Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T23:49:02.962Z Has data issue: false hasContentIssue false

17 - Micro- nanofabrication for the study of biochemical and biomechanical regulation of T cell activation

from Part II - Recent progress in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 316 - 329
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babich, A., Li, S., O’Connor, R. S., Milone, M. C., Freedman, B. D. and Burkhardt, J. K. (2012). “F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation.” The Journal of Cell Biology 197: 775787.CrossRefGoogle ScholarPubMed
Banchereau, J. and Steinman, R. M. (1998). “Dendritic cells and the control of immunity.” Nature 392: 245252.CrossRefGoogle ScholarPubMed
Bashour, K. T., Gondarenko, A., Chen, H., Shen, K., Liu, X., Huse, M., Hone, J. C. and Kam, L. C. (2014a). “CD28 and CD3 have complementary roles in T-cell traction forces.” Proceedings of the National Academy of Sciences 111: 22412246.CrossRefGoogle ScholarPubMed
Bashour, K. T., Tsai, J., Shen, K., Lee, J.-H., Sun, E., Milone, M. C., Dustin, M. L. and Kam, L. C. (2014b). “Cross talk between CD3 and CD28 is spatially modulated by protein lateral mobility.” Molecular and Cellular Biology 34: 955964.CrossRefGoogle ScholarPubMed
Brossard, C., Feuillet, V., Schmitt, A., Randriamampita, C., Romao, M., Raposo, G. and Trautmann, A. (2005). “Multifocal structure of the T cell – dendritic cell synapse.” European Journal of Immunology 35: 17411753.CrossRefGoogle Scholar
Campi, G., Varma, R. and Dustin, M. L. (2005). “Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling.” Journal of Experimental Medicine 202: 10311036.CrossRefGoogle ScholarPubMed
Cemerski, S. and Shaw, A. (2006). “Immune synapses in T-cell activation.” Current Opinion in Immunology 18: 298304.CrossRefGoogle ScholarPubMed
Chang, J. T., Ciocca, M. L., Kinjyo, I., Palanivel, V. R., Mcclurkin, C. E., Dejong, C. S., Mooney, E. C., et al. (2011). “Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division.” Immunity 34: 492504.CrossRefGoogle ScholarPubMed
Chang, J. T., Palanivel, V. R., Kinjyo, I., Schambach, F., Intlekofer, A. M., Banerjee, A., Longworth, S. A., et al. (2007). “Asymmetric T lymphocyte division in the initiation of adaptive immune responses.” Science 315: 16871691.CrossRefGoogle ScholarPubMed
Deeg, J., Axmann, M., Matic, J., Liapis, A., Depoil, D., Afrose, J., Curado, S., et al. (2013). “T cell activation is determined by the number of presented antigens.” Nano Letters 13: 56195626.CrossRefGoogle ScholarPubMed
Delcassian, D., Depoil, D., Rudnicka, D., Liu, M., Davis, D. M., Dustin, M. L. and Dunlop, I. E. (2013). “Nanoscale ligand spacing influences receptor triggering in T cells and NK cells.” Nano Letters 13: 56085614.CrossRefGoogle Scholar
Demond, A. L., Mossman, K. D., Starr, T., Dustin, M. L. and Groves, J. T. (2008). “T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation.” Biophysical Journal 94: 32863292.CrossRefGoogle ScholarPubMed
Doh, J. and Irvine, D. J. (2006). “Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells.” Proceedings of the National Academy of Sciences 103: 57005705.CrossRefGoogle ScholarPubMed
Dustin, M. L. and Groves, J. T. (2012). “Receptor signaling clusters in the immune synapse.” Annual Review of Biophysics 41: 543.CrossRefGoogle ScholarPubMed
Freiberg, B. A., Kupfer, H., Maslanik, W., Delli, J., Kappler, J., Zaller, D. M. and Kupfer, A. (2002). “Staging and resetting T cell activation in SMACs.” Nature Immunology 3: 911917.CrossRefGoogle ScholarPubMed
Fu, J., Wang, Y. K., Yang, M. T., Desai, R. A., Yu, X., Liu, Z. and Chen, C. S. (2010). “Mechanical regulation of cell function with geometrically modulated elastomeric substrates.” Nature Methods 7: 733736.CrossRefGoogle ScholarPubMed
