Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T02:00:44.643Z Has data issue: false hasContentIssue false

Chapter 6 - Single-Molecule Fluorescence Resonance Energy Transfer Investigations of Ribosome-Catalyzed Protein Synthesis

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Protein synthesis, or translation, is an inherently dynamic process in which the ribosome traverses the open reading frame of a messenger RNA (mRNA) template in steps of precisely one triplet-nucleotide codon, catalyzing the selection of aminoacyl-transfer RNA (aa-tRNA) substrates and polymerization of the nascent polypeptide chain, while simultaneously coordinating the sequential binding of exogenous translation factors. The complexity of this process is mirrored by the intricate molecular architecture of the ribosome itself, highlighted in atomic detail by recent X-ray crystallographic structures that reveal an elaborate network of RNA-RNA, RNA-protein, and protein-protein interactions (Korostelev and Noller, 2007; Steitz, 2008). This high degree of intra- and inter-molecular connectivity suggests that allosteric mechanisms may regulate the activity and coordinate the timing of biochemical events catalyzed by spatially distal ribosomal functional centers. Large-scale conformational dynamics of the ribosome have similarly been implicated as a means by which to regulate the biochemical steps of protein synthesis and to power forward progression through the kinetic steps of the translation process.

Comparison of X-ray crystallographic structures of ribosomal subunits as well as the intact ribosome in the absence and presence of translation factors (reviewed in Schmeing and Ramakrishnan [2009]), together with the analysis of cryogenic electron microscopy (cryo-EM) reconstructions of the ribosome trapped at various functional states during protein synthesis (see Chapter 7), has allowed visualization of large-scale conformational rearrangements of the translational machinery. Through such comparative structural analysis, mobile ribosomal domains have been identified and specific conformational changes have been inferred. However, these static structural images lack information regarding the timescales of the inferred conformational changes, and the kinetic and thermodynamic parameters underlying the corresponding ribosomal motions. Such dynamic information has recently been uncovered through the application of single-molecule fluorescence resonance energy transfer (smFRET) to studies of protein synthesis. This technique has proven to be particularly well-suited for monitoring and characterizing large-scale conformational dynamics of the ribosome and its tRNA and translation factor ligands, which often occur on length scales (∼tens of Ǻ) and time scales (∼ms to s) that are well matched with the spatio-temporal resolution of current smFRET methodologies (see Chapter 1). Guided by the structural data, numerous donor-acceptor fluorophore labeling schemes have already been developed, each capable of monitoring specific conformational changes of the translational machinery in real time.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 93 - 116
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, C. EPuglisi, J. D 2010 Following the intersubunit conformation of the ribosome during translation in real timeNat Struct Mol Biol 17 793CrossRefGoogle Scholar
Andersen, C. BBecker, TBlau, MAnand, MHalic, MBalar, BMielke, TBoesen, TPedersen, J. SSpahn, C. MKinzy, T. GAndersen, G. RBeckmann, R 2006 Structure of eEF3 and the mechanism of transfer RNA release from the E-siteNature 443 663CrossRefGoogle ScholarPubMed
