Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: July 2019

Bibliography

Adámek, J., Sobral, M., and Sousa, L. (2006). Morita equivalence of many-sorted algebraic theoriesJournal of Algebra, 297(2):361371.
Ahlbrandt, G. and Ziegler, M. (1986). Quasi finitely axiomatizable totally categorical theoriesAnnals of Pure and Applied Logic, 30(1):6382.
Ainsworth, P. M. (2009). Newman’s objectionThe British Journal for the Philosophy of Science, 60(1):135171.
Andreas, H. (2007). Carnap’s Wissenschaftslogik: Eine Untersuching zur Zweistufenkonzeption. Mentis.
Andréka, H., Madaraśz, J., and Németi, I. (2008). Defining new universes in many-sorted logic. Mathematical Institute of the Hungarian Academy of Sciences, Budapest, 93.
Andréka, H., Madaraśz, J., and Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple exampleMathematical Logic Quarterly, 51(6):591597.
Andréka, H. and Németi, I. (2014). Comparing theories: The dynamics of changing vocabulary. A case-study in relativity theory. In Johan van Benthem on Logic and Information Dynamics. Springer.
Awodey, S. (2010). Category Theory. Oxford University Press.
Awodey, S. and Forssell, H. (2013). First-order logical dualityAnnals of Pure and Applied Logic, 164(3):319348.
Awodey, S. and Klein, C. (2004). Carnap Brought Home: The View from Jena. Open Court Publishing.
Baker, D. J. (2010). Symmetry and the metaphysics of physicsPhilosophy Compass, 5(12):1157– 1166.
Barnes, D. W. and Mack, J. M. (1975). An Algebraic Introduction to Mathematical Logic. Springer-Verlag.
Barrett, T. W. (2015). On the structure of classical mechanicsThe British Journal for the Philosophy of Science, 66(4):801828.
Barrett, T. W. (2018a). Equivalent and inequivalent formulations of classical mechanics, The British Journal for the Philosophy of Science, https://doi.org/10.1093/bjps/axy017.
Barrett, T. W. (2018b). What do symmetries tell us about structure? Philosophy of Science, 85(4), 617639.
Barrett, T. W. and Halvorson, H. (2016a). Glymour and Quine on theoretical equivalenceJournal of Philosophical Logic, 45(5):467483.
Barrett, T. W. and Halvorson, H. (2016b). Morita equivalenceThe Review of Symbolic Logic, 9(3):556582.
Barrett, T. W. and Halvorson, H. (2017a). From geometry to conceptual relativityErkenntnis, 82(5):10431063.
Barrett, T. W. and Halvorson, H. (2017b). Quine’s conjecture on many-sorted logicSynthese, 194(9):35633582.
Bealer, G. (1978). An inconsistency in functionalismSynthese, 38(3):333372.
Bell, J. and Machover, M. (1977). A Course in Mathematical Logic. North-Holland.
Belot, G. (1998). Understanding electromagnetismThe British Journal for the Philosophy of Science, 49(4):531555.
Belot, G. (2017). Fifty million Elvis fans can’t be wrongNoûs, 52(4):946981.
Ben-Menahem, Y. (2006). Conventionalism: From Poincaré to Quine. Cambridge University Press.
Beni, M. D. (2015). Structural realism without metaphysics: Notes on Carnap’s measured pragmatic structural realismOrganon F, 22(3):302324.
Beth, E. and Tarski, A. (1956). Equilaterality as the only primitive notion of Euclidean geometryIndagationes Mathematicae, 18:462467.
Beth, E. W. (1956). On Padoa’s method in the theory of definitionJournal of Symbolic Logic, 21(2):194195.
Bickle, J. (1998). Psychoneural Reduction: The New Wave. MIT Press.
Bickle, J. (2013). Multiple realizability. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/multiple-realizability/.
Blanchette, P. (2012). The Frege-Hilbert controversy. The Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/frege-hilbert/.
Blatti, S. and Lapointe, S. (2016). Ontology after Carnap. Oxford University Press.
Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and Logic. Cambridge University Press.
Borceux, F. (1994). Handbook of Categorical Algebra. Cambridge University Press.
Bourbaki, N. (1970). Théorie des Ensembles. Hermann.