Glass, R., Möller, M. and Spatz, J. P. (2003). “Block copolymer micelle nanolithography.” Nanotechnology 14: 1153.CrossRefGoogle Scholar
Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. and Dustin, M. L. (1999). “The immunological synapse: a molecular machine controlling T cell activation.” Science 285: 221227.CrossRefGoogle ScholarPubMed
Groves, J. T. and Boxer, S. G. (2002). “Micropattern formation in supported lipid membranes.” Accounts of Chemical Research 35: 149157.CrossRefGoogle ScholarPubMed
Groves, J. T. and Dustin, M. L. (2003). “Supported planar bilayers in studies on immune cell adhesion and communication.” Journal of Immunological Methods 278: 1932.CrossRefGoogle ScholarPubMed
Guermonprez, P., Valladeau, J., Zitvogel, L., Th Ry, C. and Amigorena, S. (2002). “Antigen presentation and T cell stimulation by dendritic cells.” Annual Review of Immunology 20: 621667.CrossRefGoogle Scholar
Hallman, E., Burack, W. R., Shaw, A. S., Dustin, M. L. and Allen, P. M. (2002). “Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation.” Immunity 16: 839848.CrossRefGoogle Scholar
Huppa, J. B. and Davis, M. M. (2003). “T-cell-antigen recognition and the immunological synapse.” Nature Reviews Immunology 3: 973983.CrossRefGoogle ScholarPubMed
Irvine, D. J. and Doh, J. (2007). “Synthetic surfaces as artificial antigen presenting cells in the study of T cell receptor triggering and immunological synapse formation.” Seminars in Immunology 19: 245254.CrossRefGoogle Scholar
Jung, H.-R., Song, K. H., Chang, J. T. and Doh, J. (2014). “Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.” PloS One 9: e91926.CrossRefGoogle ScholarPubMed
Jung, H.-R., Choi, J. C., Cho, W. and Doh, J. (2013). “Microfabricated platforms to modulate and monitor T cell synapse assembly.” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5: 6774.Google ScholarPubMed
Krummel, M. F., Sjaastad, M. D., Wulfing, C. and Davis, M. M. (2000). “Differential clustering of CD4 and CD3 zeta during T cell recognition.” Science 289: 13491352.CrossRefGoogle ScholarPubMed
Luther, S. A. and Cyster, J. G. (2001). “Chemokines as regulators of T cell differentiation.” Nature Immunology 2: 102107.CrossRefGoogle ScholarPubMed
Manz, B. N., Jackson, B. L., Petit, R. S., Dustin, M. L. and Groves, J. (2011). “T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters.” Proceedings of the National Academy of Sciences 108: 90899094.CrossRefGoogle ScholarPubMed
Matic, J., Deeg, J., Scheffold, A., Goldstein, I. and Spatz, J. P. (2013). “Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays.” Nano Letters 13: 50905097.CrossRefGoogle ScholarPubMed
Mempel, T. R., Henrickson, S. E. and von Andrian, U. H. (2004). “T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases.” Nature 427 154159.CrossRefGoogle ScholarPubMed
Miller, M. J., Safrina, O., Parker, I. and Cahalan, M. D. (2004). “Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes.” The Journal of Experimental Medicine 200: 847856.CrossRefGoogle ScholarPubMed
Milone, M. C. and Kam, L. C. (2013). “Investigative and clinical applications of synthetic immune synapses.” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5: 7585.Google ScholarPubMed
Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. and Kupfer, A. (1998). “Three-dimensional segregation of supramolecular activation clusters in T cells.” Nature 395: 8286.CrossRefGoogle ScholarPubMed
Mossman, K. D., Campi, G., Groves, J. T. and Dustin, M. L. (2005). “Altered TCR signaling from geometrically repatterned immunological synapses.” Science 310: 11911193.CrossRefGoogle ScholarPubMed
