA, Nazarian, M. Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol Psychol [Internet]. 2004; 67(1): 183218. Available from: www.sciencedirect.com/science/article/pii/S0301051104000377Google Scholar
Stewart, JL, Coan, JA, Towers, DN, Allen, JJB. Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. J Affect Disord [Internet]. 2011; 129(1–3): 167174. Available from: http://dx.doi.org/10.1016/j.jad.2010.08.029CrossRefGoogle ScholarPubMed
Thibodeau, R, Jorgensen, RS, Kim, S. Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. J Abnorm Psychol. 2006; 115(4): 715729.Google Scholar
Arns, M, Bruder, G, Hegerl, U, et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin Neurophysiol [Internet]. 2016; 127(1): 509519. Available from: http://dx.doi.org/10.1016/j.clinph.2015.05.032Google Scholar
Carvalho, A, Moraes, H, Silveira, H, et al. EEG frontal asymmetry in the depressed and remitted elderly: Is it related to the trait or to the state of depression? J Affect Disord [Internet]. 2011; 129(1): 143148. Available from: www.sciencedirect.com/science/article/pii/S0165032710005598Google Scholar
Gold, C, Fachner, J, Erkkilä, J. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand J Psychol [Internet]. 2013 April 1; 54(2): 118126. Available from: https://doi.org/10.1111/sjop.12022CrossRefGoogle ScholarPubMed
Reid, SA, Duke, LM, Allen, JJB. Resting frontal electroencephalographic asymmetry in depression: Inconsistencies suggest the need to identify mediating factors. Psychophysiology [Internet]. 1998 July 1; 35(4): 389404. Available from: https://doi.org/10.1111/1469–8986.3540389Google Scholar
Segrave, RA, Cooper, NR, Thomson, RH, et al. Individualized Alpha Activity and Frontal Asymmetry in Major Depression. Clin EEG Neurosci [Internet]. 2011 January 1; 42(1): 4552. Available from: https://doi.org/10.1177/155005941104200110CrossRefGoogle ScholarPubMed
Kentgen, M. L, Tenke, C, Pine, D, et al. Electroencephalographic asymmetries in adolescents with major depression: Influence of comorbidity with anxiety disorders. Journal of Abnormal Psychology. 2000; 109: 797802.Google Scholar
Knott, V, Mahoney, C, Kennedy, S, Evans, K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res Neuroimaging [Internet]. 2001; 106(2): 123140. Available from: www.sciencedirect.com/science/article/pii/S0925492700000809Google Scholar
Deldin, PJ, Chiu, P. Cognitive restructuring and EEG in major depression. Biol Psychol [Internet]. 2005; 70(3): 141151. Available from: www.sciencedirect.com/science/article/pii/S030105110500027XGoogle Scholar
Mathersul, D, Williams, LM, Hopkinson, PJ, Kemp, AH. Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Vol. 8, Emotion. Kemp, Andrew H.: The Brain Dynamics Centre, Westmead Hospital, Acacia House, Hawkesbury Road, Westmead, NSW, Australia, 2145, : American Psychological Association; 2008. 560572.Google Scholar
Quraan, MA, Protzner, AB, Daskalakis, ZJ, et al. EEG power asymmetry and functional connectivity as a marker of treatment effectiveness in DBS surgery for depression. Neuropsychopharmacology [Internet]. 2013 November 28; 39: 1270. Available from: https://doi.org/10.1038/npp.2013.330Google Scholar
Price, GW, Lee, JW, Garvey, C, Gibson, N. Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin EEG Neurosci [Internet]. 2008 July 1; 39(3): 131138. Available from: https://doi.org/10.1177/155005940803900307Google Scholar
Allen, JJB, Kline, JP. Frontal EEG asymmetry, emotion, and psychopathology: The first, and the next 25 years. Biol Psychol [Internet]. 2004; 67(1): 15. Available from: www.sciencedirect.com/science/article/pii/S0301051104000304Google Scholar
Kaiser, AK, Doppelmayr, M, Iglseder, B. Electroencephalogram alpha asymmetry in geriatric depression. Z Gerontol Geriatr [Internet]. 2018; 51(2): 200205. Available from: https://doi.org/10.1007/s00391-016–1108-zCrossRefGoogle ScholarPubMed
Bruder, GE, Stewart, JW, Tenke, CE, et al. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. 2001; 49(5): 416425.Google Scholar
Knott, V, Mahoney, C, Kennedy, S, Evans, K. Pre-treatment EEG and it’s relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry. 2000; 33: 201205.Google Scholar