Breiner, S. (2014). Scheme Representation for First-Order Logic. PhD thesis, Carnegie Mellon University.
Bueno, O. (2010). A defense of second-order logicAxiomathes, 20(2-3):365383.
Burgess, J. P. (1984). Synthetic mechanicsJournal of Philosophical Logic, 13(4):379395.
Burgess, J. P. (2005). Fixing Frege. Princeton University Press.
Button, T. (2013). The Limits of Realism. Oxford University Press.
Butz, C. and Moerdijk, I. (1998). Representing topoi by topological groupoidsJournal of Pure and Applied Algebra, 130:223235.
Carnap, R. (1928). Der Logische Aufbau der Welt. Springer Verlag.
Carnap, R. (1934). Logische Syntax der Sprache. Springer.
Carnap, R. (1935). Philosophy and Logical Syntax. Kegan Paul.
Carnap, R. (1950). Empiricism, semantics, and ontology. Revue Internationale de Philosophie, pages 20–40.
Carnap, R. (1956). The methodological character of theoretical concepts. In The Foundations of Science and the Concepts of Psychology and Psychoanalysis, pages 3876. University of Minnesota Press.
Carnap, R. (1966). Philosophical Foundations of Physics. Basic Books.
Carnap, R. and Schilpp, P. A. (1963). The Philosophy of Rudolf Carnap. Cambridge University Press.
Chalmers, D., Manley, D., and Wasserman, R. (2009). Metametaphysics: New Essays on the Foundations of Ontology. Oxford University Press.
Coffa, A. (1986). From geometry to tolerance: Sources of conventionalism in nineteenth-century geometry. In Colodny, R., editor, From Quarks to Quasars: Philosophical Problems of Modern Physics, pages 370. University of Pittsburgh Press.
Coffa, J. A. (1993). The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge University Press.
Cori, R. and Lascar, D. (2000). Mathematical Logic. Oxford University Press.
Coxeter, H. S. M. (1955). The affine planeScripta Mathematica, 21:514.
Creath, R. and Friedman, M. (2007). The Cambridge Companion to Carnap. Cambridge University Press.
Cruse, P. and Papineau, D. (2002). Scientific realism without reference. In Marsonet, M., editor, The Problem of Realism, pages 174189. Ashgate.
Curiel, E. (2014). Classical mechanics is Lagrangian; it is not HamiltonianThe British Journal for the Philosophy of Science, 65(2):269321.
Davidson, D. (1970). Mental events. In Foster, L. and Swanson, J. W., editors, Essays on Actions and Events, pages 107119. Clarendon Press.
de Bouvére, K. L. (1965). Synonymous theories. In Symposium on the Theory of Models, pages 402406. North-Holland Publishing Company.
Demopoulos, W. (2013). Logicism and Its Philosophical Legacy. Cambridge University Press.
Dewar, N. (2017b). Sophistication about symmetries. The British Journal for the Philosophy of Science.
Dewar, N. (2018a). On translating between two logicsAnalysis, 78:622630.
Dewar, N. (2018b). Supervenience, reduction, and translation. Preprint.
Dewar, N. (2019). Ramsey equivalenceErkenntnis, 84(1):7799.
Dicken, P. and Lipton, P. (2006). What can Bas believe? Musgrave and van Fraassen on observabilityAnalysis, 66(291):226233.
Dizadji-Bahmani, F., Frigg, R., and Hartmann, S. (2010). Who’s afraid of Nagelian reduction? Erkenntnis, 73(3):393412.
Dorr, C. (2014). Quantifier variance and the collapse theoremsThe Monist, 97(4):503570.
Dukarm, J. J. (1988). Morita equivalence of algebraic theoriesColloquium Mathematicae, 55(1):1117.
Dwinger, P. (1971). Introduction to Boolean Algebras. Physica-Verlag.
Eilenberg, S. and Mac Lane, S. (1942). Group extensions and homologyAnnals of Mathematics, 43(4):757831.
Eilenberg, S. and Mac Lane, S. (1945). General theory of natural equivalencesTransactions of the American Mathematical Society, 58:231294.
Engelking, R. (1989). General Topology. Heldermann Verlag.
