Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T09:23:52.062Z Has data issue: false hasContentIssue false

Chapter Eleven - Chemical ecology in the Southern Ocean

from Part III - Life in extreme environments and the responses to change: the example of polar environments

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

This chapter aims to review the most recent findings regarding chemical ecology in Antarctic marine macroorganisms, provide some insights into how environmental changes may affect the production of natural compounds, and how species may adapt (or not) to new scenarios related to climate change. The ecological significance of bioactive compounds in the marine environment remains as one of the most understudied topics of recent years.

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 251 - 278
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, C.D., Fairhead, V.A. (2006). Defensive and sensory chemical ecology of brown algae. Advances in Botanical Research, 43, 191.Google Scholar
Amsler, C.D., Iken, K.B., McClintock, J.B., Baker, B.J. (2001). Secondary metabolites from Antarctic marine organisms and their ecological implications. In: McClintock, J.B., Baker, B.J. (eds) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp. 267300.Google Scholar
Amsler, C.D., Iken, K.B., McClintock, J.B., et al. (2005). Comprehensive evaluation of the palatability and chemical defences of subtidal macroalgae from the Antarctic Peninsula. Marine Ecology Progress Series, 294, 141159.CrossRefGoogle Scholar
Amsler, C.D., McClintock, J.B., Baker, B.J. (2008). Macroalgal chemical defenses in polar marine communities. In: Amsler, C. D. (ed.) Algal Chemical Ecology. Springer-Verlag,Berlin, pp. 91103.Google Scholar
Amsler, C.D., Iken, K., McClintock, J.B., Baker, B.J. (2009). Defenses of polar macroalgae against herbivores and biofoulers. Botanica Marina, 52, 535545.Google Scholar
Amsler, C.D., McClintock, J.B., Baker, B.J. (2014). Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. Journal of Phycology, 50, 110.Google Scholar
Angulo-Preckler, C., Cid, C., Oliva, F., Avila, C. (2015). Antifouling activity in some benthic Antarctic invertebrates by ‘in situ’ experiments at Deception Island, Antarctica. Marine Environmental Research, 105, 3038.Google Scholar
Angulo-Preckler, C., San Miguel, O., Garcia-Aljaro, C., Avila, C. (2018). Antibacterial defenses and palatability of shallow-water Antarctic sponges. Hydrobiologia, 806, 123128.CrossRefGoogle Scholar
Ankisetty, S., Nandiraju, S., Win, H., et al. (2004). Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. Journal of Natural Products, 67, 12951302.Google Scholar
Antonov, A.S., Avilov, S.A., Kalinovsky, A.I., et al. (2008). Triterpene glycosides from Antarctic sea cucumbers. 1. Structure of Liouvillosides A1, A2, A3, B1, and B2 from the sea cucumber Staurocucumis liouvillei: new procedure for separation of highly polar glycoside fractions and taxonomic revision. Journal of Natural Products, 71, 16771685.Google Scholar
Antonov, A.S., Avilov, S.A., Kalinovsky, A.I., et al. (2009). Triterpene glycosides from Antarctic sea cucumbers. 2. Structure of Achlioniceosides A (1), A (2), and A (3) from the sea cucumber Achlionice violaecuspidata (=Rhipidothuria racowitzai). Journal of Natural Products, 72, 3338.CrossRefGoogle Scholar
Antonov, A.S., Avilov, S.A., Kalinovsky, A.I., et al. (2011). Triterpene glycosides from Antarctic sea cucumbers III. Structures of liouvillosides A (4) and A (5), two minor disulphated tetraosides containing 3-O-methylquinovose as terminal monosaccharide units from the sea cucumber Staurocucumis liouvillei (Vaney). Natural Product Research, 25, 13241333.CrossRefGoogle Scholar
Appleton, D.R., Chuen, C.S., Berridge, M.V., Webb, V.L., Copp, B.R. (2009). Rossinones, A., B, biologically active meroterpenoids from the Antarctic Ascidian, Aplidium species. Journal of Organic Chemistry, 74, 91959198.CrossRefGoogle Scholar
Argandona, V.H., Rovirosa, J., San-Martin, A., et al. (2002). Antifeedant effect of marine halogenated monoterpenes. Journal of Agricultural and Food Chemistry, 50, 70297033.Google Scholar
Ashton, G., Morley, S.A., Barnes, D.K.A., Clark, M.S., Peck, L.S. (2017). Warming by 1°C drives species and assemblage level responses in Antarctica’s marine shallows. Current Biology, 27, 26982705.Google Scholar
