Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:09:44.448Z Has data issue: false hasContentIssue false

3 - The genetics of dyslexia: what is the phenotype?

Published online by Cambridge University Press:  22 September 2009

Albert M. Galaburda
Affiliation:
Emily Fisher Landau Professor of Neurology and Neuroscience Harvard Medical School; Chief of the Division of Behavioral Neurology Beth Israel Deaconess Medical Center
Gordon F. Sherman
Affiliation:
Executive Director Newgrange School and Education Center in Princeton, NJ
Kurt W. Fischer
Affiliation:
Harvard University, Massachusetts
Jane Holmes Bernstein
Affiliation:
The Children's Hospital, Boston
Mary Helen Immordino-Yang
Affiliation:
University of Southern California
Get access

Summary

Overview: Dyslexia has a genetic basis, but a major question is the developmental relation between genes and behaviors, especially complex, culturally mediated behaviors such as reading. Moreover, because the dyslexic behavioral and anatomical phenotypes are still debated, interpreting correlations between brain and behavior is difficult. Using research involving animal models, postmortem studies of dyslexics' brains, and genetic studies of dyslexics' families, Galaburda and Sherman attempt to isolate genotypes and phenotypes for dyslexia. The research illuminates genetic differences between dyslexics and normals, as well as the low-level cognitive, sensory, and perceptual correlates of these differences. The authors focus especially on the functional and anatomical implications of ectopias, small malformations of the cortex resulting from altered neuronal migration during fetal development. Certain kinds of ectopias have been associated with dyslexia and could represent a basic, genetically influenced abnormality that through development may relate to important characteristics of dyslexics.

The Editors

Attempts to relate specific genes to specific human cognitive functions have not revealed any genes that control cognitive behavior in humans. We do not know, for instance, what the genetic basis for language in humans is, and why it is, genetically speaking, that even our closest relative – the chimpanzee – does not have anything approximating human language, even though we share over 95 percent of our genes with this species. This state of affairs, after 150 years of neurological research on language, and nearly 50 years since the discovery of the genetic code, should not be surprising.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. C., Brown, C. P. & Tallal, P. (1993) Developmental language disorders: Evidence for a basic processing deficit. Current Opinion in Neurology & Neurosurgery 6:98–106.Google ScholarPubMed
Ashkenas, J. (1996) Williams syndrome starts making sense. American Journal of Human Genetics 59:756–61.Google ScholarPubMed
Boehm, G. W., Sherman, G. F., Hoplight, B. J., Hyde, L. A., Bradway, D. M., Galaburda, A. M., Ahmed, S. A. & Denenberg, V. H. (1998) Learning in year-old female autoimmune BXSB mice. Physiology & Behavior 64:75–82.CrossRefGoogle ScholarPubMed
Boehm, G. W., Sherman, G. F., Hoplight, B. J., Hyde, L. A., Waters, N. S., Bradway, D. M.,Galaburda, A. M. & Denenberg, V. H. (1996) Learning and memory in the autoimmune BXSB mouse: Effects of neocortical ectopias and environmental enrichment. Brain Research 726:11–22.CrossRefGoogle ScholarPubMed
Bradley, L. & Bryant, P. (1981) Visual memory and phonological skills in reading and spelling backwardness. Psychological Research 43:193–9.CrossRefGoogle ScholarPubMed
