Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T12:15:58.869Z Has data issue: false hasContentIssue false

10 - Lagrangian biophysical dynamics

Published online by Cambridge University Press:  07 September 2009

Donald B. Olson
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
Annalisa Griffa
Affiliation:
University of Miami
A. D. Kirwan, Jr.
Affiliation:
University of Delaware
Arthur J. Mariano
Affiliation:
University of Miami
Tamay Özgökmen
Affiliation:
University of Miami
H. Thomas Rossby
Affiliation:
University of Rhode Island
Get access

Summary

The use of a particle-following or Lagrangian perspective to follow the dynamics of life in the sea is explored from a variety of perspectives. The discussion begins with the consideration of the energetics of marine organisms and a demonstration that mean field models fail to adequately describe the life of large marine fishes in the sense that they require sizable, > 100–1000 X aggregation of prey over the average biomass density in the ocean. In place of a mean field model in time a structured population model where populations are dependent on space, time, age, and their metabolism is derived. Having introduced the structured model it is then argued that it is impractical to use such a model except in a Lagrangian frame. Methods for coupling these models in a Lagrangian description of the marine environment are then discussed. This section of the manuscript ends with an appraisal of the amount of spatial aggregation required to support large pelagic fishes such as swordfish and tunas. The second portion of the paper goes on to provide examples of trajectories in different marine environments including boundary currents, mesoscale eddy fields and fronts, and the coastal environment. An emphasis on the dynamics of trajectories at various trophic levels provides insights on aggregation mechanisms and rates.

The last two sections introduce methods of modeling population structure with Lagrangian trajectories.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, W. E., 1932. Problems of flotation and deposition of marine plankton diatoms. Trans. Amer. Micr. Soc., 51, 1–7.CrossRefGoogle Scholar
Armsworth, P. R., 2001. Directed motion in the sea: efficient swimming by reef fish larvae. J. Theor. Biol., 210, 81–91.CrossRefGoogle ScholarPubMed
Armsworth, P. R., 2002. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology, 83, 1092–104.CrossRefGoogle Scholar
Arnone, R. A., Nero, R. W., Jech, J. M., and DePalma, I., 1990. Acoustic imaging of biological and physical processes within Gulf Stream meanders. EOS, 71, 982.CrossRefGoogle Scholar
Ashjian, C. J., 1993. Trends in copepod species abundances across and along a Gulf Stream meander: evidence for entrainment and detrainment of fluid parcels from the Gulf Stream. Deep-Sea Res., 40, 461–82.CrossRefGoogle Scholar
Ashjian, C. F. and Wishner, K. F., 1993. Temporal and spatial changes in body size and reproductive state in Nannocalanus minor (copepoda) females across and along the Gulf Stream. J. Plankton Res., 15, 67–98.CrossRefGoogle Scholar
Ault, J. S. and Olson, D. B., 1996. A multicohort stock production model. Trans. Amer. Fish. Soc., 125, 343–63.2.3.CO;2>CrossRefGoogle Scholar
Ault, J. S., Luo, J., Smith, S. G., Serafy, J. E., Wang, J. D., Diaz, G. A., and Humston, R., 1999. A spatial dynamic multistock production model. Can. J. Fish. Aquat. Sci., 56 (Suppl.), 4–25.CrossRefGoogle Scholar
Ault, J. S., J. Luo, and J. D. Wang, 2003. A spatial ecosystem model to assess spotted seatrout population risks from exploitation and environmental changes. In Biology of the Spotted Seatrout, ed. Bortone, S. A.. Boca Raton: CRC Press, 267–96.Google Scholar
Bakun, A., 2001. School-mix feedback: a different way to think about low frequency variability in large mobile fish populations. Prog. Oceanogr., 49, 485–511.CrossRefGoogle Scholar
Bakun, A., 2005. Seeking an expanded suite of management tools: implications of rapidly-evolving adaptive response mechanisms (such as school-mix feedback). In Proceed. World Conference on Sustainable Fisheries, ed. N. Erhardt, Bull. Mar. Sci., 76, 463–84.
Bakun, A. and J. Csirke, 1998. Environmental processes and recruitment variability. Squid Recruitment Dynamics FAO Tech. Pap. 376, ed. P. G. Rodhouse, E. G. Dawer, and R. K. O'Dor.