Feferman, S. (1974). Applications of many-sorted interpolation theorems. In Proceedings of the Tarski Symposium, volume 25, pages 205–223.
Fewster, C. J. (2015). Locally covariant quantum field theory and the problem of formulating the same physics in all spacetimesPhilosophical Transactions of the Royal Society A, 373(2047):20140238.
Field, H. (1980). Science without Numbers. Princeton University Press.
Fletcher, S. (2016). Similarity, topology, and physical significance in relativity theoryBritish Journal for the Philosophy of Science, 67(2):365389.
Freyd, P. (1964). Abelian Categories. Harper and Row.
Friedman, H. M. and Visser, A. (2014). When bi-interpretability implies synonymyLogic Group Preprint Series, 320:119.
Friedman, M. (1982). Review of The Scientific Image Journal of Philosophy, 79(5):274283.
Friedman, M. (1999). Reconsidering Logical Positivism. Cambridge University Press.
Friedman, M. (2011). Carnap on theoretical terms: Structuralism without metaphysicsSynthese, 180(2):249263.
Frigg, R. and Votsis, I. (2011). Everything you always wanted to know about structural realism but were afraid to askEuropean Journal for Philosophy of Science, 1(2):227276.
Gajda, A., Krynicki, M., and Szczerba, L. (1987). A note on syntactical and semantical functionsStudia Logica, 46(2):177185.
Givant, S. and Halmos, P. (2008). Introduction to Boolean Algebras. Springer.
Glymour, C. (1971). Theoretical realism and theoretical equivalence. In Buck, R. C. and Cohen, R. S., editors, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, pages 275288. Springer.
Glymour, C. (1977). The epistemology of geometryNoûs, 11:227251.
Glymour, C. (1980). Theory and Evidence. Princeton University Press.
Gödel, K. (1929). Über die Vollständigkeit des Logikkalküls. PhD thesis, University of Vienna.
Goldblatt, R. (1987). Orthogonality and Spacetime Geometry. Springer.
Halmos, P. and Givant, S. (1998). Logic as Algebra. Cambridge University Press.
Halvorson, H. (2011). Natural structures on state space. Manuscript.
Halvorson, H. (2012). What scientific theories could not bePhilosophy of Science, 79(2): 183206.
Halvorson, H. (2013). The semantic view, if plausible, is syntacticPhilosophy of Science, 80(3):475478.
Halvorson, H. (2016). Scientific theories. In Humphreys, P., editor, The Oxford Handbook of the Philosophy of Science. Oxford University Press.
Harnik, V. (2011). Model theory vs. categorical logic: Two approaches to pretopos completion (aka T eq ). In Hart, B., editor, Models, Logics, and Higher-Dimensional Categories, page 79. American Mathematical Society.
Hawthorne, J. P. (2006). Plenitude, convention, and ontology. In Metaphysical Essays, pages 53– 70. Oxford University Press.
Healey, R. (2007). Gauging What’s Real: The Conceptual Foundations of Contemporary Gauge Theories. Oxford University Press.
Hellman, G. (1985). Determination and logical truthThe Journal of Philosophy, 82(11):607616.
Hellman, G. P. and Thompson, F. W. (1975). Physicalism: Ontology, determination, and reductionThe Journal of Philosophy, 72(17):551564.
Herrlich, H. (2006). Axiom of Choice. Springer.
Herrlich, H. and Keremedis, K. (2000). The Baire category theorem and choiceTopology and Its Applications, 108(2):157167.
Hilbert, D. (1930). Grundlagen der Geometrie. Teubner.
Hirsch, E. (2011). Quantifier Variance and Realism: Essays in Metaontology. Oxford University Press.
Hirsch, E. and Warren, J. (2017). Quantifier variance and the demand for a semantics. Philosophy and Phenomenological Research.
Hodges, W. (1993). Model Theory. Cambridge University Press.
Hudetz, L. (2018a). Definable categorical equivalencePhilosophy of Science, 2019 86(1): 4775.
Hudetz, L. (2018b). The Logic of Scientific Theories. PhD thesis, University of Salzburg.
Hudson, R. (2010). Carnap, the principle of tolerance, and empiricismPhilosophy of Science, 77(3):341358.