Aumack, C.F., Amsler, C.D., McClintock, J.B., Baker, B.J. (2010). Chemically mediated resistance to meso-herbivory in finely branched macroalgae along the western Antarctic Peninsula. European Journal of Phycology, 45, 1926.CrossRefGoogle Scholar
Avila, C. (2016a). Ecological and pharmacological activities of Antarctic marine natural products. Planta Medica, 82, 767774.Google ScholarPubMed
Avila, C. (2016b). Biological and chemical diversity in Antarctica: from new species to new natural products. Biodivers, 17, 511.Google Scholar
Avila, C., Iken, K.B., Fontana, A., Gimino, G. (2000). Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. Journal of Experimental Marine Biology and Ecology, 252, 2744.CrossRefGoogle ScholarPubMed
Avila, C., Taboada, S., Núñez-Pons, L. (2008). Antarctic marine chemical ecology: what is next? Marine Ecology, 29, 171.CrossRefGoogle Scholar
Avila, C., Núñez-Pons, L., Moles, J. (2018). From the tropics to the poles: chemical defensive strategies in sea slugs (Mollusca: Heterobranchia). In: Puglisi, M. P., Becerro, M. A. (eds) Chemical Ecology: The Ecological Impacts of Marine Natural Products. CRC Press, Boca Raton, FL, pp. 71163.Google Scholar
Barnes, D.K.A., Griffiths, H.J., Kaiser, S. (2009). Geographic range shift responses to climate change by Antarctic benthos: where we should look. Marine Ecology Progress Series, 393, 1326.Google Scholar
Barnes, D.K.A., Fenton, M., Cordingley, A. (2014). Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Current Biology, 24, 553554.Google Scholar
Best, B.A., Winston, J.E. (1984). Skeletal strength of encrusting cheilostome bryozoans. Biological Bulletin, 167, 390409.Google Scholar
Blunt, J.W., Copp, B.R., Hu, W.P., et al. (2007). Marine natural products. Natural Product Report, 24, 3186.CrossRefGoogle ScholarPubMed
Blunt, J.W., Carroll, A.R., Copp, B.R., Keyzers, R.A., Davis, R.A. (2018). Marine natural products. Natural Product Report, 35, 853.Google Scholar
Bryan, P., McClintock, J., Slattery, M., Rittschof, D. (2003). A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats. Biofouling, 19, 235245.Google Scholar
Bucolo, P., Amsler, C.D., McClintock, J.B., Baker, B.J. (2011). Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. Journal of Experimental Marine Biology and Ecology, 396, 202206.Google Scholar
Campbell, A.H., Harder, T., Nielsen, S., Kjelleberg, S., Steinberg, P.D. (2011). Climate change and disease: bleaching of a chemically defended seaweed. Global Change Biology, 17, 29582970.Google Scholar
Carbone, M., Nuñez-Pons, L., Castelluccio, F., Avila, C., Gavagnin, M. (2009). Illudalene sesquiterpenoids of the alcyopterosin series from the Antarctic marine soft-coral Alcyonium grandis. Journal of Natural Products, 72, 13571360.Google Scholar
Carbone, M., Núñez-Pons, L., Paone, M., et al. (2012). Rossinone-related meroterpenes from the Antarctic ascidian Aplidium fuegiense. Tetrahedron, 68, 35413544.CrossRefGoogle Scholar
Carbone, M., Nunez-Pons, L., Ciavatta, M.L., et al. (2014). Occurrence of a taurine derivative in an Antarctic glass sponge. Natural Product Communications, 9, 469470.Google Scholar
Ciaglia, E., Malfitano, A.M., Laezza, C., et al. (2017). Immuno-modulatory and anti-inflammatory effects of dihydrogracilin A, a terpene derived from the marine sponge Dendrilla membranosa. International Journal of Molecular Sciences, 18, 1643.Google Scholar
Clark, M.S., Peck, L.S. (2009a). HSP70 Heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Marine Genomics, 2, 1118.Google Scholar
Clark, M.S., Peck, L.S. (2009b). Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones, 14, 649660.Google Scholar
Constable, A.J., Melbourne-Thomas, J., Corney, S.P., et al. (2014). Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 20, 30043025.CrossRefGoogle ScholarPubMed
Cutignano, A., Moles, J., Avila, C., Fontana, A. (2015). Granuloside, a unic linear homosesterterpene from the Antarctic nudibranch Charcotia granulosa. Journal of Natural Products, 78, 17611764.CrossRefGoogle Scholar
Cutignano, A., Zhang, W., Avila, C., Cimino, G., Fontana, A. (2011). Intrapopulation variability in the terpene metabolism of the Antarctic opisthobranch mollusc Austrodoris kerguelenensis. European Journal of Organic Chemistry, 27, 53835389.Google Scholar