Bakun, A. and Cury, P., 1999. The school-trap: a mechanism promoting large-amplitude out-of-phase population oscillations in small pelagic fish species. Ecol. Letters, 2, 349–51.CrossRefGoogle Scholar
Barber, P. H., Palumbi, S. R., Erdmann, M. K., and Moosa, M. K., 2000. Biogeography: A marine Wallaces line?Nature, 406, 692–3.CrossRefGoogle Scholar
Beckman, A. and Mohn, C., 2002. The upper ocean circulation at Great Meteor Seamount Part II: Retention potential of the seamount induced circulation. Ocean Dynamics, 52, 194–204.CrossRefGoogle Scholar
Bernie, R. M. and Levy, M. N., 1988. Physiology. St. Louis: C. V. Mosby.Google Scholar
Bienfang, P., 1981. Sinking rates of heterogeneous, temperate phytoplankton populations. J. Plankton Res., 3, 235–53.CrossRefGoogle Scholar
Bienfang, P., Szyper, J., and Laws, E., 1982. Sinking rate and pigment responses to light-limitation of a marine diatom: Implications to dynamics of chlorophyll maximum layers. Oceanol. Acta, 6, 55–62.Google Scholar
Block, B. A, Keen, J. E., Castillo, B., Dewar, H., Freund, E. V., Marcinek, D. J., Brill, R. W., and Farwell, C., 1997. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar. Biol., 130, 119–32.CrossRefGoogle Scholar
Block, B. A., Dewar, H., Blackwell, S. B., Williams, T. D., Prince, E. D., Farwell, C. J., Boustany, A., Teo, S. L. H., Seitz, A., Walli, A., and Fudge, D., 2001. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science, 293, 1310–14.CrossRefGoogle ScholarPubMed
Bogard, S. J., Rabinovich, A. B., LeBlond, P. H., and Shore, J. A., 1997. Observations of seamount-attached eddies in the North Pacific. J. Geophys. Res., 102, 12, 441–12, 456.Google Scholar
Bower, A. S., 1991. A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr., 21, 173–80.2.0.CO;2>CrossRefGoogle Scholar
Bower, A. S. and Rossby, H., 1989. Evidence of cross-frontal exchange processes in the Gulf Stream based on RAFOS float data. J. Phys. Oceanogr., 19, 1177–90.2.0.CO;2>CrossRefGoogle Scholar
Brandt, K., 1920. Ueber den Stoffwechsel im Meere. 3 Abhandllung. Wissenschaftliche Meeresuntersuchungen, Abteilun Kiel, Neue Folge 8, 185–429.Google Scholar
Brandt, S. B. and Kirsch, J., 1993. Spatially explicit models of striped bass growth potential in Chesapeake Bay. Trans. Amer. Fish. Soc., 122, 845–69.2.3.CO;2>CrossRefGoogle Scholar
Brill, R. W., 1979. The effect of body size on the standard metabolic rate of skipjack tuna, Katsuwonus pelamis. Fish. Bull., 77, 494–8.Google Scholar
Brill, R. W., 1987. On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. Fish. Bull., 85, 25–35.Google Scholar
Brill, R. W., 1996. Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. Comp. Biochem. Physiol., 113A, 3–15.CrossRefGoogle Scholar
Brill, R. W., Block, B. A., Boggs, C. H., Bigelow, K. A., Freund, E. V., and Marcinek, D. J., 1999. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: Implications for the physicological ecology of pelagic fishes. Mar. Bio., 133, 395–408.CrossRefGoogle Scholar
Brill, R. W., Lutcavae, M., Metzger, G., Bushnell, P., Arendt, M., Lucy, J., Watson, C., and Foley, D., 2002. Horizontal and vertical movements of juvenile bluefin tuna (Thunnus thynnus) in relation to oceanography conditions of the western North Atlantic, determined with ultrasonic telemetry. Fish. Bull., 100, 155–67.Google Scholar
Brink, K. H., Beardsley, R. C., Niiler, P. P., Abbott, M., Huyer, A, Ramp, S., Stanton, T., and Stuart, D., 1991. Statistical properties of near-surface flow in the California coastal transition zone. J. Geophys. Res., 96, 14693–706.CrossRefGoogle Scholar
Brinton, E., 1962. The distribution of Pacific euphausiids. Bull. Scripps Inst. Oceanogr., 8, 51–270.Google Scholar
Budd, A. F., Stemann, T. A., and Johnson, K. G., 1994. Straitigraphic distributions of genera and species of Neogene to recent Caribbean reef corals. J. of Paleo., 68, 951–77.CrossRefGoogle Scholar
Cantrell, R. S. and Cosner, C., 2003. Spatial Ecology via Reaction-Diffusion Equations. Chichester: Wiley.Google Scholar
Carey, F. G. and Lawsen, K. D., 1973. Temperature regulation in free-swimming bluefin tuna. Comp. Biochem. Physiol., 44, 375–92.CrossRefGoogle ScholarPubMed
Carey, F. G. and Robison, B. H., 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fish. Bull., 79, 277–92.Google Scholar
Chapman, D. C. and Beardsley, R. C., 1989. On the origin of shelf water in the Middle Atlantic Bight. J. Phys. Oceanogr., 19, 384–91.2.0.CO;2>CrossRefGoogle Scholar
Cosner, C., DeAngelis, D. L., Ault, J. S., and Olson, D. B., 1999. Effects of spatial grouping on the functional response of predators. Theor. Pop. Bioi., 56, 65–75.CrossRefGoogle ScholarPubMed