Hylton, P. (2007). Quine. Routledge.
Johnstone, P. T. (1986). Stone Spaces. Cambridge University Press.
Johnstone, P. T. (2003). Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press.
Kanger, S. (1968). Equivalent theoriesTheoria, 34(1):16.
Keisler, H. J. (2010). The ultraproduct construction. www.math.wisc.edu/keisler/ultraproducts-web-final.pdf.
Ketland, J. (2004). Empirical adequacy and RamsificationThe British Journal for the Philosophy of Science, 55(2):287300.
Kleene, S. C. (1952). Introduction to Metamathematics. van Nostrand.
Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principleThe British Journal for the Philosophy of Science, 65(4):863880.
Koppelberg, S. (1989). General theory of Boolean algebras. In Monk, J. and Bonnet, R., editors, Handbook of Boolean Algebras, volume 3. North-Holland.
Kuratowski, K. (1966). Topology. Academic Press.
Ladyman, J. (2014). Structural realism. Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/structural-realism/.
Lawvere, F. W. (1964). An elementary theory of the category of setsProceedings of the National Academy of Sciences, 52(6):15061511.
Lawvere, F. W. and Rosebrugh, R. (2003). Sets for Mathematics. Cambridge University Press.
Leinster, T. (2014). Rethinking set theoryAmerican Mathematical Monthly, 121(5):403415.
Leitgeb, H. (2011). Logic in general philosophy of science: Old things and new thingsSynthese, 179(2):339350.
Lewis, D. (1966). An argument for the identity theoryThe Journal of Philosophy, 63(1):1725.
Lewis, D. (1970). How to define theoretical termsThe Journal of Philosophy, 67(13):427446.
Lewis, D. (1972). Psychophysical and theoretical identificationsAustralasian Journal of Philosophy, 50(3):249258.
Lewis, D. (1984). Putnam’s paradoxAustralasian Journal of Philosophy, 62(3):221236.
Lewis, D. (1994). Reduction of mind. In Guttenplan, S., editor, Companion to the Philosophy of Mind, 412431. Blackwell.
Lloyd, E. (1984). A Semantic Approach to the Structure of Evolutionary Theory. PhD thesis, Princeton University.
Love, A. C. and Hüttemann, A. (2016). Reduction. In Humphreys, P., editor, The Oxford Handbook of Philosophy of Science. Oxford University Press.
Mac Lane, S. (1948). Groups, categories and dualityProceedings of the National Academy of Sciences, 34(6):263267.
Mac Lane, S. (1971). Categories for the Working Mathematician. Springer.
Makkai, M. (1985). Ultraproducts and categorical logic. In Methods in Mathematical Logic, pages 222309. Springer.
Makkai, M. (1987). Stone duality for first order logicAdvances in Mathematics, 65(2):97170.
Makkai, M. (1991). Duality and Definability in First Order Logic. American Mathematical Society.
Makkai, M. (1995). First order logic with dependent sorts with applications to category theory. www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf.
Makkai, M. and Reyes, G. E. (1977). First Order Categorical Logic. Springer.
Manes, E. G. (1976). Algebraic Theories. Springer.
Manzano, M. (1993). Introduction to many-sorted logic. In Meinke, K. and Tucker, J., editors, Many-Sorted Logic and Its Applications, pages 386. Wiley.
Manzano, M. (1996). Extensions of First-Order Logic. Cambridge University Press.
Marker, D. (2006). Model Theory: An Introduction. Springer.
Maxwell, G. (1962). The ontological status of theoretical entities. In Feigl, H. and Maxwell, G., editors, Scientific Explanation, Space, and Time, pages 327. University of Minnesota Press.
McLaughlin, B. and Bennett, K. (2018). Supervenience. Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/supervenience/.
McSweeney, M. (2016a). An epistemic account of metaphysical equivalencePhilosophical Perspectives, 30(1):270293.
McSweeney, M. (2016b). The Metaphysical Basis of Logic. PhD thesis, Princeton University.
Melia, J. and Saatsi, J. (2006). Ramseyfication and theoretical contentThe British Journal for the Philosophy of Science, 57(3):561585.