Cutignano, A., De Palma, R., Fontana, A. (2012). A chemical investigation of the Antarctic sponge Lyssodendoryx flabellata. Natural Product Research, 26, 12401248.Google Scholar
Daoust, J., Chen, M., Wang, M., et al. (2013). Sesterterpenoids isolated from a northeastern Pacific Phorbas sp. Journal of Organic Chemistry, 78, 82678273.Google Scholar
Davidson, S.K., Haygood, M.G. (1999). Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont Candidatus endobugula sertula. Biological Bulletin, 196, 273280.Google Scholar
Davis, A.R., Bremner, J.B. (1999). Potential antifouling natural products from ascidians: a review. In: Fingerman, M, Nagabhushanam, R, Thompson, M.F. (eds) Recent Advances in Marine Biotechnology, Vol. III. Science Publishers, New Hampshire, pp. 259308.Google Scholar
Dayton, P.K. (1989). Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science, 245, 14841486.CrossRefGoogle Scholar
Dayton, P.K., Robilliard, G.A., Paine, R.T., Dayton, L. B. (1974). Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44, 105128.CrossRefGoogle Scholar
De Broyer, C., Danis, B. (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Research Pt II, 58, 517.CrossRefGoogle Scholar
De Broyer, C., Koubbi, P., Griffiths, H.J., et al. (2014). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK.Google Scholar
Díaz, J.I., Fusaro, B., Vidal, V., et al. (2017). Macroparasites in Antarctic penguins. In:Klimpel, S, Kuhn, T, Mehlhorn, H (eds) Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Springer International Publishing, Cham, Switzerland, pp. 183204.Google Scholar
Díaz-Marrero, A.R., Brito, I., Dorta, E., et al. (2003). Caminatal, an aldehyde sesterterpene with a novel carbon skeleton from the Antarctic sponge Suberites caminatus. Tetrahedron Letters, 44, 59395942.Google Scholar
Díaz-Marrero, A.R., Brito, I., Cueto, M., San-Martin, A., Darias, J. (2004). Suberitane network, a taxonomical marker for Antarctic sponges of the genus Suberites? Novel sesterterpenes from Suberites caminatus. Tetrahedron Letters, 45, 47074710.Google Scholar
Diyabalanage, T., Amsler, C.D., McClintock, J.B., Baker, B.J. (2006). Palmerolide A, a cytotoxic Macrolide from the Antarctic tunicate Synoicum adareanum. Journal of the American Chemical Society, 128, 56305631.Google Scholar
Downey, R.V., Griffiths, H.J., Linse, K., Janussen, D. (2012). Diversity and distribution patterns in high southern latitude sponges. PLoS One, 7, e41672.CrossRefGoogle ScholarPubMed
Ducklow, H.W., Fraser, W.R., Meredith, M.P., et al. (2013). West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography, 26, 190203.Google Scholar
Duckworth, A.R., Battershill, C.N. (2001). Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov., Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). New Zealand Journal of Marine and Freshwater Research, 35, 935949.CrossRefGoogle Scholar
Erickson, A.A., Paul, V.J., Alstyne, K.L., Van Kwiatkowski, L.M. (2006). Palatability of macroalgae that use different types of chemical defenses. Journal of Chemical Ecology, 32, 18831895.Google Scholar
Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J.C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Sciences, 65, 414432.Google Scholar
Fairhead, V.A., Amsler, C.D., Mcclintock, J.B., Baker, B.J. (2005). Within-thallus variation in chemical and physical defenses in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. Journal of Experimental Marine Biology and Ecology, 322, 112.Google Scholar
Ferretti, C., Vacca, S., De Ciucis, C., et al. (2009). Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Marine Ecology, 30, 110.Google Scholar
Figuerola, B., Monleón-Getino, T., Ballesteros, M., Avila, C. (2012a). Spatial patterns and diversity of bryozoan communities from the Southern Ocean: South Shetland Islands, Bouvet Island and Eastern Weddell Sea. Systematics and Biodiversity, 10, 109123.Google Scholar
Figuerola, B., Núñez-Pons, L., Vázquez, J., et al. (2012b). Chemical interactions in Antarctic marine benthic ecosystems. In: Cruzado, A (ed.) Marine Ecosystems. InTech, Rijeka, pp. 105126.Google Scholar
Figuerola, B., Núñez-Pons, L., Moles, J., Avila, C. (2013a). Feeding repellence in Antarctic bryozoans. Naturwissenschaften, 100, 10691081.Google Scholar