Bergemann, KNierhaus, K. H 1983 Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomesJ Biol Chem 258 15105Google ScholarPubMed
Blanchard, S. CGonzalez, R. LKim, H. DChu, SPuglisi, J. D 2004 tRNA selection and kinetic proofreading in translationNat Struct Mol Biol 11 1008CrossRefGoogle ScholarPubMed
Blanchard, S. CKim, H. DGonzalez, R. LPuglisi, J. DChu, S 2004 tRNA dynamics on the ribosome during translationProc Natl Acad Sci USA 101 12893CrossRefGoogle ScholarPubMed
Bretscher, M. S 1968 Translocation in protein synthesis: a hybrid structure modelNature 218 675CrossRefGoogle ScholarPubMed
Brodersen, D. EClemons, W. MCarter, A. PMorgan-Warren, R. JWimberly, B. TRamakrishnan, V 2000 The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunitCell 103 1143CrossRefGoogle ScholarPubMed
Bronson, J. EFei, JHofman, J. MGonzalez, R. LWiggins, C. H 2009 Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET dataBiophys J 97 3196CrossRefGoogle ScholarPubMed
Carter, A. PClemons, W. MBrodersen, D. EMorgan-Warren, R. JWimberly, B. TRamakrishnan, V 2000 Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibioticsNature 407 340Google ScholarPubMed
Carter, A. PClemons, W. MBrodersen, D. EMorgan-Warren, R. JHartsch, TWimberly, B. TRamakrishnan, V 2001 Crystal structure of an initiation factor bound to the 30S ribosomal subunitScience 291 498CrossRefGoogle ScholarPubMed
Cornish, P. VErmolenko, D. NNoller, H. FHa, T 2008 Spontaneous intersubunit rotation in single ribosomesMol Cell 30 578CrossRefGoogle ScholarPubMed
Cornish, P. VErmolenko, D. NStaple, D. WHoang, LHickerson, R. PNoller, H. FHa, T 2009 Following movement of the L1 stalk between three functional states in single ribosomesProc Natl Acad Sci USA 106 2571CrossRefGoogle ScholarPubMed
Daviter, TGromadski, K. BRodnina, M. V 2006 The ribosome's response to codon-anticodon mismatchesBiochimie 88 1001CrossRefGoogle ScholarPubMed
Dorner, SBrunelle, J. LSharma, DGreen, R 2006 The hybrid state of tRNA binding is an authentic translation elongation intermediateNat Struct Mol Biol 13 234CrossRefGoogle ScholarPubMed
Dorywalska, MBlanchard, S. CGonzalez, R. LKim, H. DChu, SPuglisi, J. D 2005 Site-specific labeling of the ribosome for single-molecule spectroscopyNucleic Acids Res 33 182CrossRefGoogle ScholarPubMed
Draper, D. E 2004 A guide to ions and RNA structureRna 10 335CrossRefGoogle ScholarPubMed
Effraim, P. RWang, JEnglander, M. TAvins, JLeyh, T. SGonzalez, R. LCornish, V. W 2009 Natural amino acids do not require their native tRNAs for efficient selection by the ribosomeNat Chem Biol 5 947CrossRefGoogle Scholar
Ermolenko, D. NMajumdar, Z. KHickerson, R. PSpiegel, P. CClegg, R. MNoller, H. F 2007 Observation of intersubunit movement of the ribosome in solution using FRETJ Mol Biol 370 530CrossRefGoogle ScholarPubMed
Ermolenko, D. NSpiegel, P. CMajumdar, Z. KHickerson, R. PClegg, R. MNoller, H. F 2007 The antibiotic viomycin traps the ribosome in an intermediate state of translocationNat Struct Mol Biol 14 493CrossRefGoogle Scholar
Fei, JBronson, J. EHofman, J. MSrinivas, R. LWiggins, C. HGonzalez, R. L 2009 Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translationProc Natl Acad Sci USA 106 15702CrossRefGoogle ScholarPubMed
Fei, JKosuri, PMacdougall, D. DGonzalez, R. L 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMol Cell 30 348CrossRefGoogle ScholarPubMed
