Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T13:07:27.859Z Has data issue: false hasContentIssue false

2 - Teleconnections in the Atmosphere

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

This chapter is dedicated to a fundamental understanding of the physical mechanisms for connections between climates in remote locations or large-scale teleconnection patterns. It starts with a review of equatorial waves. This is followed by an introduction to conceptual models of the atmospheric response to tropical heating. Large-scale overturning circulations and their variability are described. The chapter ends with a discussion on how perturbations in the tropics propagate their effect on high latitudes in both hemispheres.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 54 - 88
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. Journal of Climate, 15(16), 22052231.Google Scholar
Ambrizzi, T., Hoskins, B. J. (1997). Stationary Rossby-wave propagation in a baroclinic atmosphere. Quarterly Journal of the Royal Meteorological Society, 123, 919928.Google Scholar
Ambrizzi, T., Hoskins, B. J., Hsu, H.-H. (1995). Rossby wave propagation and teleconnection patterns in the austral winter. Journal of the Atmospheric Sciences, 52, 36613672.2.0.CO;2>CrossRefGoogle Scholar
Annamalai, H. S. P. X., Xie, S.-P., McCreary, J. P., Murtugudde, R. (2005). Impact of Indian Ocean sea surface temperature on developing El Niño. Journal of Climate, 18(2), 302319.Google Scholar
An, S.-I. (2011). Atmospheric responses of Gill-type and Lindzen–Nigam models to global warming. Journal of Climate, 24, 61656173.Google Scholar
Barnston, A. G., Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115, 10831126.Google Scholar
Barnston, A. G., Glantz, M. H., He, Y. (1999). Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Nina onset. Bulletin of the American Meteorological Society, 80, 217243.Google Scholar
Battisti, D. S., Sarachik, E. S., Hirst, A. C. (1999). A consistent model for the large-scale steady surface atmospheric circulation in the tropics. Journal of Climate, 12(10), 29562964.Google Scholar
Berbery, E. H., Nogués-Paegle, J., Horel, J. D. (1992). Wavelike southern hemisphere extratropical teleconnections. Journal of the Atmospheric Sciences, 49(2), 155177.Google Scholar
Berlage, H. P. (1957). Fluctuations in the general atmospheric circulation of more than one year, their nature and prognostic value. Koninklijk Nederlands Meteorologisch Instituut, Mededelingen en Verhandelingen, 69, 152.Google Scholar
Black, R. X., Dole, R. M. (1993). The dynamics of large-scale cyclogenesis over the North Pacific Ocean. Journal of the Atmospheric Sciences, 50, 421442.Google Scholar
Branstator, G. W. (1983). Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. Journal of the Atmospheric Sciences, 40(7), 16891708.Google Scholar
Branstator, G. W. (1985a). Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: Forced Solutions. Journal of the Atmospheric Sciences, 42, 22252241.Google Scholar
Branstator, G. W. (1985b). Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part II: Eigenanalysis. Journal of the Atmospheric Sciences, 42, 22422254.2.0.CO;2>CrossRefGoogle Scholar
Branstator, G. W. (1990). Low-frequency patterns induced by stationary waves. Journal of the Atmospheric Sciences, 47, 629648.Google Scholar
Branstator, G. W. (1992). The maintenance of low-frequency atmospheric anomalies. Journal of the Atmospheric Sciences, 49, 19241945.Google Scholar
Cai, W., Watterson, I. G. (2002). Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. Journal of Climate, 15(10), 11591174.Google Scholar
Cazes-Boezio, G., Robertson, A. W., Mechoso, C. R. (2003). Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. Journal of Climate, 16(8), 11591176.Google Scholar
Chang, P., Fang, Y., Saravanan, R., Ji, L., Seidel, H. (2006). The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443(7109), 324328.Google Scholar
Chiang, J. C., Sobel, A. H. (2002). Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. Journal of Climate, 15(18), 26162631.Google Scholar
Dai, Y., Feldstein, S. B., Tan, B., Lee, S. (2017). Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. Journal of Climate, 30, 31393155.Google Scholar
Deser, C. (1993). Diagnosis of the surface momentum balance over the tropical Pacific Ocean. Journal of Climate, 6(1), 6474.Google Scholar
