Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T13:34:48.532Z Has data issue: false hasContentIssue false

16 - Two-dimensional gyre models

Published online by Cambridge University Press:  05 June 2012

David M. Glover
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
William J. Jenkins
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Scott C. Doney
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Get access

Summary

What is art but life upon the larger scale, the higher. When, graduating up in a spiral line of still expanding and ascending gyres, it pushes toward the intense significance of all things, hungry for the infinite?

Elizabeth Barrett Browning

Onward to the next dimension

Although one-dimensional models provide useful insight into basic biogeochemical processes, we are forced to admit that the world is made of more than one spatial dimension. The addition of an extra dimension to a model often does more than “fill space”, but rather imbues the model with behavior that is qualitatively different from its lower-dimensional analogue. The opportunity presented by the extra dimension is that more interesting, and perhaps more “realistic” phenomena may be modeled. This opportunity brings with it challenges, however, that are not just computational in nature. The choices of model geometry, circulation scheme, and boundary conditions become more complicated. Seemingly innocuous choices can have subtle or profound effects on how your model behaves. Moreover, matching model results to observations often requires decisions about whether features result from intrinsic processes of interest, or are mere artifacts of the choices made in model configuration.

For instructional purposes, we'll stick to a genre called gyre models which, as you might guess, are characterized by a quasi-circular flow on a plane. Such models have utility in the subtropics – at least that's where we'll be dwelling here – but can be used in many other parts of the ocean.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×