Bryant, P., Nunes, T. & Bindman, M. (1998) Awareness of language in children who have reading difficulties: Historical comparisons in a longitudinal study. Journal of Child Psychology and Psychiatry 39:501–10.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F. & DeFries, J. C. (1994) Quantitative trait locus for reading disability on chromosome 6. Science 266:276–9.CrossRefGoogle ScholarPubMed
Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F. & DeFries, J. C. (1995) Quantitative trait locus for reading disability: correction [letter]. Science 268:1553.CrossRefGoogle Scholar
Davis, C. J., Gayan, J., Knopik, V. S., Smith, S. D., Cardon, L. R., Pennington, B. F., Olson, R. K. & DeFries, J. C. (2001) Etiology of reading difficulties and rapid naming: The Colorado Twin Study of Reading Disability. Behavior Genetics, 31, 625–35.CrossRefGoogle ScholarPubMed
DeFries, J. C., Fulker, D. W. & LaBuda, M. C. (1987) Evidence for a genetic aetiology in reading disability of twins. Nature 329:537–9.CrossRefGoogle Scholar
DeFries, J. C., Stevenson, J., Gillis, J. & Wadsworth, S. J. (1991) Genetic etiology of spelling deficits in the Colorado and London twin studies of reading disabilities. Reading and Writing 3:271–83.CrossRefGoogle Scholar
Denenberg, V. H., Sherman, G. F., Rosen, G. D. & Galaburda, A. M. (1988) Learning and laterality differences in BXSB mice as a function of neocortical anomaly. Society for Neuroscience Abstracts 14:1260.Google Scholar
Denenberg, V. H., Sherman, G. F., Schrott, L. M., Rosen, G. D. & Galaburda, A. M. (1991) Spatial learning, discrimination learning, paw preference and neocortical ectopias in two autoimmune strains of mice. Brain Research 562:98–104.CrossRefGoogle Scholar
Eden, G. F., Vanmeter, J. W., Rumsey, J. M. & Zeffiro, T. A. (1996b) The visual deficit theory of developmental dyslexia. Neuroimage 4:S108–S117.CrossRefGoogle Scholar
Eden, G. F., Vanmeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P. & Zeffiro, T. A. (1996a) Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:66–9.CrossRefGoogle Scholar
Eicher, E. & Lee, B. (1990) The NXSM recombinant inbred strains of mice: Genetic profile for 58 loci including the Mtv proviral loci. Genetics 125:431–46.Google ScholarPubMed
Field, L. L. & Kaplan, B. J. (1998) Absence of linkage of phonological coding dyslexia to chromosome 6p23- p21.3 in a large family data set. American Journal of Human Genetics 63:1448–56.CrossRefGoogle Scholar
Finucci, J. M., Gurthrie, J. T. & Childs, B. (1976) The genetics of specific reading disability. Annals of Human Genetics 40:1–23.CrossRefGoogle ScholarPubMed
Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., Weeks, D. E., Stein, J. F. & Monaco, A. P. (1999) A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics 64:146–56.CrossRefGoogle ScholarPubMed
Fitch, R. H., Miller, S. & Tallal, P. (1997) Neurobiology of speech perception. Annual Review of Neuroscience 20:331–53.CrossRefGoogle ScholarPubMed
Fitch, R. H., Tallal, P., Brown, C., Galaburda, A. M. & Rosen, G. D. (1994) Induced microgyria and auditory temporal processing in rats: A model for language impairment?Cerebral Cortex 4:260–70.CrossRefGoogle ScholarPubMed
Frenkel, M., Sherman, G. F., Bashan, K. A., Galaburda, A. M. & LoTurco, J. J. (2000) Neocortical ectopias are associated with attenuated neurophysiological responses to rapidly changing auditory stimuli. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience, 11:575–9.CrossRefGoogle ScholarPubMed
Friede, R. L. & Mikolasek, J. (1978) Postencephalitic porencephaly, hydranencephaly or polymicrogyria. A review. Acta Neuropathology (Berlin) 43:161–8.CrossRefGoogle ScholarPubMed
Galaburda, A. M. (2002) Anatomy of the temporal processing deficit in developmental dyslexia. In Witruk, E., Friederici, A. D. & Lachmann, T. (eds), Basic functions of language, reading, and reading disability, 241–50. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Galaburda, A. M., Menard, M. T. & Rosen, G. D. (1994) Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Sciences 91:8010–13.CrossRefGoogle ScholarPubMed