DeWeaver, E., Nigam, S. (2004). On the forcing of ENSO teleconnections by anomalous heating and cooling. Journal of Climate, 17(16), 32253235.Google Scholar
Ding, H., Keenlyside, N. S., Latif, M. (2012). Impact of the equatorial Atlantic on the El Niño southern oscillation. Climate Dynamics, 38(9–10), 19651972.Google Scholar
Dole, R. M., Black, R. X. (1990). Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Monthly Weather Review, 118(4), 824846, doi:10.1175/1520-0493(1990)118,0824: LCOPAP.2.0.CO;2.Google Scholar
Du, Y., Xie, S.-P., Huang, G., Hu, K. (2009). Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. Journal of Climate, 22, 20232038.Google Scholar
Egger, J., Schilling, H. D. (1983). On the theory of the long-term variability of the atmosphere. Journal of the Atmospheric Sciences, 40(5), 10731085, doi:10.1175/1520-0469(1983)040,1073: OTTOTL.2.0.CO;2.Google Scholar
Enfield, D. B., Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929945.CrossRefGoogle Scholar
Feldstein, S. B. (2002). Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quarterly Journal of the Royal Meteorological Society, 128(581), 775796, doi:10.1256/0035900021643683.Google Scholar
Franzke, C., Feldstein, S. B. (2005). The continuum and dynamics of Northern Hemisphere teleconnection patterns. Journal of the Atmospheric Sciences, 62(9), 32503267, doi:10.1175/JAS3536.1.Google Scholar
Franzke, C., Feldstein, S. B., Lee, S. (2011). Synoptic analysis of the Pacific-North American teleconnection pattern. Quarterly Journal of the Royal Meteorological Society, 137, 329346.CrossRefGoogle Scholar
Frauen, C., Dommenget, D. (2012). Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophysical Research Letters, 39(2), L02706.Google Scholar
Frederiksen, J. S. (1983). A unified three-dimensional instability theory of the onset of blocking and cyclogenesis. 2. Teleconnection patterns. Journal of the Atmospheric Sciences, 40(11), 25932609, doi:10.1175/1520-0469(1983)040,2593:AUTDIT.2.0.CO;2.Google Scholar
Ghil, M., Mo, K. (1991) Intraseasonal oscillations in the global atmosphere. Part II Southern Hemisphere. Journal of the Atmospheric Sciences, 48, 780790.Google Scholar
Gill, A. E. (1980). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447462.Google Scholar
Goddard, L., Graham, N. E. (1999). Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. Journal of Geophysical Research: Atmospheres, 104(D16), 1909919116.Google Scholar
Held, I. M., Kang, I. S. (1987). Barotropic models of the extratropical response to El Niño. Journal of the Atmospheric Sciences, 44(23), 35763586.Google Scholar
Held, I. M., Panetta, R. L., Pierrehumbert, R. T. (1985). Stationary external Rossby waves in vertical shear. Journal of the Atmospheric Sciences, 42(9), 865883.Google Scholar
Higgins, R. W., Schubert, S. D. (1994). Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic scale eddies. Journal of the Atmospheric Sciences, 51, 32383260.Google Scholar
Horel, J. D., Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109(4), 813829.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., Ambrizzi, T. (1993). Rossby wave propagation on a realistic longitudinally varying flow. Journal of the Atmospheric Sciences, 50, 16611671.Google Scholar
Hoskins, B. J., Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6), 11791196.Google Scholar
Izumo, T., Vialard, J., Lengaigne, M., Boyer Montegut, C., Behera, S. K., Luo, J.‐J., Cravatte, S., Masson, S., Yamagata, T. (2010). Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3, 168172, doi:10.1038/ngeo760.Google Scholar
Izumo, T., Lengaigne, M., Vialard, J., Luo, J.-J., Yamagata, T., Madec, G. (2014). Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dynamics, 42(1–2), 291310.Google Scholar
Jansen, M. F., Dommenget, D., Keenlyside, N. (2009). Tropical atmosphere–ocean interactions in a conceptual framework. Journal of Climate, 22(3), 550567.Google Scholar
Ji, X., Neelin, J. D., Lee, S.-K., Mechoso, C. R. (2014). Interhemispheric teleconnections from tropical heat sources in intermediate and simple models. Journal of Climate, 27, 684697.Google Scholar
Ji, X., Neelin, J. D., Mechoso, C. R. (2015). El Niño–Southern Oscillation sea level pressure anomalies in the western Pacific: Why are they there? Journal of Climate, 28(22), 88608872.Google Scholar
Ji, X., Neelin, J. D., Mechoso, C. R. (2016). Baroclinic-to-barotropic pathway in El Niño–Southern Oscillation teleconnections from the viewpoint of a barotropic Rossby wave source. Journal of the Atmospheric Sciences, 73(12), 49895002.Google Scholar