Figuerola, B., Taboada, S., Monleón-Getino, T., Vázquez, J., Avila, C. (2013b). Cytotoxic activity of Antarctic benthic organisms against the common sea urchin Sterechinus neumayeri. Oceanography, 1, 2.Google Scholar
Figuerola, B., Núñez-Pons, L., Monleón-Getino, T., Avila, C. (2014a). Chemo-ecological interactions in Antarctic bryozoans. Polar Biology, 37, 10171030.Google Scholar
Figuerola, B., Sala-Comorera, L., Angulo-Preckler, C., et al. (2014b). Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications. Marine Environmental Research, 101, 5259.CrossRefGoogle ScholarPubMed
Figuerola, B., Angulo-Preckler, C., Núñez-Pons, L., et al. (2017). Experimental evidence of chemical defence mechanisms in Antarctic bryozoans. Marine Environmental Research, 129, 6875.CrossRefGoogle ScholarPubMed
Fillinger, L., Janussen, D., Lundälv, T., Richter, C. (2013). Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology, 23, 13301334.Google Scholar
Ford, J., Capon, R.J. (2000). Discorhabdin R: a new antibacterial pyrroloiminoquinone from two latrunculiid marine sponges, Latrunculia sp., Negombata sp. Journal of Natural Products, 63, 15271528.Google Scholar
Fries, J.L. (2016). Chemical investigation of Antarctic marine organisms and their role in modern drug discovery. University of South Florida.Google Scholar
Furrow, F.B., Amsler, C.D., McClintock, J.B., Baker, B.J. (2003). Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defence against sea star spongivory. Marine Biology, 143, 443449.CrossRefGoogle Scholar
Gavagnin, M., Carbone, M., Mollo, E., Cimino, G. (2003). Austrodoral and austrodoric acid: nor-sesquiterpenes with a new carbon skeleton from the Antarctic nudibranch Austrodoris kerguelenensis. Tetrahedron Letters, 44, 14951498.Google Scholar
Griffiths, H.J., Meijers, A., Bracegirdle, T. (2017). More losers than winners in a century of future Southern Ocean seafloor warming. Nature Climate Change, 7, 749754.Google Scholar
Gutt, J., Barratt, I., Domack, E., et al. (2011). Biodiversity change after climate-induced iceshelf collapse in the Antarctic. Deep-Sea Research Pt. II, 58, 7483.Google Scholar
Harper, M.K., Bugni, T.S., Copp, B.R., et al. (2001). Introduction to the chemical ecology of marine natural products. In: McClintock, J.B. and Baker, B.J. (eds) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp. 369.Google Scholar
Huang, Y.M., McClintock, J.B., Amsler, C.D., Peters, K.J., Baker, B.J. (2006). Feeding rates of common Antarctic gammarid amphipod on ecologically important sympatric macroalgae. Journal of Experimental Marine Biology and Ecology, 329, 5565.CrossRefGoogle Scholar
Iken, K.B., Baker, B.J. (2003). Ainigmaptilones, sesquiterpenes from the Antarctic gorgonian coral Ainigmaptilon antarcticus. Journal of Natural Products, 66, 888890.CrossRefGoogle ScholarPubMed
Iken, K., Avila, C., Ciavatta, M.L., Fontana, A., Cimino, G. (1998). Hodgsonal, a new drimane sesquiterpene from the mantle of the Antarctic nudibranch Bathydoris hodgsoni. Tetrahedron Letters, 39, 56355638.Google Scholar
Iken, K., Avila, C., Fontana, A., Gavagnin, M. (2002). Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Marine Biology, 141, 101109.Google Scholar
IPCC Core Writing Team (2014). In: Pachauri, R.K, Meyer, L.A (eds) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.Google Scholar
Ivanchina, N.V., Kicha, A.A., Kalinovsky, A.I., et al. (2006). Polar steroidal compounds from the Far Eastern starfish Henricia leviuscula. Journal of Natural Products, 69, 224228.Google Scholar
Ivanchina, N.V., Kicha, A.A., Stonik, V.A. (2011). Steroid glycosides from marine organisms. Steroids, 76, 425454.CrossRefGoogle ScholarPubMed
Jacob, U., Terpstra, S., Brey, T. (2003). High-Antarctic regular sea urchins – the role of depth and feeding in niche separation. Polar Biology, 26, 99104.Google Scholar
Jouiaei, M., Yanagihara, A., Madio, B., et al. (2015). Ancient venom systems: a review on cnidaria toxins. Toxins, 7, 22512271.Google Scholar
Kim, H.J., Kim, W.J., Koo, B-W., et al. (2017). Anticancer activity of sulfated polysaccharides isolated from the Antarctic red seaweed Iridaea cordata. Ocean and Polar Research, 38, 129137.Google Scholar