Fei, JWang, JSternberg, S. HMacdougall, D. DElvekrog, M. MPulukkunat, D. KEnglander, M. TGonzalez, R. L 2010 A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesisMethods Enzymol 472 221CrossRefGoogle ScholarPubMed
Feldman, M. BTerry, D. SAltman, R. BBlanchard, S. C 2010 Aminoglycoside activity observed on single pre-translocation ribosome complexesNat Chem Biol 6 54CrossRefGoogle ScholarPubMed
Frank, JAgrawal, R. K 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, JGao, HSengupta, JGao, NTaylor, D. J 2007 The process of mRNA-tRNA translocationProc Natl Acad Sci USA 104 19671CrossRefGoogle ScholarPubMed
Frank, JGonzalez, R. L 2010 Structure and dynamics of a processive Brownian motor: the translating ribosomeAnnual Review of Biochemistry 79 1CrossRefGoogle ScholarPubMed
Gavrilova, L. PKostiashkina, O. EKoteliansky, V. ERutkevitch, N. MSpirin, A. S 1976 Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomesJ Mol Biol537CrossRefGoogle ScholarPubMed
Gavrilova, L. PSpirin, A. S 1971 Stimulation of “non-enzymic” translocation in ribosomes by p-chloromercuribenzoateFEBS Lett 17 324CrossRefGoogle ScholarPubMed
Gonzalez, R. LChu, SPuglisi, J. D 2007 Thiostrepton inhibition of tRNA delivery to the ribosomeRna 13 2091CrossRefGoogle ScholarPubMed
Grosjean, H. JDe Henau, SCrothers, D. M 1978 On the physical basis for ambiguity in genetic coding interactionsProc Natl Acad Sci USA 75 610CrossRefGoogle ScholarPubMed
Ha, TRasnik, ICheng, WBabcock, H. PGauss, G. HLohman, T. MChu, S 2002 Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicaseNature 419 638CrossRefGoogle ScholarPubMed
Harms, J. MWilson, D. NSchluenzen, FConnell, S. RStachelhaus, TZaborowska, ZSpahn, C. MFucini, P 2008 Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcinMol Cell 30 26CrossRefGoogle ScholarPubMed
Hickerson, RMajumdar, Z. KBaucom, AClegg, R. MNoller, H. F 2005 Measurement of internal movements within the 30 S ribosomal subunit using Forster resonance energy transferJ Mol Biol 354 459CrossRefGoogle ScholarPubMed
Hohng, SJoo, CHa, T 2004 Single-molecule three-color FRETBiophys J 87 1328CrossRefGoogle ScholarPubMed
Hopfield, J. J 1974 Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificityProc Natl Acad Sci USA 71 4135CrossRefGoogle ScholarPubMed
Horan, L. HNoller, H. F 2007 Intersubunit movement is required for ribosomal translocationProc Natl Acad Sci USA 104 4881CrossRefGoogle ScholarPubMed
Katunin, V. ISavelsbergh, ARodnina, M. VWintermeyer, W 2002 Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosomeBiochemistry 41 12806CrossRefGoogle ScholarPubMed
Kim, H. DPuglisi, J. DChu, S 2007 Fluctuations of transfer RNAs between classical and hybrid statesBiophys J 93 3575CrossRefGoogle ScholarPubMed
Korostelev, ANoller, H. F 2007 The ribosome in focus: new structures bring new insightsTrends Biochem Sci 32 434CrossRefGoogle ScholarPubMed
Laursen, B. SSorensen, H. PMortensen, K. KSperling-Petersen, H. U 2005 Initiation of protein synthesis in bacteriaMicrobiol Mol Biol Rev 69 101CrossRefGoogle ScholarPubMed
Lee, T. HBlanchard, S. CKim, H. DPuglisi, J. DChu, S 2007 The role of fluctuations in tRNA selection by the ribosomeProc Natl Acad Sci USA 104 13661CrossRefGoogle ScholarPubMed
Levene, M. JKorlach, JTurner, S. WFoquet, MCraighead, H. GWebb, W. W 2003 Zero-mode waveguides for single-molecule analysis at high concentrationsScience 299 682CrossRefGoogle ScholarPubMed
Marshall, R. AAitken, C. EPuglisi, J. D 2009 GTP hydrolysis by IF2 guides progression of the ribosome into elongationMol Cell 35 37CrossRefGoogle ScholarPubMed