Jin, F.-F., Hoskins, B. J. (1995). The direct response to tropical heating in a baroclinic atmosphere. Journal of the Atmospheric Sciences, 52, 307319.Google Scholar
Karoly, D. J. (1983). Rossby wave propagation in a barotropic atmosphere. Dynamics of Atmospheres and Oceans, 7, 111125.Google Scholar
Karoly, D. J. (1989). Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. Journal of Climate, 2(11), 12391252.Google Scholar
Kidson, J. W. (1988). Indices of the Southern Hemisphere zonal wind. Journal of Climate, 1, 183194.Google Scholar
Kiladis, G. N., Diaz, H. F. (1989). Global climatic anomalies associated with extremes in the Southern Oscillation. Journal of Climate, 2(9), 10691090.Google Scholar
Klein, S. A., Soden, B. J., Lau, N. C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12(4), 917932.Google Scholar
Kucharski, F., Kang, I. S., Farneti, R., Feudale, L. (2011). Tropical Pacific response to 20th century Atlantic warming. Geophysical Research Letters, 38(3), L03702.Google Scholar
Kucharski, F., Syed, F. S., Burhan, A., Farah, I., Gohar, A. (2015). Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dynamics, 44, 881896.Google Scholar
Kug, J. S., Li, T., An, S. I., Kang, I. S., Luo, J. J., Masson, S., Yamagata, T. (2006). Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 33(9), L09710.Google Scholar
Kumar, A., Hoerling, M. P. (1998). Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. Journal of Climate, 11, 32953308.Google Scholar
Kumar, A., Hoerling, M. P. (2003). The nature and causes for the delayed atmospheric response to El Niño. Journal of Climate, 16(9), 13911403.Google Scholar
Latif, M., Dommenget, D., Dima, M., Grötzner, A. (1999). The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. Journal of Climate, 12(12), 34973504.Google Scholar
Lau, K.-M., Sheu, P.-J., Kang, I.-S. (1994). Multiscale low-frequency circulation modes in the global atmosphere. Journal of the Atmospheric Sciences, 51, 11691193.Google Scholar
Lau, N.-C. (1981). A diagnostic study of recurrent meteorological anomalies appearing in a 15-year simulation with a GFDL general circulation model. Monthly Weather Review, 109, 22872311.Google Scholar
Lau, N.-C. (1985). Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Monthly Weather Review, 113(11), 19701996.Google Scholar
Lee, S. K., Wang, C. Z., Mapes, B. E. (2009). A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. Journal of Climate, 22(2), 272284.Google Scholar
Li, C., Wettstein, J. J. (2012). Thermally driven and eddy-driven jet variability in reanalysis. Journal of Climate, 25(5), 15871596.Google Scholar
Lindzen, R. S., Nigam, S. (1987). On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. Journal of the Atmospheric Sciences, 44(17), 24182436.Google Scholar
Li, T., Wang, B., Wu, B., Zhou, T., Chang, C. P., Zhang, R. (2017). Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. Journal of Meteorological Research, 31(6), 9871006.Google Scholar
Li, X., Gerber, E. P., Holland, D. M., Yoo, C. (2015). A Rossby wave bridge from the tropical Atlantic to West Antarctica. Journal of Climate, 28(6), 22562273.Google Scholar
Li, X., Holland, D. M., Gerber, E. P., Yoo, C. (2014). Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505(7484), 538542Google Scholar
Livezey, R. E., Mo, K. C. (1987). Tropical-extratropical teleconnections during the northern hemisphere winter. Part II: Relationships between monthly mean northern hemisphere circulation patterns and proxies for tropical convection. Monthly Weather Review, 115, 31153132.Google Scholar
Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 2543.Google Scholar
Mechoso, C. R., Kitoh, A., Moorthi, S., Arakawa, A. (1987). Numerical simulations of the atmospheric response to a sea surface temperature anomaly over the equatorial eastern Pacific Ocean. Monthly Weather Review, 115(12), 29362956.Google Scholar
Mo, K. C. (2000). Relationships between interdecadal variability in the Southern Hemisphere and sea surface temperature anomalies. Journal of Climate, 13, 35993610.2.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. (1986) Quasi-stationary states in the Southern Hemisphere. Monthly Weather Review, 114, 808823.Google Scholar
Mo, K. C., Paegle, J. N. (2001). The Pacific-South American modes and their downstream effects. International Journal of Climatology, 21, 12111229.Google Scholar