Koplovitz, G., McClintock, J.B., Amsler, C.D., Baker, B.J. (2009). Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquatic Biology, 7, 8192.Google Scholar
Lambert, G. (2005). Ecology and natural history of the protochordates. Canadian Journal of Zoology, 83, 3450.Google Scholar
Laturnus, F., Wiencke, C., Klöser, H. (1996). Antarctic macroalgae – sources of volatile halogenated organic compounds. Marine Environmental Research, 41, 169181.Google Scholar
Lebar, M.D., Baker, B.J. (2010). Synthesis and structure reassessment of Psammopemmin A. Australian Journal of Chemistry, 63, 862866.Google Scholar
Lebar, M.D., Heimbegner, J.L., Baker, B.J. (2007). Cold-water marine natural products. Natural Product Report, 24, 774797.Google Scholar
Lee, H., Ahn, J., Lee, Y., Rho, J., Shin, J. (2004). New sesterterpenes from the Antarctic sponge Suberites sp. Journal of Natural Products, 67, 672674.Google Scholar
Li, F., Janussen, D., Peifer, C., Pérez-Victoria, I., Tasdemir, D. (2018). Targeted isolation of Tsitsikammamines from the Antarctic deep-sea sponge Latrunculia biformis by molecular networking and anticancer activity. Marine Drugs, 16, 268.Google Scholar
Ma, W.S., Mutka, T., Vesley, B., et al. (2009). Norselic acids A−E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. Journal of Natural Products, 72, 18421846.Google Scholar
Mahon, A.R., Amsler, C.D., McClintock, J.B., Amsler, M.O., Baker, B.J. (2003). Tissue-specific palatability and chemical defences against macropredators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. Journal of Experimental Marine Biology and Ecology, 290, 197210.Google Scholar
Maier, M.S., Araya, E., Seldes, A.M. (2000). Sulphated polyhydroxysteroids from the Antarctic ophiuroid Gorgonocephalus chilensis. Molecules, 5, 348349.CrossRefGoogle Scholar
Maier, M.S., Roccatagliata, A.J., Kuriss, A., et al. (2001). Two new cytotoxic and virucidal trisulphated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. Journal of Natural Products, 64, 732736.Google Scholar
Manzo, E., Ciavatta, M.L., Nuzzo, G., Gavagnin, M. (2009). Terpenoid content of the Antarctic soft coral Alcyonium antarcticum. Natural Product Communications, 4, 16151619.Google Scholar
Maschek, J.A., Baker, B.J. (2008). The chemistry of algal secondary metabolism. In: Amsler, C.D. (ed.) Algal Chemical Ecology. Berlin,Springer, pp. 120.Google Scholar
Maschek, J.A., Mevers, E., Diyabalanage, T., et al. (2012). Palmadorine chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2-STAT5-dependent HEL leukemia cells. Tetrahedron, 68, 90959104.Google Scholar
McClintock, J.B. (1987). Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antarctica. Marine Biology, 94, 479487.Google Scholar
McClintock, J.B., Baker, B.J. (1997). Palatability and chemical defense of eggs, embryos and larvae of shallow water Antarctic marine invertebrates. Marine Ecology Progress Series, 154, 121131.Google Scholar
McClintock, J.B., Karentz, D. (1997). Mycosporine-like amino acids in 38 species of subtidal marine organisms from McMurdo Sound. Antarctica. Antarctic Science, 9, 392398.Google Scholar
McClintock, J.B., Heine, J., Slattery, M., Weston, J. (1991). Biochemical and energetic composition, population biology, and chemical defense of the Antarctic ascidian Cnemidocarpa verrucosa lesson. Journal of Experimental Marine Biology and Ecology, 147, 163175.Google Scholar
McClintock, J.B., Slattery, M., Thayer, C.W. (1993). Energy content and chemical defense of the articulate Brachiopod Liothyrella uva (Jackson, 1912) from the Antarctic Peninsula. Journal of Experimental Marine Biology and Ecology, 169, 103116.Google Scholar
McClintock, J.B., Amsler, M.O., Amsler, C.D., et al. (2004). Biochemical composition, energy content and chemical antifeedant and antifoulant defenses of the colonial Antarctic ascidian Distaplia cylindrica. Marine Biology, 145, 885894.Google Scholar
McClintock, J.B., Amsler, C.D., Baker, B.J. (2010). Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic Peninsula. Integrative and Comparative Biology, 50, 967980.Google Scholar
McGovern, T.M., Hellberg, M.E. (2003). Cryptic species, cryptic endosymbionts, and geographic variation in chemical defenses in the bryozoan Bugula neritina. Molecular Ecology, 12, 12071215.Google Scholar