Cowen, R. K. and Castro, L. R., 1991. Relation of coral reef fish larval distributions to island scale circulation around Barbados, West Indies. Bull. Mar. Sci., 54, 228–44.Google Scholar
Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B., and Olson, D. B., 2000. Connectivity of marine populations: Open or closed?Science, 287, 857–9.CrossRefGoogle ScholarPubMed
Cowen, R. K., Paris, C. B., Olson, D. B., and Fortuna, J. L., 2003. The role of long distance dispersal versus local retention in replenishing marine populations. J. Gulf Caribbean Res., 14, 129–37.Google Scholar
Craig, R. B., Angelis, D. L., and Dixon, K. R., 1979. Long- and short-term dynamic optimization models with application to the feeding strategy of the Loggerhead shrike. Amer. Nat., 113, 31–51.CrossRefGoogle Scholar
Davidson, V. L., 1994. Integration of metabolism. In Biochemistry, ed. Davidson, V. L. and Sittman, D. B.. Philadelphia: Harwal Pub., 511–21.Google Scholar
Davis, C. S., 1984. Interaction of a copepod population with the mean circulation of Georges Bank. J. Mar. Res., 42, 573–90.CrossRefGoogle Scholar
Davis, T. L. O. and Stanley, D. A., 2001. Vertical and horizontal movements of southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight observed with ultrasonic telemetry. Fish. Bull., 100, 448–65.Google Scholar
DeAngelis, D. L. and Gross, L. J., 1992. Individual-based models and approaches in ecology: populations, communities, and ecosystems. New York: Chapman and Hall.CrossRefGoogle Scholar
Dewar, W. K. and Flierl, G. R., 1985. Particle trajectories and simple models of tracer transport in coherent vortices. Dyn. Atmos. Oceans, 9, 215–52.CrossRefGoogle Scholar
Diana, J. S., 1995. Biology and Ecology of Fishes. Traverse City, MI: Cooper Pub. Group.Google Scholar
Dutkiewicz, S., Griffa, A., and Olson, D. B., 1993. Particle diffusion in a meandering jet. J. Geophys. Res., 98, 16487–500.CrossRefGoogle Scholar
Epifanio, C. E. and Garvine, R. W., 2001. Larval transport on the Atlantic continental shelf. Estuar. Coast. Shelf. Sci., 52, 51–77.CrossRefGoogle Scholar
Essington, T. E., Kitchell, J. F., and Walters, C. J., 2001. The von Bertalanffy growth function, bioenergetics, and the consumption rates of fish. Can. J. Fish. Aquat. Sci., 58, 2129–38.CrossRefGoogle Scholar
Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639.CrossRefGoogle Scholar
Figueroa, H. A. and Olson, D. B., 1994. Eddy resolution versus eddy diffusion in a double gyre GCM. Part I: The Lagrangian and Eulerian Description. J. Phys. Oceanogr., 24, 371–86.2.0.CO;2>CrossRefGoogle Scholar
Flierl, G. R., 1981. Particle motions in large amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 39–74.CrossRefGoogle Scholar
Flierl, G. R. and Davis, C. S., 1993. Biological effects of Gulf Stream meandering. J. Mar. Res., 51, 529–60.CrossRefGoogle Scholar
Flierl, G. and D. McGillicuddy, 2002. Mesoscale and submesoscale physical-biological interactions. In The Sea, Vol. 12, ed. Robinson, A. R., McCarthy, J. J., and Rothschild, B. J.. New York: John Wiley and Sons, 113–86.Google Scholar
Flierl, G. R. and Worblewski, J. W., 1985. The possible influence of warm core rings upon shelf water larval fish distributions. Fish. Bull., 83, 313–30.Google Scholar
Flierl, G., Grunbaum, D., Levin, S., and Olson, D. B., 1999. From individuals to aggregation: the interplay between behavior and physics. J. Theoretical Bio., 196, 397–454.CrossRefGoogle Scholar
Forward, R. B. Jr., DeVries, M. C., Tankersley, R. A., Rittschof, D., Heuler, W. F., Burke, J. S., Welch, J. M., and Hoss, D. E., 1999. Behaviour and sensory physiology of Atlantic menhaden larvae, Brevoortia tyrannus, during horizontal transport. Fish. Oceanogr., 8 Suppl., 37–56.CrossRefGoogle Scholar
Forward, R. B. Jr. and Tankersley, R. A., 2001. Selective tidal-stream transport of marine animals. Oceanogr. Mar. Biol. Ann. Rev., 39, 305–53.Google Scholar
Forward, R. B. Jr., Cohen, J. H., Irvine, R. D., Lax, J. L., Mitchell, R., Schick, A. M., Smith, M. M., Thompson, J. M., and Venezia, J. I., 2004. Settlement of blue crab Callinectes sapidus megalopae in a North Carolina estuary. Mar. Ecol. Prog. Ser., 269, 237–47.CrossRefGoogle Scholar
Fratantoni, D. M., Johns, W. E., and Townsend, T. L., 1995. Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res., 100, 10,633–54.CrossRefGoogle Scholar
Garvine, R. W., 1986. The role of brackish plumes in open shelf waters. In The Role of Freshwater Outflow in Coastal Marine Ecosystems, ed. Skreslet, S.. Berlin: Springer-Verlag, 47–65.CrossRefGoogle Scholar
Gill, A. E., 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.Google Scholar
Gooding, R. M., Neill, W. H., and Dizon, A. E., 1981. Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. Fish. Bull., 79, 31–48.Google Scholar