Mo., K. C., Ghil, M. (1987). Statistics and dynamics of persistent anomalies. Journal of the Atmospheric Sciences, 44, 877901.Google Scholar
Mo, K. C., Higgins, R. W. (1998). The Pacific South American modes and tropical convection during the Southern Hemisphere winter. Monthly Weather Review, 126, 15811598.Google Scholar
Mori, M., Watanabe, M. (2008). The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. Journal of the Meteorological Society of Japan. Ser. II, 86(1), 213236, doi:10.2151/jmsj.86.213.Google Scholar
Neelin, J. D. (1989). On the interpretation of the Gill model. Journal of the Atmospheric Sciences, 46(15), 24662468.Google Scholar
Neelin, J. D., Zeng, N. (2000). A quasi-equilibrium tropical circulation model–Formulation. Journal of the Atmospheric Sciences, 57(11), 17411766.Google Scholar
O’Kane, T. J., Monselesan, D. P., Risbey, J. S. (2017). A Multiscale Reexamination of the Pacific–South American Pattern. Monthly Weather Review, 145(1), 379402.Google Scholar
Okumura, Y. M., Schneider, D., Deser, C., Wilson, R. (2012). Decadal–interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. Journal of Climate, 25(21), 74217441.Google Scholar
Orlanski, I. (2005). A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. Journal of the Atmospheric Sciences, 62(5), 13671390.Google Scholar
Polo, I., Martin-Rey, M., Rodriguez-Fonseca, B., Kucharski, F., Mechoso, C. R. (2015). Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dynamics, 44(1–2), 115131.Google Scholar
Renwick, J. A., Revell, M. J. (1999). Blocking over the South Pacific and Rossby wave propagation. Monthly Weather Review, 127(10), 22332247.Google Scholar
Robertson, A. W., Ghil, M. (1999). Large-scale weather regimes and local climate over the Western United States. Journal of Climate, 12, 17961813.Google Scholar
Robertson, A. W., Mechoso, C. R. (2003). Circulation regimes and low-frequency oscillations in the South Pacific sector. Monthly Weather Review, 131(8), 15661576.Google Scholar
Rodríguez‐Fonseca, B., Polo, I., García‐Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36(20), L20705.Google Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360363.Google Scholar
Salby, M. L., Garcia, R. R. (1987). Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. Journal of the Atmospheric Sciences, 44, 458498.Google Scholar
Saravanan, R., Chang, P. (2000). Interaction between tropical Atlantic variability and El Niño–Southern oscillation. Journal of Climate, 13(13), 21772194.Google Scholar
Sardeshmukh, P. D., Hoskins, B. J. (1985). Vorticity balances in the tropics during the 1982–83 El Niño–Southern oscillation event. Quarterly Journal of the Royal Meteorological Society, 111, 261278.Google Scholar
Sardeshmukh, P. D., Hoskins, B. J. (1988). The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45(7), 12281251.Google Scholar
Schubert, S. D., Park, C. K. (1991). Low-frequency intraseasonal tropical-extratropical interactions. Journal of the Atmospheric Sciences, 48(4), 629650, doi:10.1175/1520-0469(1991)048,0629:LFITEI.2.0.CO;2.Google Scholar
Shimizu, M. H., de Albuquerque Cavalcanti, I. F. (2011). Variability patterns of Rossby wave source. Climate dynamics, 37(3–4), 441454, doi:10.1007/s00382-010-0841-z.Google Scholar
Simmons, A. J. (1982). The forcing of stationary wave motion by tropical diabatic heating. Quarterly Journal of the Royal Meteorological Society, 108(457), 503534.CrossRefGoogle Scholar
Simmons, A. J., Wallace, J. M., Branstator, G. W. (1983). Barotropic wave propagation and instability, and atmospheric teleconnection patterns. Journal of the Atmospheric Sciences, 40(6), 13631392.Google Scholar
Simpkins, G. R., McGregor, S., Taschetto, A. S., Ciasto, L. M., England, M. H. (2014). Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. Journal of Climate, 27(13), 49234936.Google Scholar
Simpkins, G. R., Peings, Y., Magnusdottir, G. (2016). Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. Journal of Climate, 29(18), 64256444.Google Scholar
Stoner, A. M. K., Hayhoe, K., Wuebbles, D. J. (2009). Assessing general circulation model simulations of atmospheric teleconnection patterns. Journal of Climate, 22(16), 43484372.Google Scholar
Straus, D. M., Shukla, J. (2002). Does ENSO force the PNA? Journal of Climate, 15, 23402358.Google Scholar