Mellado, G.G., Zubía, E., Ortega, M.J., López-González, P.J. (2005). Steroids from the Antarctic octocoral Anthomastus bathyproctus. Journal of Natural Products, 68, 11111115.Google Scholar
Miyata, Y., Diyabalanage, T., Amsler, C.D., et al. (2007). Ecdysteroids from the Antarctic tunicate Synoicum adareanum. Journal of Natural Products, 70, 18591864.Google Scholar
Moles, J., Núñez-Pons, L., Taboada, S., et al. (2015). Anti-predatory chemical defences in Antarctic benthic fauna. Marine Biology, 162, 18131821.Google Scholar
Moles, J., Wägele, H., Cutignano, A., Fontana, A., Avila, C. (2016). Distribution of granuloside in the Antarctic nudibranch Charcotia granulosa (Gastropoda: Heterobranchia: Charcotiidae). Marine Biology, 163, 5465.Google Scholar
Moles, J., Wägele, H., Cutignano, A., et al. (2017). Giant embryos and hatchlings of Antarctic nudibranchs (Mollusca: Gastropoda: Heterobranchia). Marine Biology, 164, 114126.Google Scholar
Moon, B., Park, Y.C., McClintock, J.B., Baker, B.J. (2000). Structure and bioactivity of erebusinone, a pigment from the Antarctic sponge Isodictya erinacea. Tetrahedron, 56, 90579062.Google Scholar
Morris, B.D., Prinsep, M.R. (1999). Amathaspiramides A-F, novel brominated alkaloids from the marine bryozoan Amathia wilsoni. Journal of Natural Products, 62, 688693.Google Scholar
Noguez, J.H., Diyabalanage, T.K.K., Miyata, Y., et al. (2011). Palmerolide Macrolides from the Antarctic tunicate Synoicum adareanum. Bioorganic & Medicinal Chemistry, 19, 66086614.Google Scholar
Núñez-Pons, L., Avila, C. (2014a). Defensive metabolites from Antarctic invertebrates: does energetic content interfere with feeding repellence? Marine Drugs, 12, 37703791.Google Scholar
Núñez-Pons, L., Avila, C. (2014b). Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Research, 33, 21624.Google Scholar
Núñez-Pons, L., Avila, C. (2015). Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules. Natural Product Report, 32, 11141130.Google Scholar
Núñez-Pons, L., Forestieri, R., Nieto, R.M., et al. (2010). Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica). Polar Biology, 33, 13191329.Google Scholar
Núñez-Pons, L., Carbone, M., Paris, D., et al. (2012a). Chemoecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften, 99, 353368.Google Scholar
Núñez-Pons, L., Carbone, M., Vázquez, J., et al. (2012b). Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: variability and defensive role. Marine Drugs, 10, 17411764.Google Scholar
Núñez-Pons, L., Rodríguez-Arias, M., Gómez-Garreta, A., Ribera-Siguán, A., Avila, C. (2012c). Feeding deterrency in Antarctic marine organisms: bioassays with the omnivore amphipod Cheirimedon femoratus. Marine Ecology Progress Series, 462, 163174.Google Scholar
Núñez-Pons, L., Carbone, M., Vázquez, J., Gavagnin, M., Avila, C. (2013). Lipophilic defenses from Alcyonium soft corals of Antarctica. Journal of Chemical Ecology, 39, 675685.Google Scholar
Núñez-Pons, L., Nieto, R.M., Avila, C., Jiménez, C., Rodríguez, J. (2015). Mass spectrometry detection of minor new meridianins from the Antarctic colonial ascidians Aplidium falklandicum and Aplidium meridianum. Journal of Mass Spectrometry, 50, 103111.Google Scholar
Núñez-Pons, L., Avila, C., Romano, G., Verde, C., Giordano, D. (2018). UV-protective compounds in marine organisms from the Southern Ocean. Marine Drugs, 16, 336.Google Scholar
Palermo, J.A., Rodrı, M.F., Spagnuolo, C., Seldes, A.M. (2000). Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: the first natural nitrate esters. Journal of Organic Chemistry, 65, 44824486.Google Scholar
Papaleo, M.C., Fondi, M., Maida, I., et al. (2012). Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30, 272293.Google Scholar
Pasotti, F., Manini, E., Giovannelli, D., et al. (2015). Antarctic shallow water benthos in an area of recent rapid glacier retreat. Marine Ecology, 36, 716733.Google Scholar
Patiño Cano, L.P., Manfredi, R.Q., Pérez, M., et al. (2018). Isolation and antifouling activity of azulene derivatives from the Antarctic gorgonian Acanthogorgia laxa. Chemistry & Biodiversity, 15, e1700425.Google Scholar
Paul, V.J. (1992). Ecological Roles of Marine Natural Products. Cornell University Press, Ithaca, NY.Google Scholar