Govoni, J. J. and Grimes, C. B., 1992. The surface accumulation of larval fishes by hydrodynamic convergence in the Mississippi River plume front. Cont. Shelf. Res., 12, 1265–76.CrossRefGoogle Scholar
Govoni, J. J., Hoss, D. E., and Colby, D. R., 1989. The spatial distribution of larval fishes about the Mississippi River plume. Limnol. Oceanogr., 34, 178–87.CrossRefGoogle Scholar
Govoni, J. J., Stender, B. W., and Pashuk, O., 1999. Distribution of larval swordfish, Xiphias gladius, and probable spawning off the southeastern United States. Fish. Bull, 98, 64–74.Google Scholar
Gran, H. H., 1915. The plankton production in northern European waters in the spring of 1912. Bull. Plankt. Cons. Int. Explor. Mer., 7–142.Google Scholar
Graves, J. E., Luckhurst, B. E., and Prince, E. D., 2001. An evaluation of pop-up satellite tags for estimating post release survivial of blue marlin (Makaira nigricans) from a recreational fishery. Fish. Bull., 100, 134–42.Google Scholar
Griffa, A. 1996. Application of stochastic paricle models to oceanographic problems. In Stochastic Modelling in Physical Oceanography, ed. Adler, R., Muller, P., and Rozovskii, B.. Cambridge, MA: Birkhäuser Boston, 113–28.CrossRefGoogle Scholar
Griffa, A., Piterbarg, L. I., and Ozgokmen, T., 2004. Predictability of Lagrangian particle trajectories: Effects of smoothing of the underlying Eulerian flow. J. Mar. Res., 62, 1–35.CrossRefGoogle Scholar
Gunn, J. and Block, B., 2001. Advances in acoustic, archival, and satellite tagging of tunas. Fish Physiol., 19, 167–224.CrossRefGoogle Scholar
Hansell, D. A., Bates, N. R., and Olson, D. B., 2004. Excess nitrate and nitrogen fixation in the North Atlantic. Mar. Chem., 284, 243–65.CrossRefGoogle Scholar
Harden, B. 1996. A River Lost. New York:Norton.Google Scholar
Hare, J. A., Quinlan, J. A., Werner, F. E., Blanton, B. O., Govoni, J. J., Forward, R. B., Settle, L. R., and Hoss, D. E., 1999. Larval transport during winter in the SABRE study area: results of a coupled vertical larval behaviour-three-dimensional circulation model. Fish. Oceanogr., 8 Suppl., 57–76.CrossRefGoogle Scholar
Haury, L. R., J. A. McGowan, and P. H. Wiebe, 1977. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities, ed. Steele, J. H.. New York: Plenum Press, 277–428.Google Scholar
Hinckley, S., Hermann, A. J., and Megrey, B. A., 1996. Development of a spatially explicit, individual-based model of marine fish early life history. Mar. Ecol. Prog. Ser., 139, 47–68.CrossRefGoogle Scholar
Hitchcock, G. L., Mariano, A. J., and Rossby, T., 1993. Mesoscale pigment fields in the Gulf Stream observation in a meander crest and trough. J. Geophys. Res., 98, 8425–45.CrossRefGoogle Scholar
Hoffmann, E. E., Halstrom, K. S., Moisan, J. R., Haidvogel, D. B., and Mackas, D. L., 1991. Use of simulated drifter tracks to investigate general transport patterns and residence times in the coastal transition zone. J. Geophy. Res., 96, 15041–52.CrossRefGoogle Scholar
Hood, E. D. and Zastrow, C. E., 1993. Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci., 53, 290–335.Google Scholar
Hood, R. R., Wang, H. V., Purcell, J. E., Houde, E. D., and Harding, L. W. Jr., 1999. Modeling particles and pelagic organisms in Chesapeake Bay: Convergent features control plankton distributions. J. Geophys. Res., 104, 1223–44.CrossRefGoogle Scholar
Humston, R., Ault, J., Lutcavage, M., and Olson, D. B., 2001. Schooling and migration of large pelagics relative to environmental cues. Fish. Oceanogr., 9, 136–46.CrossRefGoogle Scholar
Humston, R., Olson, D. B., and Ault, J. S., 2004. Behavioral assumptions in models of fish movement and their influence on population dynamics. Trans. Amer. Fish. Soc., 133, 1304–28.CrossRefGoogle Scholar
Huntley, M. E. and Lopez, M. D. G., 1992. Temperature-dependent production of marine copepods: a global synthesis. Amer. Nat., 140, 201–42.CrossRefGoogle ScholarPubMed
Huston, M. A., Angelis, D. L., and Post, W. M., 1988. New computer models unify ecological theory. BioScience, 38, 682–91.CrossRefGoogle Scholar
Hutchinson, G. E., 1961. The paradox of the plankton. Amer. Nat, 95, 137–45.CrossRefGoogle Scholar
Idrisi, N., Olascoaga, M. J., Garraffo, Z., Olson, D. B., and Smith, S. L., 2004. Mechanisms for emergence from diapause of Calanoides carinatus in the Somali current. Limnol. Oceanogr., 49, 1262–8.CrossRefGoogle Scholar
James, M. K., Armsworth, P. R., Mason, L. B., and Bode, L., 2002. The structure of reef fish metapopulations: modelling larval dispersal and retention patterns. Proc. R. Soc. Lond. B, 269, 2079–86.CrossRefGoogle ScholarPubMed
Jensen, A. C., 1972. The Cod. New York: T. Y. Crowell Co.Google Scholar
Johns, W. E., Lee, T. N., Schott, F., Zantopp, R., and Evans, R., 1990. The North Brazil Current Retroflection: seasonal structure and eddy variability. J. Geophys. Res., 95, 22, 103–20.CrossRefGoogle Scholar