Menzies, P. and Price, H. (2009). Is semantics in the plan? In Braddon-Mitchell, D. and Nola, R., editors, Conceptual Analysis and Philosophical Naturalism, pages 159182. MIT Press.
Mere, M. C. and Veloso, P. (1992). On extensions by sortsMonografias em Ciências da Computaçao, DI, PUC-Rio, 38:92.
Moerdijk, I. and Vermeulen, J. (1999). Proof of a conjecture of A. PittsJournal of Pure and Applied Algebra, 143(1-3):329338.
Monk, J. D. (2014). The mathematics of Boolean algebras. https://plato.stanford.edu/entries/boolalg-math/.
Munkres, J. R. (2000). Topology. Prentice Hall.
Myers, D. (1997). An interpretive isomorphism between binary and ternary relations. In Structures in Logic and Computer Science, pages 84105. Springer.
Nagel, E. (1935). The logic of reduction in the sciencesErkenntnis, 5(1):4652.
Nagel, E. (1961). The Structure of Science. Harcourt, Brace, and World, Inc.
Nestruev, J. (2002). Smooth Manifolds and Observables. Springer.
Newman, M. H. (1928). Mr. Russell’s “causal theory of perception”Mind, 37(146):137148.
North, J. (2009). The “structure” of physics: A case studyThe Journal of Philosophy, 106:5788.
Park, W. (2012). Friedman on implicit definition: In search of the Hilbertian heritage in philosophy of scienceErkenntnis, 76(3):427442.
Pearce, D. (1985). Translation, reduction and equivalence. Peter Lang, Frankfurt.
Pelletier, F. J. and Urquhart, A. (2003). Synonymous logicsJournal of Philosophical Logic, 32(3):259285.
Petrie, B. (1987). Global supervenience and reductionPhilosophy and Phenomenological Research, 48(1):119130.
Pinter, C. C. (1978). Properties preserved under definitional equivalence and interpretationsMathematical Logic Quarterly, 24(31-36):481488.
Poizat, B. (2012). A Course in Model Theory. Springer.
Price, H. (2009). Metaphysics after Carnap: The ghost who walks. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics: New Essays on the Foundations of Ontology, pages 320346. Oxford University Press.
Psillos, S. (2000). Carnap, the Ramsey-sentence and realistic empiricismErkenntnis, 52(2): 253279.
Psillos, S. (2006). Ramsey’s Ramsey-sentences. In Galavotti, M., editor, Cambridge and Vienna: Vienna Circle Institute Yearbook, pages 6790. Springer.
Putnam, H. (1962). What theories are not. In Nagel, E., Suppes, P., and Tarski, A., editors, Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, pages 240251. Stanford University Press.
Putnam, H. (1977). Realism and reason. In Proceedings and Addresses of the American Philosophical Association, volume 50, pages 483–498.
Putnam, H. (1980). Models and realityThe Journal of Symbolic Logic, 45(3):464482.
Putnam, H. (1992). Renewing Philosophy. Harvard University Press.
Putnam, H. (2001). Reply to Jennifer CaseRevue Internationale de Philosophie, 4(218).
Quine, W. V. (1937). New foundations for mathematical logic. American Mathematical Monthly, pages 70–80.
Quine, W. V. (1938). On the theory of typesThe Journal of Symbolic Logic, 3(04):125139.
Quine, W. V. (1951a). On Carnap’s views on ontologyPhilosophical Studies, 2(5):6572.
Quine, W. V. (1951b). Two dogmas of empiricismThe Philosophical Review, 60:2043.
Quine, W. V. (1956). Unification of universes in set theoryThe Journal of Symbolic Logic, 21(03):267279.
Quine, W. V. (1960). Word and Object. MIT.
Quine, W. V. (1963). Set Theory and Its Logic. Harvard University Press.
Quine, W. V. (1964). Implicit definition sustainedThe Journal of Philosophy, 61(2):7174.
Quine, W. V. (1975). On empirically equivalent systems of the worldErkenntnis, 9(3):313328.
Quine, W. V. (1976). The Ways of Paradox, and Other Essays. Harvard University Press.
Quine, W. V. and Goodman, N. (1940). Elimination of extra-logical postulatesThe Journal of Symbolic Logic, 5(3):104109.