Marshall, R. ADorywalska, MPuglisi, J. D 2008 Irreversible chemical steps control intersubunit dynamics during translationProc Natl Acad Sci USA 105 15364CrossRefGoogle ScholarPubMed
Moazed, DNoller, H. F 1989 Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sitesCell 57 585CrossRefGoogle ScholarPubMed
Moazed, DNoller, H. F 1989 Intermediate states in the movement of transfer RNA in the ribosomeNature 342 142CrossRefGoogle ScholarPubMed
Mohr, DWintermeyer, WRodnina, M. V 2002 GTPase activation of elongation factors Tu and G on the ribosomeBiochemistry 41 12520CrossRefGoogle Scholar
Munro, J. BAltman, R. BO’Connor, NBlanchard, S. C 2007 Identification of two distinct hybrid state intermediates on the ribosomeMol Cell 25 505CrossRefGoogle ScholarPubMed
Munro, J. BAltman, R. BTung, C. SCate, J. HSanbonmatsu, K. YBlanchard, S. C 2009 Spontaneous formation of the unlocked state of the ribosome is a multistep processProc Natl Acad Sci USA 107 709CrossRefGoogle ScholarPubMed
Munro, J. BAltman, R. BTung, C. SSanbonmatsu, K. YBlanchard, S. C 2009 A fast dynamic mode of the EF-G-bound ribosomeEmbo J 29 770CrossRefGoogle ScholarPubMed
Munro, J. BSanbonmatsu, K. YSpahn, C. MBlanchard, S. C 2009 Navigating the ribosome's metastable energy landscapeTrends Biochem Sci 34 390CrossRefGoogle ScholarPubMed
Nikulin, AEliseikina, ITishchenko, SNevskaya, NDavydova, NPlatonova, OPiendl, WSelmer, MLiljas, ADrygin, DZimmermann, RGarber, MNikonov, S 2003 Structure of the L1 protuberance in the ribosomeNat Struct Biol 10 104CrossRefGoogle ScholarPubMed
Odom, O. WPicking, W. DHardesty, B 1990 Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomesBiochemistry 29 10734CrossRefGoogle Scholar
Ogle, J. MMurphy, F. VTarry, M. JRamakrishnan, V 2002 Selection of tRNA by the ribosome requires a transition from an open to a closed formCell 111 721CrossRefGoogle ScholarPubMed
Parker, J 1989 Errors and alternatives in reading the universal genetic codeMicrobiol Rev 53 273Google ScholarPubMed
Pestka, S 1969 Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factorsJ Biol Chem 244 1533Google ScholarPubMed
Petry, SWeixlbaumer, ARamakrishnan, V 2008 The termination of translationCurr Opin Struct Biol 18 70CrossRefGoogle Scholar
Pioletti, MSchlunzen, FHarms, JZarivach, RGluhmann, MAvila, HBashan, ABartels, HAuerbach, TJacobi, CHartsch, TYonath, AFranceschi, F 2001 Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3Embo J 20 1829CrossRefGoogle ScholarPubMed
Ratje, A. HLoerke, JMikolajka, ABrunner, MHildebrand, P. WStarosta, A. LDonhofer, AConnell, S. RFucini, PMielke, TWhitford, P. COnuchic, J. NYu, YSanbonmatsu, K. YHartmann, R. KPenczek, P. AWilson, D. NSpahn, C. M 2010 Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sitesNature 468 713CrossRefGoogle ScholarPubMed
Rodnina, M. VGromadski, K. BKothe, UWieden, H. J 2005 Recognition and selection of tRNA in translationFEBS Lett 579 938CrossRefGoogle ScholarPubMed
Rodnina, M. VSavelsbergh, AKatunin, V. IWintermeyer, W 1997 Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosomeNature 385 37CrossRefGoogle ScholarPubMed
Rodnina, M. VWintermeyer, W 2001 Ribosome fidelity: tRNA discrimination, proofreading and induced fitTrends Biochem Sci 26 124CrossRefGoogle ScholarPubMed
Savelsbergh, AKatunin, V. IMohr, DPeske, FRodnina, M. VWintermeyer, W 2003 An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocationMol Cell 11 1517CrossRefGoogle ScholarPubMed
Savelsbergh, AMohr, DKothe, UWintermeyer, WRodnina, M. V 2005 Control of phosphate release from elongation factor G by ribosomal protein L7/12Embo J 24 4316CrossRefGoogle ScholarPubMed