Judson, O. P., 1994. The rise of the individual-based model in ecology. Trends Ecol. Evol., 9, 9–14.CrossRefGoogle ScholarPubMed
Jonsson, S., 1994. Cyclonic gyres in the North Atlantic. In Cod and Climate Change, ICES Mar. Sci. Symp., 198, 287–91.Google Scholar
Kadko, D. C., Washburn, L., and Jones, G., 1991. Evidence of subduction within cold filaments of the Northern California coastal transition zone. J. Geophys. Res., 96, 14, 909–26.Google Scholar
Kitchell, J. F., W. H. Neill, A. E. Dizon, and J. J. Magnuson, 1978. Bioenergetic spectra of skipjack and yellowfin tunas. In The Physiological Ecology of Tunas, ed. Sharp, G. D. and Dizon, A. E.. New York: Academic Press, 357–68.Google Scholar
Kloeden, P. E. and Platen, E., 1995. Numerical Solution of Stochastic Differential Equations. Berlin: Springer-Verlag.Google Scholar
Korsmeyer, K E. and Dewar, H., 2001. Tuna metabolism and energetics. Fish Physiol., 19, 35–78.CrossRefGoogle Scholar
Leichter, J. J., Wind, S. R., Miller, S. L., and Denny, M. W., 1996. Pulsed delivery of subthermocline waters to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr., 41, 1490–1501.CrossRefGoogle Scholar
Levin, S. A., 1999. Fragile Dominion. Cambridge, MA: Perseus Pub.Google Scholar
Levin, S. A., 2002. Complex adaptive systems: Exploring the known, the unknown and the unknowable. Bull. Amer. Math. Soc., 40, 3–19.CrossRefGoogle Scholar
Lobel, P. S. and Robinson, A. R., 1986. Transport and entrapment of fish larvae by ocean mesoscale eddies and current in Hawaiian waters. Deep-Sea Res., 33, 483–500.CrossRefGoogle Scholar
Loder, J. W. and Wright, D. G., 1985. Tidal rectification and frontal circulation on the sides of Georges Bank. J. Mar. Res., 43, 581–604.CrossRefGoogle Scholar
Lough, R. G. and Manning, J. P., 2001. Tidal-font entrainment and retention of fish larvae on the southern flank of Georges Bank. Deep-Sea Res. II, 48, 631–44.Google Scholar
Lutcavage, M. E., Brill, R. W., Skomal, G. B., Chase, B. C., and Tutein, J., 2000. Tracking adult North Atlantic bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Mar. Bio., 137, 347–58.CrossRefGoogle Scholar
Mackas, D. L., Kieser, R., Saunders, M., Yelland, D. R., Brown, R. M., and Moore, D. F., 1997. Aggregation of euphausiids and Pacific hake (Merluccius productus) along the outer continental shelf off Vancouver Island. Can. J. Fish. Aquat. Sci., 54, 2080–96.CrossRefGoogle Scholar
Magnuson, J. J. and D. Weininger, 1978. Estimation of minimum sustained speed and associated body drag of scombrids. In The Physiological Ecology of Tunas, ed. Sharp, G. D. and Dizon, A. E.. New York: Academic Press, 313–38.Google Scholar
Mann, K. H. and Lazier, J. R. N., 1996. Dynamics of Marine Ecosystems. Malden, MA: Blackwell Sci.Google Scholar
McCreary, J. P. Jr., Zhang, S., and Shetye, S. R., 1997. Coastal circulations driven by river outflow in a variable-density 1 1/2 layer model. J. Geophys. Res., 102, 15,535–54.CrossRefGoogle Scholar
McGillicuddy, D., Johnson, R., Siegel, D., Michaels, A., Bates, N., and Knap, A., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea. J. Geophys. Res., 104, 13381–94.CrossRefGoogle Scholar
McGowan, J. A. and Walker, P. W., 1985. Structure in the copepod community of the North Pacific Central Gyre. Ecol. Monogr., 49, 195–226.CrossRefGoogle Scholar
McKendrick, A. G., 1926. Application of mathematics to medical problems. Proc. Edinb. Math. Soc., 44, 98–130.CrossRefGoogle Scholar
McLaren, I. A., Sevigny, J.-M., and Corkett, C. J., 1989. Temperature-dependent development in Pseudocalanus species. Can. J. Zool., 67, 559–564.CrossRefGoogle Scholar
McNeill, D. F., Budd, A. F., and Borne, P. F., 1997. Earlier (late Pliocene) first appearance of the Caribbean reef-building coral Acropora palmate: Stratigraphic and evolutionary implications. Geology, 25, 891–4.2.3.CO;2>CrossRefGoogle Scholar
Metz, J. A. J. and Diekmann, O., eds., 1986. The Dynamics of Physiologically Structured Populations. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Mooers, C. N. K. and G. A. Maul, 1998. Intra-American Sea Circulation. In The Sea Vol. 11, ed. Robinson, A. R. and Brink, K. H.. New York: John Wiley and Sons, 183–208.Google Scholar
Mooers, C. N. K., L. Gao, W. D. Wilson, W. E. Johns, K. D. Leaman, H. E. Hurlburt, and T. Townsend, 2002. Initial concepts for IAS-GOOS. In Operational Oceanography Implementation at the European and Regional Scales, ed. Flemming, N. C., Vallerga, S., Pinardi, N, Behrens, H. W. A., Manzella, G., Prandle, D., and Stel, J. H.. Amsterdam: Elsevier Science B. V., 379–90.Google Scholar