Ramsey, F. P. (1929). Theories. In F.P. Ramsey Philosophical Papers. Cambridge University Press.
Rasiowa, H. and Sikorski, R. (1950). A proof of the completeness theorem of GödelFundamenta Mathematicae, 37(1):193200.
Rasiowa, H. and Sikorski, R. (1963). The Mathematics of Metamathematics. Państwow Wydaawnictwo Naukowe.
Restall, G. (2002). An Introduction to Substructural Logics. Routledge.
Ribes, L. and Zalesskii, P. (2000). Profinite Groups. Springer.
Rieffel, M. A. (1974). Morita equivalence for C  -algebras and W  -algebrasJournal of Pure and Applied Algebra, 5:5196.
Robinson, R. (1959). Binary relations as primitive notions in elementary geometry. In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 6885. North-Holland.
Rooduijn, J. (2015). Translating theories. Bachelor’s Thesis, Universiteit Utrecht.
Rosenstock, S., Barrett, T. W., and Weatherall, J. O. (2015). On Einstein algebras and relativistic spacetimesStudies in History and Philosophy of Modern Physics, 52:309316.
Rosenstock, S. and Weatherall, J. O. (2016). A categorical equivalence between generalized holonomy maps on a connected manifold and principal connections on bundles over that manifoldJournal of Mathematical Physics, 57(10):102902.
Royden, H. L. (1959). Remarks on primitive notions for elementary Euclidean and non-Euclidean plane geometry. In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 8696. North-Holland.
Russell, B. (1901). Mathematics and the metaphysicians. In Mysticism and Logic, pages 5774. Dover.
Russell, B. (1914a). Logic as the essence of philosophy. In Our Knowledge of the External World, pages 2648. Routledge.
Russell, B. (1914b). On the scientific method in philosophy. In Mysticism and Logic, pages 7596. Dover.
Sarkar, S. (2015). Nagel on reductionStudies in History and Philosophy of Science, 53:4356.
Scheibe, E. (2013). Die Reduktion physikalischer Theorien: Ein Beitrag zur Einheit der Physik. Springer-Verlag.
Schlick, M. (1918). Allgemeine Erkenntnislehre. Springer.
Schmidt, A. (1951). Die Zulässigkeit der Behandlung mehrsortiger Theorien mittels der üblichen einsortigen PrädikatenlogikMathematische Annalen, 123(1):187200.
Schwabhäuser, W. and Szczerba, L. (1975). Relations on lines as primitive notions for Euclidean geometryFundamenta Mathematicae, 82(4):347355.
Schwabhäuser, W., Szmielew, W., and Tarski, A. (1983). Metamathematische Methoden in der Geometrie. Springer.
Scott, D. (1956). A symmetric primitive notion for Euclidean geometryIndagationes Mathematicae, 18:457461.
Shapiro, S. (1991). Foundations without foundationalism: A case for second-order logic. Clarendon Press.
Shoemaker, S. (1981). Some varieties of functionalismPhilosophical Topics, 12(1):93119.
Sider, T. (2009). Ontological realism. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics, pages 384423. Oxford University Press.
Sider, T. (2013). Writing the Book of the World. Oxford University Press.
Sikorski, R. (1969). Boolean Algebras. Springer.
Soames, S. (2014). The Analytic Tradition in Philosophy. Princeton University Press.
Suppe, F. (1974). The Structure of Scientific Theories. University of Illinois Press, Urbana, Illinois.
Suppe, F. (1989). The Semantic Conception of Theories and Scientific Realism. University of Illinois Press.
Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969-1998. Philosophy of Science, pages S102–S115.
Svenonius, L. (1959). A theorem on permutations in modelsTheoria, 25(3):173178.
Swanson, N. and Halvorson, H. (2012). On North’s “The structure of physics”. Manuscript.
Szczerba, L. (1977). Interpretability of elementary theories. In Logic, Foundations of Mathematics, and Computability Theory, pages 129145. Springer.
Szczerba, L. (1986). Tarski and geometryThe Journal of Symbolic Logic, 51(4).
Szczerba, L. and Tarski, A. (1979). Metamathematical discussion of some affine geometriesFundamenta Mathematicae, 104(3):155192.