Ulrich, G, Haug, H-J, Stieglietz, R-D, Fahndrich, E. EEG characteristics of clinically defined on-drug-responders and non-responders – A comparison clomipramine vs. maprotiline. Pharmacopsychiatry [Internet]. 1988; 21(6): 367368. Available from: www.scopus.com/inward/record.uri?eid=2-s2.0–0024213743&partnerID=40&md5=73803912ace9ccfcd8af4ee36646e933Google Scholar
Baskaran, A, Farzan, F, Milev, R, et al. The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: A pilot study. J Affect Disord [Internet]. 2017; 227(October 2017): 542549. Available from: https://doi.org/10.1016/j.jad.2017.10.028Google Scholar
Knott, VJ, I. Telner, J, D. Lapierre, Y, et al. Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disord. 1996 August 1; 39(3): 175184.Google Scholar
Baskaran, A, Milev, R, McIntyre, RS. The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology. 2012; 63(4): 507513.Google Scholar
Heller, W, A. Etienne, M, A. Miller, G. Patterns of perceptual asymmetry in depression and anxiety: Implications for neuropsychological models of emotion and psychopathology. Journal of Abnormal Psychology. 1995; 104: 327333.Google Scholar
Arns, M, Spronk, D, Fitzgerald, PB. Potential differential effects of 9 Hz rTMS and 10 Hz rTMS in the treatment of depression. Brain Stimul. 2010; 3(2): 124126.Google Scholar
Bench, CJ, Friston, KJ, Brown, RG, et al. The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression. Psychol Med [Internet]. 1992; 22(3): 607615. Available from: www.ncbi.nlm.nih.gov/pubmed/1410086Google Scholar
Drevets, WC, Videen, TO, Price, JL, et al. A functional anatomical study of unipolar depression. J Neurosci. 1992 September; 12(9): 36283641.Google Scholar
Mayberg, HS, Lewis, PJ, Regenold, W, Wagner, HNJ. Paralimbic hypoperfusion in unipolar depression. J Nucl Med. 1994 June; 35(6): 929934.Google Scholar
Seminowicz, DA, Mayberg, HS, McIntosh, AR, et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage. 2004 May; 22(1): 409418.Google Scholar
Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev [Internet]. 1999 April [cited 2014 August 15]; 29(2–3): 169195. Available from: www.sciencedirect.com/science/article/pii/S0165017398000563Google Scholar
Dharmadhikari, AS, Tandle, AL, Jaiswal, S V, et al. Frontal theta asymmetry as a biomarker of depression. East Asian Arch Psychiatry [Internet]. 2018; 28(1): 1722. Available from: www.easap.asia/index.php/find-issues/current-issue/item/795–1803-v28n1-p17Google Scholar
Kempermann, G, Kronenberg, G. Depressed new neurons – Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003; 54(5): 499503.Google Scholar
Fingelkurts, AA, Fingelkurts, AA, Rytsälä, H, et al. Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res. 2006; 56(2): 133144.Google Scholar
Iosifescu, DV. Electroencephalography-derived biomarkers of antidepressant response. Harv Rev Psychiatry. 2011; 19(3): 144154.Google Scholar
Ishii, R, Shinosaki, K, Ukai, S, et al. Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport. 1999; 10(4): 675679.Google Scholar
Asada, H, Fukuda, Y, Tsunoda, S, Yamaguchi, M, Tonoike, M. Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci Lett. 1999; 274(1): 2932.Google Scholar
Pizzagalli, DA, Oakes, TR, Davidson, RJ. Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects. Psychophysiology. 2003; 40(6): 939949.Google Scholar
Kwon, JS, Youn, T, Jung, HY. Right hemisphere abnormalities in major depression: Quantitative electroencephalographic findings before and after treatment. J Affect Disord. 1996; 40(3): 169173.Google Scholar
Nystrom, C, Matousek, M, Hallstrom, T. Relationships between EEG and clinical characteristics in major depressive disorder. Acta Psychiatr Scand. 1986; 73(4): 390394.Google Scholar
Lieber, AL. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: II. Interhemispheric measures are abnormal in major depressives and frequency analysis may discriminate certain subtypes. The Hillside Journal of Clinical Psychiatry. 1988; 10: 8497.Google ScholarPubMed
Arns, M, Etkin, A, Hegerl, U, et al. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome? Eur Neuropsychopharmacol [Internet]. 2015; 25(8): 11901200. Available from: http://dx.doi.org/10.1016/j.euroneuro.2015.03.007Google Scholar