Mork, J., Ryman, N., Stahl, G., Utter, F. M., and Sundnes, G., 1985. Genetic variation in Atlantic cod (Gladus morhua L.) throughout its range. Can. J. Fish. Aquati. Sci., 42, 1580–7.CrossRefGoogle Scholar
Munchow, A. and Garvine, R. W., 1993. Buoyancy and wind forcing of a coastal current. J. Mar. Res., 51, 293–322.CrossRefGoogle Scholar
Murray, J. D., 1993. Mathematical Biology. New York: Springer-Verlag.Google Scholar
Murty, C. R., 1976. Horizontal diffusion characteristics in Lake Ontario. J. Phys. Oceanogr., 6, 76–84.2.0.CO;2>CrossRefGoogle Scholar
Myers, R. A. and Drinkwater, K., 1989. The influence of Gulf Stream warm core rings on recruitment of fish in the northwest Atlantic. J. Mar. Res., 47, 635–56.CrossRefGoogle Scholar
Naimie, C. E., Limeburner, R., Hannah, C. G., and Beardsley, R. C., 2001. On the geographic and seasonal patterns of near-surface circulation on Georges Bank from real and simulated drifters. Deep-Sea Res. II, 48, 501–18.Google Scholar
Nakata, K., 1990. Abundance of nauplii and protein synthesis activity of adult female copepods in the Kuroshio front during the Japanese sardine spawning season. J. Oceanogr. Soc. Japan., 46, 219–29.CrossRefGoogle Scholar
Nakken, O., 1994. Causes of trends and fluctuations in the Arcto-Norwegian cod stock. ICES Mar. Sci Symp., 198, 212–28.Google Scholar
Nathansohn, A., 1906. Uber die Bedeutung vertikaler Wasserbewegung fur die Produktion des Planktons. Abhandlungen der Koniglichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematische-Physische Klasse 29, 355–441.Google Scholar
Niiler, P. P., 2001. The world ocean surface circulation. In Ocean Circulation and Climate, ed. Siedler, G., Church, J., and Gould, J.. San Diego: Academic Press, 193–204.Google Scholar
Nof, D., 1981. On the beta-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 11, 1662–72.2.0.CO;2>CrossRefGoogle Scholar
Nof, D. and Olson, D. B., 1983. On the flow through broad gaps with application to the Windward Passage, J. Phys. Oceanogr., 13, 1940–56.2.0.CO;2>CrossRefGoogle Scholar
O'Dor, R., 1998. Squid life-history strategies. In Squid Recruitment Dynamics, FAO Tech. Pap. 376, ed. P. G. Rodhouse, E. G. Dawer, and R. K. O'Dor, 233–54.
O'Dor, R. and E. G. Dawe 1998. Illex illecebrosus. In Squid Recruitment Dynamics, FAO Tech. Pap. 376, ed. P. G. Rodhouse, E. G. Dawer, and R. K. O'Dor, 77–104.
Olascoaga, M. J., Idrisis, N., and Romanou, A., 2005. Biopysical isopycnic-coordinate modeling of plankton dynamics in the Arabian Sea. Ocean Modelling, 8, 55–80.CrossRefGoogle Scholar
Olson, D. B., 1986. Lateral exchange within Gulf Stream warm-core ring surface layers. Deep-Sea Res., 33, 1691–704.CrossRefGoogle Scholar
Olson, D. B., 1991. Rings in the ocean. Ann. Rev. Earth and Planet. Sci., 19, 283–311.CrossRefGoogle Scholar
Olson, D. B., 2001. Biophysical dynamics of western transition zones. Fish. Oceanogr., 10, 1–18.CrossRefGoogle Scholar
Olson, D. B., 2002. Biophysical dynamics of ocean fronts. In The Sea, Vol. 12, ed. Robinson, A. R., McCarthy, J. J., and Rothschild, B. J.. New York: John Wiley and Sons, 187–218.Google Scholar
Olson, D. B. and Backus, R. H., 1985. The concentrating of organism at fronts: a cold-water fish and a warm-core ring. J. Mar. Res., 43, 113–37.CrossRefGoogle Scholar
Olson, D. B. and G. P. Podesta, 1988. Oceanic fronts as pathways in the sea. In: Signposts in the Sea, ed. Herrnkind, W. F. and Thistle, A. B.. Tallahassee, FA: Florida State Univ. Press, 1–15.Google Scholar
Olson, D. B. and Hood, R. R., 1994. Modelling pelagic biogeography. Prog. Oceanogr., 34, 161–205.CrossRefGoogle Scholar
Olson, D. B., Hitchcock, G. L., Mariano, A. J., Ashjian, C. J., Peng, G., Nero, R. W., and Podesta, G. P., 1994. Life on the edge: marine life and fronts. Oceanography, 7, 52–60.CrossRefGoogle Scholar
Olson, D. B., Paris, C., and Cowen, R., 2001. Lagrangian biological models. Encyclopedia of Ocean Sci., 1438–43.CrossRefGoogle Scholar
Olson, D. B., Cosner, C., Cantrell, S., and Hastings, A., 2005. Persistence of fish populations in time and space as a key to sustainable fisheries. Bull. Mar. Sci., 76, 213–32.Google Scholar
Oswatitsch, K., 1959. Physikalische Grundlagen der Stromungslehre. Hankbuch der Physik, 8, 1–124.Google Scholar
Padron, V., 2003. Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Amer. Math. Soc., 356, 2739–56.CrossRefGoogle Scholar
Paiva, A. M., Hargrove, J. T., Chassignet, E. P., and Bleck, R., 1999. Turbulent behavior of a fine mesh (1/12°) numerical simulation of the North Atlantic. J. Mar. Sys., 21, 307–20.CrossRefGoogle Scholar
Palmen, E. H. and Newton, C. W., 1969. Atmospheric Circulation Systems. New York: Academic Press.Google Scholar
Paris, C. B., Cowen, R. K., Lwiza, K. M. M., Wang, D. P., and Olson, D. B., 2002. Objective analysis of three-dimensional circulation in the vicinity of Barbados, West Indies: implication for larval transport. Deep-Sea Res., 49, 1571–90.CrossRefGoogle Scholar