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. (1985) Developmental dyslexia: Four consecutive cases with cortical anomalies. Annals of Neurology 18:222–33.CrossRefGoogle Scholar
Gayan, J., Smith, S. D., Cherny, S. S., Cardon, L. R., Fulker, D. W., Brower, A. M., Olson, R. K., Pennington, B. F. & DeFries, J. C. (1999) Quantitative-trait locus for specific language and reading deficits on chromosome 6p. American Journal of Human Genetics 64:157–64.CrossRefGoogle ScholarPubMed
Gilger, J. W., Pennington, B. F. & DeFries, J. C. (1991) Risk for reading disabilities as a function of parental history of learning problems: Data from three samples of families demonstrating genetic transmission. Reading and Writing 3:205–17.CrossRefGoogle Scholar
Goei, V. L., Choi, J., Ahn, J., Bowlus, C. L., Raha-Chowdhury, R. & Gruen, J. R. (1998) Human gamma-aminobutyric acid B receptor gene: complementary DNA cloning, expression, chromosomal location, and genomic organization [see comments]. Biological Psychiatry 44:659–66.CrossRefGoogle Scholar
Grigorenko, E. L. (2003) The first candidate gene for dyslexia: Turning the page of a new chapter of research. Proceedings of the National Academy of Sciences 100(20):11190–2.CrossRefGoogle Scholar
Grigorenko, E. L., Wood, F. B., Meyer, M. S., Hart, L. A., Speed, W. C., Shuster, A. & Pauls, D. L. (1997) Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetics 60:27–39.Google ScholarPubMed
Hallgren, B. (1950) Specific dyslexia: a clinical and genetic study. Acta Psychiatr Neurol Scand Suppl 65:1–287.Google ScholarPubMed
Herman, A. E., Galaburda, A. M., Fitch, H. R., Carter, A. R. & Rosen, G. D. (1997) Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cerebral Cortex 7:453–64.CrossRefGoogle ScholarPubMed
Humphreys, P., Rosen, G. D., Sherman, G. F. & Galaburda, A. M. (1989) Freezing lesions of the newborn rat brain: A model for cerebrocortical microdysgenesis. Society for Neuroscience Abstracts 15:1120.Google Scholar
Hynd, G., Semrud-Clikeman, M., Lorys, A., Novey, E. & Eliopulos, R. (1990) Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology 47:919–26.CrossRefGoogle ScholarPubMed
Jenner, A. R., Galaburda, A. M. & Sherman, G. F. (1995) Connectivity of cortical ectopias in autoimmune mice. Society for Neuroscience Abstracts 21:1712.Google Scholar
Jenner, A. R., Galaburda, A. M. and Sherman, G. F. (1997) Thalamocortical and corticothalamic connections in New Zealand Black mice. Society for Neuroscience Abstracts 27:1365.Google Scholar
Jenner, A. R., Rosen, G. D. & Galaburda, A. M. (1999) Neuronal asymmetries in the primary visual cortex of dyslexic and non-dyslexic brains. Annals of Neurology 46:189–96.3.0.CO;2-N>CrossRefGoogle Scholar
Landerl, K., Wimmer, H. & Frith, U. (1997) The impact of orthographic consistency on dyslexia: a German-English comparison. Cognition 63:315–34.CrossRefGoogle ScholarPubMed
Liberman, I. Y. & Shankweiler, D. (1985) Phonology and the problems of learning to read and write. Remedial and Special Education 6:8–17.CrossRefGoogle Scholar
Livingstone, M., Rosen, G., Drislane, F. & Galaburda, A. (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences 88:7943–7.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L. & Tallal, P. (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271:77–80.CrossRefGoogle Scholar
Morais, J., Luytens, M. & Alegria, J. (1984) Segmentation abilities of dyslexics and normal readers. Perceptual and Motor Skills 58:221–2.CrossRefGoogle ScholarPubMed
Morgan, A. E. & Hynd, G. W. (1998) Dyslexia, neurolinguistic ability, and anatomical variation of the planum temporale. Neuropsychology Review 8:79–93.CrossRefGoogle ScholarPubMed