Grin-Yatsenko, VA, Baas, I, Ponomarev, VA, Kropotov, JD. Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clin Neurophysiol [Internet]. 2010; 121(3): 281289. Available from: http://dx.doi.org/10.1016/j.clinph.2009.11.015Google Scholar
Degabriele, R, Lagopoulos, J. A review of EEG and ERP studies in bipolar disorder. Acta Neuropsychiatr [Internet]. 2014/06/24. 2009; 21(2): 5866. Available from: www.cambridge.org/core/article/review-of-eeg-and-erp-studies-in-bipolar-disorder/C7825AAA07D3119CF55C54A4563ABCA2Google Scholar
Mientus, S, Gallinat, J, Wuebben, Y, et al. Cortical hypoactivation during resting EEG in schizophrenics but not in depressives and schizotypal subjects as revealed by low resolution electromagnetic tomography (LORETA). Psychiatry Res – Neuroimaging. 2002; 116(1–2): 95111.Google Scholar
Lubar, JF, Congedo, M, Askew, JH. Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol. 2003 September; 49(3): 175185.CrossRefGoogle ScholarPubMed
Heikman, P, Salmelin, R, Mäkelä, JP, et al. Relation between frontal 3–7 Hz MEG activity and the efficacy of ECT in major depression. J ECT. 2001; 17(2): 136140.Google Scholar
Iosifescu, D V., Greenwald, S, Devlin, P, et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol [Internet]. 2009; 19(11): 772777. Available from: http://dx.doi.org/10.1016/j.euroneuro.2009.06.001Google Scholar
Pizzagalli, DA. Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology [Internet]. 2011; 36(1): 183206. Available from: http://dx.doi.org/10.1038/npp.2010.166Google Scholar
Spronk, D, Arns, M, Barnett, KJ, Cooper, NJ, Gordon, E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: A pilot study. J Affect Disord [Internet]. 2011; 128(1–2): 4148. Available from: http://dx.doi.org/10.1016/j.jad.2010.06.021CrossRefGoogle ScholarPubMed
Korb, AS, Hunter, AM, Cook, IA, Leuchter, AF. Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clin Neurophysiol [Internet]. 2009; 120(7): 13131319. Available from: http://dx.doi.org/10.1016/j.clinph.2009.05.008CrossRefGoogle ScholarPubMed
Mulert, C, Juckel, G, Brunnmeier, M, et al. Prediction of treatment response in major depression: Integration of concepts. J Affect Disord. 2007; 98(3): 215225.Google Scholar
Pizzagalli, DA, Pascual-Marqui, RD, Nitschke, JB, et al. Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. Am J Psychiatry [Internet]. 2001; 158(3): 405415. Available from: http://ajp.psychiatryonline.org.myaccess.library.utoronto.ca/doi/abs/10.1176/appi.ajp.158.3.405%5Cnfiles/523/Pizzagalli et al. – 2001 – Anterior Cingulate Activity as a Predictor of Degr.pdfGoogle Scholar
Watson, BO, Ding, M, Buzsáki, G. Temporal coupling of field potentials and action potentials in the neocortex. Eur J Neurosci [Internet]. 2018 October 1; 48(7): 24822497. Available from: https://doi.org/10.1111/ejn.13807Google Scholar
Nir, Y, Fisch, L, Mukamel, R, et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol. 2007; 17(15): 12751285.CrossRefGoogle ScholarPubMed
Fries, P, Reynolds, JH, Rorie, AE, Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001 February; 291(5508): 15601563.Google Scholar
Kim, H, Ährlund-Richter, S, Wang, X, Deisseroth, K, Carlén, M. Prefrontal parvalbumin neurons in control of attention. Cell. 2016; 164(1–2): 208218.Google Scholar
Fitzgerald, PJ, Watson, BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry [Internet]. 2018; 8(1): 177. Available from: https://doi.org/10.1038/s41398-018–0239-yCrossRefGoogle ScholarPubMed
Uhlhaas, PJ, Haenschel, C, Nikolić, D, Singer, W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull [Internet]. 2008 September [cited 2014 October 1]; 34(5): 927943. Available from: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2632472&tool=pmcentrez&rendertype=abstractGoogle Scholar
Colgin, LL, Denninger, T, Fyhn, M, et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature [Internet]. 2009 November 19; 462: 353. Available from: https://doi.org/10.1038/nature08573Google Scholar
Fernández-Ruiz, A, Oliva, A, Nagy, GA, et al. Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron [Internet]. 2017; 93(5): 1213–1226.e5. Available from: www.sciencedirect.com/science/article/pii/S0896627317301010Google Scholar
Spellman, T, Rigotti, M, Ahmari, SE, et al. Hippocampal–prefrontal input supports spatial encoding in working memory. Nature [Internet]. 2015 June 8; 522: 309. Available from: https://doi.org/10.1038/nature14445CrossRefGoogle ScholarPubMed