Parsons, T. R., Takahashi, M., and Hargrave, B., 1988. Biological Oceanographic Processes. Oxford: Pergamon Press.Google Scholar
Pauling, L., 1970. General Chemistry. New York: Dover.Google Scholar
Perry, A. E. and Fairlie, B. D., 1974. Critical points in flow patterns. Adv. Geophys, 18B, 299–316.Google Scholar
Peterson, W. T., Miller, C. B., and Huchinson, A., 1978. Zonation and maintenance of copepod populations in the Oregon upwelling zone. Deep-Sea Res., 26A, 467–94.Google Scholar
Pineda, J., 1991. Predictable upwelling and shoreward transport of planktonic larvae by internal tidal bores. Science, 253, 548–51.CrossRefGoogle ScholarPubMed
Pineda, J., 1994. Internal tidal vores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res., 52, 427–58.CrossRefGoogle Scholar
Podesta, G. P., Browder, J. A., and Hoey, J. J., 1993. Exploring the association between swordfish catch and thermal fronts on the U. S. longline grounds in the western North Atlantic. Cont. Shelf Res., 13, 253–77.CrossRefGoogle Scholar
Polovina, J. J., Howell, E., Kobayashi, D. R., and Seki, M. P., 2001. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog. Oceanogr., 49, 469–83.CrossRefGoogle Scholar
Reid, J. L., E. Brinton, A. Fleminger, E. L. Venrick, and J. A. McGowan, 1978. Ocean circulation and marine life. In Advances in Oceanography, ed. Charnock, H. and Deacon, G. E. R.. New York: Plenum Press, 65–130.CrossRefGoogle Scholar
Riley, G. A., Stommel, H., and Bumpus, D. F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Oceanogr. Coll., 12, 1–169.Google Scholar
Roberts, C. M., 1997. Connectivity and management of Caribbean coral reefs. Science, 278, 1454–7.CrossRefGoogle ScholarPubMed
Rogers, A. D., 1994. The biology of seamounts. Mar. Bio, 30, 305–50.Google Scholar
Rothschild, B. J. and Osborn, T. R., 1988. Small-scale turbulence and planktonic contact rates. J. Plankton Res., 10, 465–74.CrossRefGoogle Scholar
Round, F. E., Crawford, R. M., and Mann, D. G., 1990. The Diatoms: Biology Morphology of the Genera. New York: Cambridge University Press.Google Scholar
Saitoh, S. I., Kosaka, S., and Iisaka, J., 1986. Satellite infrared observations of Kuroshio warm-core rings and their application to study of Pacific saury migration. Deep-Sea Res., 33, 1601–40.CrossRefGoogle Scholar
Schaefer, K. M. and Fuller, D. W., 2002. Movements, behavior, and habitat selection of bigeye tuna (obesus) in the eastern equatorial Pacific, ascertained through archival tags. Fish. Bull., 100, 765–88.Google Scholar
Shanks, A. L., 1983. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser., 13, 311–15.CrossRefGoogle Scholar
Shanks, A. L., 1988. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull., 86, 703–14.Google Scholar
Smayda, J. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev., 8, 353–414.Google Scholar
Stanley, S. M., 1995. New horizons for paleontology, with two examples: the rise and fall of the Cretaceous supertethys and the cause of the modern ice age. J. Paleo. 69, 999–1007.CrossRefGoogle Scholar
Stanley, S. M. and Ruddiman, W. F., 1995. Neogene ice age in the North Atlantic Region: climatic changes, biotic effects and forcing factors. In Effects of Past Global Change on Life. Washington: National Academy Press, 118–33.Google Scholar
Stillwell, C. E. and Kohler, N. E., 1985. Food and feeding ecology of the swordfish Xiphias gladius in the western North Atlantic Ocean with estimates of daily ration. Mar. Eco. Prog. Ser., 22, 238–47.CrossRefGoogle Scholar
Sugimoto, T. and Tameishi, H., 1992. Warm-core rings, streamers and their role on the fishing ground formation around Japan. Deep-Sea Res., 39, S183–201.CrossRefGoogle Scholar
Sumich, J. L., 1999. An Introduction to the Biology of Marine Life. 2nd Edn. Boston: McGraw-Hill.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942. The Oceans. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Taylor, and Hellberg, , 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science, 229, 107–9.CrossRefGoogle Scholar
Valiela, I., 1984. Marine Ecological Processes. New York: Springer-Verlag.CrossRefGoogle Scholar
Winkle, W., Rose, K. A., and Cambers, R. C., 1993. Individual-based approach to fish population dynamics: an overview. Trans. Amer. Fish. Soc., 122, 397–403.2.3.CO;2>CrossRefGoogle Scholar
Venrick, E. L., 1982. Phytoplankton in an oligotrophic ocean: observation and questions. Ecol. Monogr., 52, 129–54.CrossRefGoogle Scholar
Venrick, E. L., 1986. Patchiness and the paradox of the plankton. In Pelagic Biogeography, UNESCO Tech. Paper Mar. Sci. 49, ed. A. C. Pierrot-Bults, S. van der Spoel, B. J. Zahuranec, and R. K. Johnson, 261–9.