Su, H., Neelin, J. D. (2002). Teleconnection mechanisms for tropical Pacific descent anomalies during El Nino. Journal of the Atmospheric Sciences, 59, 26942712.Google Scholar
Szeredi, I., Karoly, D. J. (1987a). The vertical structure of monthly fluctuations of the Southern Hemisphere troposphere. Australian Meteorological Magazine, 35, 1930.Google Scholar
Szeredi, I., Karoly, D. J. (1987b). The horizontal structure of monthly fluctuations of the Southern Hemisphere troposphere from station data. Australian Meteorological Magazine, 35, 119129.Google Scholar
Ting, M., Lau, N. C. (1993). A diagnostic and modeling study of the monthly mean wintertime anomalies appearing in a 100-year GCM experiment. Journal of the Atmospheric Sciences, 50(17), 28452867, doi:10.1175/1520-0469(1993)050,2845: ADAMSO.2.0.CO;2.Google Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7), 1429114324.Google Scholar
Walker, G. T. (1923). Correlation in seasonal variations of weather. VIII. A preliminary study of world-weather. Memoirs of the Indian Meteorological Department 24(Part 4), 75131.Google Scholar
Wallace, J. M., Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4), 784812.Google Scholar
Wallace, J. M., Rasmusson, E. M., Mitchell, T. P., Kousky, V. E., Sarachik, E. S., von Storch, H. (1998). On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. Journal of Geophysical Research, 103(14),241214, 260.Google Scholar
Wang, B., Li, T. (1993). A simple tropical atmosphere model of relevance to short-term climate variations. Journal of the Atmospheric Sciences, 50(2), 260284.Google Scholar
Wang, C., Weisberg, R. H., Virmani, J. I. (1999). Western Pacific interannual variability associated with the El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 104(C3), 51315149.Google Scholar
Wang, C. (2002a). Atmospheric circulation cells associated with the El Niño–Southern Oscillation. Journal of Climate, 15(4), 399419.Google Scholar
Wang, C. (2002b). Atlantic climate variability and its associated atmospheric circulation cells. Journal of Climate, 15(13), 15161536.Google Scholar
Wang, C., Enfield, D. B. (2003). A further study of the tropical Western Hemisphere warm pool. Journal of Climate, 16(10), 14761493.CrossRefGoogle Scholar
Wang, C. (2006). An overlooked feature of tropical climate: Inter‐Pacific‐Atlantic variability. Geophysical Research Letters, 33(12), L12702, doi:10.1029/2006GL026324.Google Scholar
Watanabe, M., Jin, F.-F. (2002). Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophysical Research Letters, 29(10), 11611164.Google Scholar
Webster, P. J. (1972). Response of the tropical atmosphere to local, steady forcing. Monthly Weather Review, 100(7), 518541, doi:10.1175/ 1520-0493(1972)100,0518:ROTTAT.2.3.CO;2.Google Scholar
Webster, P. J., Moore, A. M., Loschnigg, J. P., Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401(6751), 356360.Google Scholar
Weisberg, R. H., Wang, C. (1997). A western Pacific oscillator paradigm for the El Niño‐Southern Oscillation. Geophysical Research Letters, 24(7), 779782.Google Scholar
Wu, B., Zhou, T., Li, T. (2009). Seasonally Evolving Dominant Interannual Variability Modes of East Asian Climate. Journal of Climate, 22, 29923005.Google Scholar
Wu, B., Zhou, T, Li, T. (2017). Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance Mechanisms. Journal of Climate, 30 , 96219635.Google Scholar
Wu, R., Kirtman, B. P. (2004). Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. Journal of Climate, 17(20), 40194031.Google Scholar
Xie, S.-P., Carton, J. A. (2004). Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph Series, 147, 121142.Google Scholar
Xie, S.-P., Philander, S. G. H. (1994). A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46(4), 340350.Google Scholar
Xie, S.-P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., Sampe, T. (2009). Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. Journal of Climate, 22(3), 730747.Google Scholar
Xie, S.-P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., Huang, G. (2016). Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Sciences, 33(4), 411432.Google Scholar
Zamboni, L., Kucharski, F., Mechoso, C. R. (2012). Seasonal variations of the links between the interannual variability of South America and the South Pacific. Climate dynamics, 38(9–10), 21152129.Google Scholar
Zebiak, S. E. (1993). Air–sea interaction in the equatorial Atlantic region. Journal of Climate, 6(8), 15671586.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×