Pennington, B. F. (1995) Genetics of learning disabilities. Journal Child Neurology 10:S69–S77.CrossRefGoogle ScholarPubMed
Pennington, B. F. (2002) The development of psychopathology: Nature and nurture. New York: Guilford Press.Google Scholar
Pennington, B. F., Gilger, J. W., Pauls, D., Smith, S. A., Smith, S. D. & DeFries, J. C. (1991) Evidence for major gene transmission of developmental dyslexia. Journal of the American Medical Association 266:1527–34.CrossRefGoogle ScholarPubMed
Pennington, B. F. & Smith, S. D. (1983) Genetic influences on learning disabilities and speech and language disorders. Child Development 54:369–87.CrossRefGoogle ScholarPubMed
Rabin, M., Elston, R. C.,Gross-Glenn, K.et al. (1991) Molecular genetics of developmental dyslexia. American Journal of Human Genetics 49:355.Google Scholar
Rabin, M., Wen, X. L., Hepburn, M. & Lubs, H. A. (1993) Suggestive linkage of developmental dyslexia to chromosome 1p34–p36. Lancet 342:178.CrossRefGoogle ScholarPubMed
Rosen, G. D. (1996) Cellular, morphometric, ontogenetic and connectional substrates of anatomical asymmetry. Neuroscience Biobehavioral Review 20:607–15.CrossRefGoogle ScholarPubMed
Rosen, G. D. & Galaburda, A. M. (1996) Efferent and afferent connectivity of induced neocortical microgyria. Society for Neuroscience Abstracts 22:485.Google Scholar
Rosen, G. D., Grasso, E. A., Gray, W. E., Palmieri, S. E., Galaburda, A. M. & Sherman, G. F. (2003) Genetic analysis of focal cerebral cortical malformations in mice using congenics and recombinant inbred strains. Society for Neuroscience Abstracts.Google Scholar
Rosen, G. D., Herman, A. E. & Galaburda, A. M. (1997) MGN neuronal size distribution following induced neocortical malformations: The effect of perinatal gonadal steroids. Society for Neuroscience Abstracts 23:626.Google Scholar
Rosen, G. D., Sherman, G. F. & Galaburda, A. M. (1996) Birthdates of neurons in induced microgyria. Brain Research, 727:71–8.CrossRefGoogle ScholarPubMed
Rosen, G. D., Sherman, G. F., Mehler, C.., Emsbo, K. & Galaburda, A. M. (1989) The effect of developmental neuropathology on neocortical asymmetry in New Zealand Black mice. International Journal of Neuroscience 45:247–54.CrossRefGoogle ScholarPubMed
Rutter, M., Caspi, A., Fergusson, D., Horwood,, L. J., Goodman, R., Maughan, B., Moffitt, T. E., Meltzer, H. & Carroll, J. (2004) Sex differences in developmental reading disability: new findings from 4 epidemiological studies. Journal of the American Medical Association 291:2007–12.CrossRefGoogle ScholarPubMed
Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., Stein, J. F. & Monaco, A. P. (2004) Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853–7.CrossRefGoogle ScholarPubMed
Schrott, L. M., Denenberg, V. H., Sherman, G. F., Rosen, G. D. & Galaburda, A. M. (1992) Lashley maze learning deficits in NZB mice. Physiology & Behavior 52:1085–9.CrossRefGoogle ScholarPubMed
Schulte-Korne, G., Grimm, T., Nothen, M. M., Muller-Myhsok, B., Cichon, S., Vogt, I. R., Propping, P. & Remschmidt, H. (1998) Evidence of linkage of spelling disability to chromosome 15. American Journal of Human Genetics 63: 279–82.CrossRefGoogle ScholarPubMed
Sherman, G. F., Rosen, G. D. & Galaburda, A. M. (1988) Neocortical anomalies in autoimmune mice: A model for the developmental neuropathology seen in the dyslexic brain. Drug Development Research 15:307–14.CrossRefGoogle Scholar
Sherman, G. F., Stone, L. V., Denenberg, V. H. & Beier, D. R. (1994) A genetic analysis of neocortical ectopias in New Zealand Black mice. NeuroReport 5:721–4.CrossRefGoogle Scholar
Silver, L. M. (1995) Mouse genetics: Concepts and applications. New York: Oxford University Press.Google Scholar