Schmeing, T. MRamakrishnan, V 2009 What recent ribosome structures have revealed about the mechanism of translationNature 461 1234CrossRefGoogle Scholar
Schmeing, T. MVoorhees, R. MKelley, A. CGao, Y. GMurphy, F. V. TWeir, J. RRamakrishnan, V 2009 The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNAScience 326 688CrossRefGoogle ScholarPubMed
Spahn, C. MGomez-Lorenzo, M. GGrassucci, R. AJorgensen, RAndersen, G. RBeckmann, RPenczek, P. ABallesta, J. PFrank, J 2004 Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocationEmbo J 23 1008CrossRefGoogle ScholarPubMed
Spirin, A. S 1968 How does the ribosome work? A hypothesis based on the two subunit construction of the ribosomeCurr Mod Biol 2 115Google Scholar
Spirin, A. S 1985 Ribosomal translocation: facts and modelsProg Nucleic Acid Res Mol Biol 32 75CrossRefGoogle ScholarPubMed
Stanley, R. EBlaha, GGrodzicki, R. LStrickler, M. DSteitz, T. A 2010 The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosomeNat Struct Mol Biol 17 289CrossRefGoogle ScholarPubMed
Stapulionis, RWang, YDempsey, G. TKhudaravalli, RNielsen, K. MCooperman, B. SGoldman, Y. EKnudsen, C. R 2008 Fast in vitro translation system immobilized on a surface via specific biotinylation of the ribosomeBiol Chem 389 1239CrossRefGoogle ScholarPubMed
Steitz, T. A 2008 A structural understanding of the dynamic ribosome machineNat Rev Mol Cell Biol 9 242CrossRefGoogle ScholarPubMed
Sternberg, S. HFei, JPrywes, NMcgrath, K. AGonzalez, R. L 2009 Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recyclingNat Struct Mol Biol 16 861CrossRefGoogle ScholarPubMed
Subramanian, A. RDabbs, E. R 1980 Functional studies on ribosomes lacking protein L1 from mutant Escherichia coliEur J Biochem 112 425CrossRefGoogle ScholarPubMed
Sytnik, AVladimirov, SJia, YLi, LCooperman, B. SHochstrasser, R. M 1999 Peptidyl transferase center activity observed in single ribosomesJ Mol Biol 285 49CrossRefGoogle ScholarPubMed
Taylor, D. J.Nilsson, J.Merrill, A. R.Andersen, G. R.Nissen, P.Frank, J. 2007
Thompson, R. CStone, P. J 1977 Proofreading of the codon-anticodon interaction on ribosomesProc Natl Acad Sci USA 74 198CrossRefGoogle ScholarPubMed
Traut, R. RMonro, R. E 1964 The puromycin reaction and its relation to protein synthesisJ Mol Biol 10 63CrossRefGoogle ScholarPubMed
Uemura, SAitken, C. EKorlach, JFlusberg, B. ATurner, S. WPuglisi, J. D 2010 Real-time tRNA transit on single translating ribosomes at codon resolutionNature 464 1012CrossRefGoogle ScholarPubMed
Valle, MZavialov, ASengupta, JRawat, UEhrenberg, MFrank, J 2003 Locking and unlocking of ribosomal motionsCell 114 123CrossRefGoogle ScholarPubMed
Villa, ESengupta, JTrabuco, L. GLebarron, JBaxter, W. TShaikh, T. RGrassucci, R. ANissen, PEhrenberg, MSchulten, KFrank, J 2009 Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysisProc Natl Acad Sci USA 106 1063CrossRefGoogle ScholarPubMed
Wang, YQin, HKudaravalli, R. DKirillov, S. VDempsey, G. TPan, DCooperman, B. SGoldman, Y. E 2007 Single-molecule structural dynamics of EF-G–ribosome interaction during translocationBiochemistry 46 10767CrossRefGoogle ScholarPubMed
Yamada, TMizugichi, YNierhaus, K. HWittmann, H. G 1978 Resistance to viomycin conferred by RNA of either ribosomal subunitNature 275 460CrossRefGoogle ScholarPubMed
Zavialov, A. VBuckingham, R. HEhrenberg, M 2001 A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3Cell 107 115CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×