Vogel, S., 1994. Life in Moving Fluids: The Physical Biology of Flow. Princeton, NJ: Princeton Press.Google Scholar
Bertalanffy, L., 1968. General System Theory. New York: George Braziller.Google Scholar
Von Foerster, H., 1959. Some remarks on changing populations. In The Kinetics of Cellular Proliferation, ed. Stohlman, F.. New York: Grune and Stratton.Google Scholar
Waring, G. T., Fairfield, C. P., Ruhsam, C. M., and Sano, M., 1993. Sperm whales associated with Gulf Stream features off the northeastern USA shelf. Fish. Oceanogr., 2, 101–5.CrossRefGoogle Scholar
Washburn, L., Kadko, D. C., Jones, B. H., Hayward, T., Kosro, P. M., Stanton, T. P., Ramp, S., and Cowles, T., 1991. Water mass subduction and transport of phytoplankton in a coastal upwelling system. J. Geophys. Res., 96, 14,927–45.CrossRefGoogle Scholar
Webb, G. F., 1985. Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcel Dekker.Google Scholar
Welch, J. M. and Forward, R. B. Jr., 2001. Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Mar. Bio., 139, 911–18.Google Scholar
Werner, F. E., Page, R. H., Lynch, D. R., Loder, J. W., Lough, R. G., Perry, R. I., Greenberg, D. A., and Sinclair, M. M., 1993. Influences of mean advection and simple behavior on the distribution of cod and haddock early life stages on Georges Bank. Fish. Oceanogr., 2, 43–64.CrossRefGoogle Scholar
Wiebe, P. and Flierl, G., 1983. Euphausiid invasion/dispersal in Gulf Stream cold-core rings. Aust. J. Mar. Freshw. Res., 34, 625–52.CrossRefGoogle Scholar
Wiebe, P., Barber, V., Boyd, S., Davis, C., and Flierl, G., 1985. Macrozooplankton biomass in Gulf Stream warm-core rings: spatial distribution and temporal changes. J. Geophys. Res., 90, 8885–901.CrossRefGoogle Scholar
Wilson, W. D. and Johns, W. E., 1997. Velocity structure and transport in the Windward Islands Passages. Deep-Sea Res., 44, 487–520.CrossRefGoogle Scholar
Wilson, E. O., 2000. Sociobiology. Boston: Harvard Press.Google Scholar
Withers, P. C., 1992. Comparative Animal Physiology. Fort Worth: Saunders College Pub.Google Scholar
Yamamoto, T. and Nishizawa, S., 1986. Small-scale zooplankton aggregations at the front of a Kuroshio warm-core ring. Deep-Sea Res., 33, 1729–40.CrossRefGoogle Scholar
Yamazaki, H., D. L. Mackas, and K. L. Denman, 2002. Coupling small-scale physical processes with biology. In The Sea, Vol. 12, ed. Robinson, A. R., McCarthy, J. J., and Rothschild, B. J.. New York: John Wiley and Sons, 51–112.Google Scholar
Yeung, C. and McGowan, M. F., 1991. Differences in inshore-offshore and vertical distribution of phyllosoma larvae of Panulirus, Scyllarus, and Scyllarides in the Florida Keys in May–June, 1989. Bull. Mar. Sci., 49, 699–714.Google Scholar
Yeung, C., Couillard, J. T., and McGowan, M. F., 1993. The relationship between vertical distribution of spiny lobster phyllosoma larvae (Crustacea: Palinuridae) and isolume depths generated by a computer model. Revista de Biol. Tropical, 41, 63–7.Google Scholar
Yeung, C. and Lee, T. N., 2002. Larval transport and retention of the spiny lobster, Panulirus argus, in the coastal zone of the Florida Keys, U.S.A. Fish. Oceanogr., 11, 286–309.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×