Smith, S. D., Kelley, P. M. & Brower, A. M. (1998) Molecular approaches to the genetic analysis of specific reading disability. Human Biology 70:239–56.Google ScholarPubMed
Smith, S. D., Kimberling, W. J. & Pennington, B. F. (1991) Screening for multiple genes influencing dyslexia. Reading and Writing 3:285–98.CrossRefGoogle Scholar
Smith, S. D., Kimberling, W. J., Pennington, B. F. & Lubs, H. A. (1983) Specific reading disability: Identification of an inherited form through linkage analysis. Science 219:1345–7.CrossRefGoogle ScholarPubMed
Smith, S. D., Pennington, B. F., Kimberling, W. J. & Ing, P. (1990) Familial dyslexia: Use of genetic linkage data to define subtypes. Journal of the American Academy of Child and Adolescent Psychiatry 29:204–13.CrossRefGoogle ScholarPubMed
Steinmetz, H., Volkmann, J., Jancke, L. & Freund, H.-J. (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Annals of Neurology 29:315–19.CrossRefGoogle ScholarPubMed
Stephenson, S. (1907) Six cases of congenital word-blindness (inability to learn to read). Ophthalmoscope 5:482–4.Google Scholar
Taipale, M., Kaminen, N., Nopola-Hemmi, J., Haltia, T., Myllyluoma, B., Lyytinen, H., Muller, K., Kaaranen, M., Lindsberg, P. J., Hannula-Jouppi, K. & Kere, J. (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences 100(20):11553–8.CrossRefGoogle ScholarPubMed
Tallal, P. (1977) Auditory perception, phonics and reading disabilities in children. Journal of the Acoustical Society of America 62:S100.CrossRefGoogle Scholar
Tallal, P., Miller, S., Fitch, R. H., Stein, J. F., McAnally, K., Richardson, A. J., Fawcett, A. J., Jacobson, C. & Nicholson, R. I. (1995) Dyslexia update. Irish Journal of Psychology 16: 194–268.CrossRefGoogle Scholar
Tallal, P. & Piercy, M. (1973) Defects of non-verbal auditory perception in children with developmental aphasia. Nature 241:468–9.CrossRefGoogle ScholarPubMed
Tamagawa, K., Scheidt, P. & Friede, R. L. (1989) Experimental production of lepto meningeal hetertopias from dissociated fetal tissue. Acta Neuropathological 78:153–8.CrossRefGoogle Scholar
Vogler, G. P., DeFries, J. C. & Decker, S. N. (1985) Family history as an indicator of risk for reading disability. Journal of Learning Disabilities 18:419–21.CrossRefGoogle ScholarPubMed
Wadsworth, S. J., Corley, R. P., Hewitt, J. K., Plomin, R. & DeFries, J. C. (2002) Parent-offspring resemblance for reading performance at 7, 12 and 16 years of age in the Colorado Adoption Project. Journal of Child Psychology & Psychiatry & Allied Disciplines, 43:769–74.CrossRefGoogle ScholarPubMed
Wadsworth, S. J., DeFries, J. C., Stevenson, J., Gilger, J. W. & Pennington, B. F. (1992) Gender ratios among reading-disabled children and their siblings as a function of parental impairment. Journal of Child Psychology & Psychiatry & Allied Disciplines 33:1229–39.CrossRefGoogle ScholarPubMed
Waters, N. S., Sherman, G. F., Galaburda, A. M. & Denenberg, V. H. (1997) Effects of cortical ectopias on spatial delayed-matching-to-sample performance in BXSB mice. Behavioral Brain Research 84:23–9.CrossRefGoogle ScholarPubMed
Wigg, K. G., Couto, J. M., Feng, Y., Anderson, B., Cate-Carter, T. D., Macciardi, F., Tannock, R., Lovett, M. W., Humphries, T. W. & Barr, C. L. (2004) Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry 9(12):1111–21.CrossRefGoogle ScholarPubMed
Wolf, M. & Bowers, P. (1999) The “Double-Deficit Hypothesis” for the developmental dyslexias. Journal of Educational Psychology 91:1–24.CrossRefGoogle Scholar
Yule, W. & Rutter, M. (1975) The concept of specific reading retardation. Journal of Child Psychology & Psychiatry and Allied Disciplines 16:181–97.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×