Pawlik, J.R. (2012). Antipredatory defensive roles of natural products from marine invertebrates. In: Fattorusso, E, Gerwick, W.H., Taglialatela-Scafati, O (eds) Handbook of Marine Natural Products. Springer Netherlands, Dordrecht, pp. 677710.Google Scholar
Peck, L.S. (2018). Antarctic marine biodiversity: adaptations, environments and responses to change. Oceanography and Marine Biology, 56, 105236.Google Scholar
Peters, K.J., Amsler, C.D., McClintock, J.B., van Soest, R.W.M., Baker, B.J. (2009). Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Marine Ecology Progress Series, 385, 7785.Google Scholar
Peters, L., Wright, A.D., Krick, A., König, G.M. (2004). Variation of brominated indoles and terpenoids within single and different colonies of the marine bryozoan Flustra foliacea. Journal of Chemical Ecology, 30, 11651182.Google Scholar
Poloczanska, E.S., Burrows, M.T., Brown, C.J., et al. (2016). Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, 3, 121.Google Scholar
Principe, P.P., Fisher, W.S. (2018). Spatial distribution of collections yielding marine natural products. Journal of Natural Products, 81, 23072320.Google Scholar
Puglisi, M.P., Becerro, M.A. (2018). Life in Extreme Environments: Insights in Biological Capability. CRC Press, Boca Raton, FL.Google Scholar
Puglisi, M.P., Sneed, J.M., Ritson-Williams, R., Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Report, 36(3), 410–429.Google Scholar
Reyes, F., Fernandez, R., Rodriguez, A., et al. (2008). Aplicyanins A-F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum. Tetrahedron, 64, 51195123.Google Scholar
Rhimou, B., Hassane, R., Nathalie, B., Coppens, Y., Vannes, U.D.B. (2010). Antiviral activity of the extracts of Rhodophyceae from Morocco. African Journal of Biotechnology, 9, 79687975.Google Scholar
Rivera, P. (1996). Plastoquinones and a chromene isolated from the Antarctic brown alga Desmarestia menziesii. Boletín de la Sociedad Chilena de Química, 41, 103105.Google Scholar
Rodríguez Brasco, M.F., Seldes, A.M., Palermo, J.A. (2001). Paesslerins A and B: novel tricyclic sesquiterpenoids from the soft coral Alcyonium paessleri. Organic Letters, 3, 14151417.Google Scholar
Schnitzler, I., Pohnert, G., Hay, M., Boland, W. (2001). Chemical defense of brown algae (Dictyopteris spp.) against the herbivorous amphipod Ampithoe longimana. Oecologia, 126, 515521.Google Scholar
Schoenrock, K.M., Schram, J.B., Amsler, C.D., McClintock, J.B., Angus, R.A. (2015). Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Marine Biology, 162, 377389.Google Scholar
Seldes, A.M., Brasco, M.F.R., Franco, L.H., et al. (2007). Identification of two meridianins from the crude extract of the tunicate Aplidium meridianum by tandem mass spectrometry. Natural Product Research, 21, 555563.Google Scholar
Sharp, J.H., Winson, M.K., Porter, J.S. (2007). Bryozoan metabolites: an ecological perspective. Natural Product Report, 24, 659673.Google Scholar
Silchenko, A.S., Kalinovsky, A.I., Avilov, S.A., et al. (2013). Triterpene glycosides from Antarctic sea cucumbers IV. Turquetoside A, a 3-O-methylquinovose containing disulfated tetraoside from the sea cucumber Staurocucumis turqueti (Vaney, 1906) (= Cucumaria spatha). Biochemical Systematics and Ecology, 51, 4549.Google Scholar
Slattery, M., McClintock, J.B. (1995). Population structure and feeding deterrence in three shallow-water Antarctic soft corals. Marine Biology, 122, 461470.Google Scholar
Solanki, H., Angulo-Preckler, C., Calabro, K., et al. (2018). Suberitane sesterterpenoids from the Antarctic sponge Phorbas areolatus (Thiele, 1905). Tetrahedron Letters, 59, 33533356.Google Scholar
Soldatou, S., Baker, B.J. (2017). Cold-water marine natural products, 2006 to 2016. Natural Product Report, 34, 585626.Google Scholar
Stoecker, D. (1980). Chemical defenses of ascidians against predators. Ecology, 61, 13271334.Google Scholar
Swearingen, III, D.C., Pawlik, J.R. (1998). Variability in the chemical defense of the sponge Chondrilla nucula against predatory reef fishes. Marine Biology, 131, 619627.Google Scholar
Taboada, S., Núñez-Pons, L., Avila, C. (2013). Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus. Polar Biology, 36, 1325.Google Scholar
Tian, Y., Li, Y., Zhao, F. (2017). Secondary metabolites from polar organisms. Marine Drugs, 15, 28.Google Scholar