Murphy, K. M. and Stockinger, B. (2010). “Effector T cell plasticity: flexibility in the face of changing circumstances.” Nature Immunology 11: 674680.CrossRefGoogle ScholarPubMed
O’Keefe, J. P., Blaine, K., Alegre, M. L. and Gajewski, T. F. (2004). “Formation of a central supramolecular activation cluster is not required for activation of naive CD8(+) T cells.” Proceedings of the National Academy of Sciences of the United States of America 101: 93519356.CrossRefGoogle Scholar
Purtic, B., Pitcher, L. A., van Oers, N. S. C. and Wulfing, C. (2005). “T cell receptor (TCR) clustering in the immunological synapse integrates TCR and costimulatory signaling in selected T cells.” Proceedings of the National Academy of Sciences of the United States of America 102: 29042909.CrossRefGoogle ScholarPubMed
Ricart, B. G., Yang, M. T., Hunter, C. A., Chen, C. S. and Hammer, D. A. (2013). “Measuring traction forces of motile dendritic cells on micropost arrays.” Biophysical Journal 101: 26202628.CrossRefGoogle Scholar
Sackmann, E. (1996). “Supported membranes: scientific and practical applications.” Science 271: 4348.CrossRefGoogle ScholarPubMed
Scholer, A., Hugues, S., Boissonnas, A., Fetler, L. and Amigorena, S. (2008). “Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory.” Immunity 28: 258270.CrossRefGoogle ScholarPubMed
Sharpe, A. H. and Freeman, G. J. (2002). “The B7–CD28 superfamily.” Nature Reviews Immunology 2: 116126.CrossRefGoogle ScholarPubMed
Shen, K., Thomas, V. K., Dustin, M. L. and Kam, L. C. (2008). “Micropatterning of costimulatory ligands enhances CD4+ T cell function.” Proceedings of the National Academy of Sciences 105: 77917796.CrossRefGoogle ScholarPubMed
Smith-Garvin, J. E., Koretzky, G. A. and Jordan, M. S. (2009). “T cell activation.” Annual Review of Immunology 27: 591.CrossRefGoogle ScholarPubMed
Spatz, J. P., M Ssmer, S., Hartmann, C., M Ller, M., Herzog, T., Krieger, M., Boyen, H.-G., et al. (2000). “Ordered deposition of inorganic clusters from micellar block copolymer films.” Langmuir 16: 407415.CrossRefGoogle Scholar
Thauland, T. J., Koguchi, Y., Wetzel, S. A., Dustin, M. L. and Parker, D. C. (2008). “Th1 and Th2 cells form morphologically distinct immunological synapses.” The Journal of Immunology 181: 393399.CrossRefGoogle ScholarPubMed
Tseng, S. Y., Liu, M. and Dustin, M. L. (2005). “CD80 cytoplasmic domain controls localization of CD28, CTLA-4, and protein kinase C theta in the immunological synapse.” Journal of Immunology 175: 78297836.CrossRefGoogle ScholarPubMed
Varma, R., Campi, G., Yokosuka, T., Saito, T. and Dustin, M. L. (2006). “T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster.” Immunity 25: 117127.CrossRefGoogle ScholarPubMed
Williams, M. A. and Bevan, M. J. (2007). “Effector and memory CTL differentiation.” Annual Review of Immunology 25: 171192.CrossRefGoogle ScholarPubMed
Yokosuka, T., Kobayashi, W., Sakata-Sogawa, K., Takamatsu, M., Hashimoto-Tane, A., Dustin, M. L., Tokunaga, M. and Saito, T. (2008). “Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation.” Immunity 29: 589601.CrossRefGoogle ScholarPubMed
Yokosuka, T., Sakata-Sogawa, K., Kobayashi, W., Hiroshima, M., Hashimoto-Tane, A., Tokunaga, M., Dustin, M. L. and Saito, T. (2005). “Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.” Nature Immunology 6: 12531262.CrossRefGoogle ScholarPubMed
Yu, C.-H., Wu, H.-J., Kaizuka, Y., Vale, R. D. and Groves, J. T. (2010). “Altered actin centripetal retrograde flow in physically restricted immunological synapses.” PloS One 5: e11878.CrossRefGoogle ScholarPubMed
Zhu, J., Yamane, H. and Paul, W. E. (2010). “Differentiation of effector CD4+ T cell populations.” Annual Review of Immunology 28: 445489.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×