Strelets, VB, Garakh, Z V, Novototskiĭ-Vlasov, VI. Comparative study of the gamma-rhythm in the norm, pre-examination stress and patients with the first depressive episode. Zh Vyssh Nerv Deiat Im I P Pavlova [Internet]. 2006; 56(2): 219227. Available from: www.ncbi.nlm.nih.gov/pubmed/16756129Google Scholar
Lee, PS, Chen, YS, Hsieh, JC, Su, TP, Chen, LF. Distinct neuronal oscillatory responses between patients with bipolar and unipolar disorders: A magnetoencephalographic study. J Affect Disord [Internet]. 2010; 123(1–3): 270275. Available from: http://dx.doi.org/10.1016/j.jad.2009.08.020Google Scholar
Liu, TY, Chen, YS, Su, TP, Hsieh, JC, Chen, LF. Abnormal early gamma responses to emotional faces differentiate unipolar from bipolar disorder patients. Biomed Res Int. 2014; 2014.Google Scholar
Pizzagalli, DA, Peccoralo, LA, Davidson, RJ, Cohen, JD. Resting anterior cingulate activity and abnormal responses to errors in subjects with elevated depressive symptoms: A 128-channel EEG study. Hum Brain Mapp [Internet]. 2006 March 1; 27(3): 185201. Available from: https://doi.org/10.1002/hbm.20172Google Scholar
Isomura, S, Onitsuka, T, Tsuchimoto, R, et al. Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses. J Affect Disord. 2016; 190(2016): 800806.Google Scholar
Oda, Y, Onitsuka, T, Tsuchimoto, R, Hirano, S, Oribe, N, Ueno, T, et al. Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PLoS One [Internet]. 2012 July; 7(7): e39955. Available from: http://dx.doi.org/10.1371/journal.pone.0039955Google Scholar
Liu, T-Y, Hsieh, J-C, Chen, Y-S, et al. Different patterns of abnormal gamma oscillatory activity in unipolar and bipolar disorder patients during an implicit emotion task. Neuropsychologia [Internet]. 2012 June [cited 2014 October 3]; 50(7): 15141520. Available from: www.ncbi.nlm.nih.gov/pubmed/22406691Google Scholar
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000 February; 47(4): 351354.CrossRefGoogle ScholarPubMed
Hong, LE, Summerfelt, A, Buchanan, RW, et al. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology [Internet]. 2009 November 4; 35: 632. Available from: https://doi.org/10.1038/npp.2009.168Google Scholar
Muthukumaraswamy, SD, Shaw, AD, Jackson, LE, et al. Evidence that subanesthetic doses of Ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans. J Neurosci [Internet]. 2015 August 19; 35(33): 11694LP11706. Available from: www.jneurosci.org/content/35/33/11694.abstractCrossRefGoogle ScholarPubMed
Shaw, AD, Saxena, N, Jackson, LE, et al. Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. Eur Neuropsychopharmacol [Internet]. 2015; 25(8): 11361146. Available from: http://dx.doi.org/10.1016/j.euroneuro.2015.04.012Google Scholar
Nugent, AC, Ballard, ED, Gould, TD, et al. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry [Internet]. 2018; Available from: https://doi.org/10.1038/s41380-018–0028-2Google Scholar
Noda, Y, Zomorrodi, R, Saeki, T, et al. Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clin Neurophysiol [Internet]. 2017; 128(3): 424432. Available from: http://dx.doi.org/10.1016/j.clinph.2016.12.023Google Scholar
Bailey, NW, Hoy, KE, Rogasch, NC, et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul [Internet]. 2018; 11(1): 190203. Available from: https://doi.org/10.1016/j.brs.2017.10.015CrossRefGoogle ScholarPubMed
Pathak, Y, Salami, O, Baillet, S, Li, Z, Butson, CR. Longitudinal Changes in Depressive Circuitry in Response to Neuromodulation Therapy [Internet]. Vol. 10, Frontiers in Neural Circuits; 2016. p. 50. Available from: www.frontiersin.org/article/10.3389/fncir.2016.00050Google Scholar
Belmaker, RH, Agam, G. Major depressive disorder. N Engl J Med [Internet]. 2008 January 3; 358(1): 5568. Available from: https://doi.org/10.1056/NEJMra073096Google Scholar
Gandal, MJ, Haney, JR, Parikshak, NN, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science (80-) [Internet]. 2018 February 9; 359(6376): 693LP697. Available from: http://science.sciencemag.org/content/359/6376/693.abstractGoogle Scholar
Drysdale, AT, Grosenick, L, Downar, J, et al. HHS Public Access. 2017; 23(1): 2838.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×