Torssel, K.B.G. (1983). Natural Product Chemistry. A Mechanistic and Biosynthetic Approach to Secondary Metabolism. John Wiley, New York.Google Scholar
Tremblay, N., Abele, D. (2016). Response of three krill species to hypoxia and warming: an experimental approach to oxygen minimum zones expansion in coastal ecosystems. Marine Ecology, 37, 179199.Google Scholar
Turner, J., Bindschadler, R., Convey, P., et al. (2009). Antarctic Climate Change and the Environment: A Contribution to the International Polar Year 2007–2008. Scientific Committee on Antarctic Research,Cambridge, UK.Google Scholar
Turner, J., Barrand, N.E., Bracegirdle, T.J., et al. (2014). Antarctic climate change and the environment: an update. Polar Record, 50, 237259.Google Scholar
Turon, X., Becerro, M.A., Uriz, M.J. (1996). Seasonal patterns of toxicity in benthic invertebrates: the encrusting sponge Crambe crambe (Poecilosclerida). Oikos, 75, 3340.Google Scholar
Vankayala, S.L., Kearns, F.L., Baker, B.J., Larkin, J.D., Woodcock, H.L. (2017). Elucidating a chemical defense mechanism of Antarctic sponges: a computational study. Journal of Molecular Graphics and Modelling, 71, 104115.Google Scholar
Vetter, W., Janussen, D. (2005). Halogenated natural products in five species of Antarctic sponges: compounds with POP-like properties? Environmental Science and Technology, 39, 38893895.Google Scholar
von Salm, J.L., Wilson, N.G., Vesely, B.A., et al. (2014). Shagenes A and B, new tricyclic sesquiterpenes produced by an undescribed Antarctic octocoral. Organic Letters, 16, 26302633.Google Scholar
von Salm, J.L., Witowski, C.G., Fleeman, R.M., et al. (2016). Darwinolide, a new diterpene scaffold that inhibits methicillin-resistant Staphylococcus aureus biofilm from the Antarctic sponge Dendrilla membranosa. Organic Letters, 18, 25962599.Google Scholar
von Salm, J.L., Schoenrock, K.M., McClintock, J.B., Amsler, C.D., Baker, B.J. (2018). The status of marine chemical ecology in Antarctica. Form and function of unique high-latitude chemistry. In: Puglisi, M.P., Becerro, M.A. (eds) Life in Extreme Environments: Insights in Biological Capability. CRC Press, Boca Raton, FL, pp. 2769.Google Scholar
Wang, M., Tietjen, I., Chen, M., et al. (2016). Sesterterpenoids isolated from the sponge Phorbas sp. activate latent HIV-1 provirus expression. Journal of Organic Chemistry, 81, 1132411334.Google Scholar
Wang, Y.J. (2014). The future of marine invertebrates in face of global climate change. Journal of Coastal Development, 17, e105.Google Scholar
Wiencke, C., Clayton, M.N. (2002). Synopses of the Antarctic Benthos. Antarctic Seaweeds. A.R.G. Gantner Verlag KG Ruggell,Liechtenstein.Google Scholar
Wiencke, C., Amsler, C.D., Clayton, M.N. (2014). Macroalgae. In: De Broyer, C, Koubbi, P, Griffiths, H. J., et al. (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK.Google Scholar
Wilkins, S.P., Blum, A.J., Burkepile, D.E., et al. (2002). Isolation of an antifreeze peptide from the Antarctic sponge Homaxinella balfourensis. Cellular and Molecular Life Sciences, 59, 22102215.Google Scholar
Wilson, N.G., Maschek, J.A., Baker, B.J. (2013). A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS One, 8, e80277.Google Scholar
Winston, J.E. (2010). Life in the colonies: learning the alien ways of colonial organisms. Integrative and Comparative Biology, 50, 919933.Google Scholar
Witowski, C.W. (2015). Investigation of bioactive metabolites from the Antarctic sponge Dendrilla membranosa and marine microorganisms. PhD thesis, University of South Florida.Google Scholar
Young, E.B., Dring, M.J., Savidge, G., Birkett, D.A., Berges, J.A. (2007). Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant Cell & Environment, 30, 764774.Google Scholar
Young, R.M., von Salm, J.L., Amsler, M.O., et al. (2013). Site-specific variability in the chemical diversity of the Antarctic red alga Plocamium cartilagineum. Marine Drugs, 11, 21262139.Google Scholar
Young, R.M., Schoenrock, K.M., von Salm, J.L., Amsler, C.D., Baker, B.J. (2015). Structure and function of macroalgal natural products. In:Stengel, D and Connan, S (eds) Natural Products from Marine algae. Methods in Molecular Biology. Humana Press, New York, pp. 3973.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×