Tarski, A. (1929). Les fondements de la géométrie des corps. Ksiega Pamiatkowa Pierwszego Polskiego Zjazdu Matematycznego, pages 29–33.
Tarski, A. (1956). A general theorem concerning primitive notions of Euclidean geometryIndagationes Mathematicae, 18:468474.
Tarski, A. (1959). What is elementary geometry? In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 1629. North-Holland.
Tennant, N. (1985). Beth’s theorem and reductionismPacific Philosophical Quarterly, 66(3-4):342354.
Tennant, N. (2015). Introducing Philosophy: God, Mind, World, and Logic. Routledge.
Tsementzis, D. (2017a). First-order logic with isomorphism. https://arxiv.org/abs/1603.03092.
Tsementzis, D (2017b). A syntactic characterization of Morita equivalenceJournal of Symbolic Logic, 82(4):11811198.
Tuomela, R. (1973). Theoretical Concepts. Springer.
Turner, J. (2010). Ontological pluralismThe Journal of Philosophy, 107(1):534.
Turner, J. (2012). Logic and ontological pluralismJournal of Philosophical Logic, 41(2): 419448.
Uebel, T. (2011). Carnap’s ramseyfications defendedEuropean Journal for Philosophy of Science, 1(1):7187.
van Benthem, J. (1982). The logical study of scienceSynthese, 51(3):431472.
van Benthem, J. and Pearce, D. (1984). A mathematical characterization of interpretation between theoriesStudia Logica, 43(3):295303.
van Fraassen, B. (1976). To save the phenomenaThe Journal of Philosophy, 73(18):623632.
van Fraassen, B. (1980). The Scientific Image. Oxford University Press.
van Fraassen, B. (1989). Laws and Symmetry. Oxford University Press.
van Fraassen, B. (1997). Putnam’s paradox: Metaphysical realism revamped and evadedNoûs, 31(s11):1742.
van Fraassen, B. (2008). Scientific Representation: Paradoxes of Perspective. Oxford University Press.
van Fraassen, B. (2011). Logic and the philosophy of scienceJournal of the Indian Council of Philosophical Research, 27:4566.
van Inwagen, P. (2009). Being, existence, and ontological commitment. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics, pages 472506. Oxford University Press.
van Oosten, J. (2002). Basic category theory. www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf.
van Riel, R. and van Gulick, R. (2014). Scientific reduction. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/scientific-reduction/.
Veblen, O. and Young, J. W. (1918). Projective Geometry, volume 2. Ginn and Company.
Visser, A. (2006). Categories of theories and interpretations. In Logic in Tehran. Proceedings of the Workshop and Conference on Logic, Algebra and Arithmetic , Held October 18–22, 2003. ASL.
Warren, J. (2014). Quantifier variance and the collapse argumentThe Philosophical Quarterly, 65(259):241253.
Washington, E. (2018). On the equivalence of logical theories. Bachelor’s Thesis, Princeton University.
Weatherall, J. O. (2016a). Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis, 81(5):10731091.
Weatherall, J. O. (2016b). Regarding the “hole argument”. The British Journal for the Philosophy of Science, pages 1–22.
Weatherall, J. O. (2016c). Understanding gaugePhilosophy of Science, 83(5):10391049.
Weatherall, J. O. (2018). Categories and the foundations of classical field theories. In Landry, E., editor, Categories for the Working Philosopher. Oxford University Press.
Willard, S. (1970). General Topology. Dover.
Winnie, J. A. (1967). The implicit definition of theoretical termsThe British Journal for the Philosophy of Science, 18(3):223229.
Winnie, J. A. (1986). Invariants and objectivity: A theory with applications to relativity and geometry. In Colodny, R., editor, From Quarks to Quasars. University of Pittsburgh Press.
Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1-2):99124.
Worrall, J. and Zahar, E. (2001). Ramseyfication and structural realism. In Poincaré’s Philosophy, pages 236251. Open Court.
Zahar, E. (2004). Ramseyfication and structural realismTheoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 19(1):530.
Zawadowski, M. W. (1995). Descent and dualityAnnals of Pure and Applied Logic, 71(2): 131188.