Skip to main content Accessibility help
×
  • Cited by 4
Publisher:
Cambridge University Press
Online publication date:
January 2021
Print publication year:
2021
Online ISBN:
9781108955294

Book description

Metamaterials have attracted enormous interests from both physics and engineering communities in the past 20 years, owing to their powerful ability in manipulating electromagnetic waves. However, the functionalities of traditional metamaterials are fixed at the time of fabrication. To control the EM waves dynamically, active components are introduced to the meta-atoms, yielding active metamaterials. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, are proposed, which can achieve dynamically controllable functionalities using field programmable gate array (FPGA). Most importantly, the digital coding representations of metamaterials set up a bridge between the digital world and physical world, and allow metamaterials to process digital information directly, leading to information metamaterials. In this Element, we review the evolution of information metamaterials, mainly focusing on their basic concepts, design principles, fabrication techniques, experimental measurement and potential applications. Future developments of information metamaterials are also envisioned.

References

1.Brunet, T., Merlin, A., Mascaro, B., Zimny, K., Leng, J., Poncelet, O., Aristegui, C., Monval, O. M., Soft 3D acoustic metamaterial with negative index, Nat. Mater. 14, 384388 (2015).
2.Zigoneanu, L., Popa, B.-I., Cummer, S. A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater. 13, 352355 (2014).
3.Popa, B. I., Cummer, S. A., Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun. 5, 3398 (2014).
4.Cummer, S. A., Christensen, J., Alù, A., Nature-controlling sound with acoustic metamaterials, Nature Reviews Materials 1, 16001 (2016).
5.Cui, T. J., Smith, D. R., Liu, R., Metamaterials, Springer, 2010.
6.Engheta, N., Ziolkowski, R. W., Metamaterials: Physics and engineering explorations, Wiley, 2006.
7.Smith, D. R., Vier, D. C., Koschny, T., Soukoule, C. M., Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
8.Ziolkowski, R. W., Heyman, E., Wave propagation in media having negative permittivity and permeability, Phys. Rev. E 64, 056625 (2001).
9.Schurig, D., Mock, J. J., Smith, D. R., Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett. 88, 041109 (2006).
10.Pendry, J. B., Holden, A. J., Robbins, D., Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans on Microw Theory & Tech 47(11), 20752084 (1999).
11.Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., Petrovic, J., Nanofabricated media with negative permeability at visible frequencies, Nature 438, 335338 (2005).
12.Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000).
13.Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of refraction, Science 292(5514), 7779 (2001).
14.Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000).
15.Soukoulis, C. M., Wegener, M., Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photon. 5, 523530 (2011).
16.Zheludev, N. I., The road ahead for metamaterials, Science 328, 582583 (2010).
17.Pendry, J. B., Schurig, D., Smith, D. R., Controlling electromagnetic fields, Science 312, 17801782 (2006).
18.Leonhardt, U., Optical conformal mapping, Science 312 17771780 (2006).
19.Jiang, W. X., Qiu, C. W., Han, T. C., Cheng, Q., Ma, H. F., Zhang, S., Cui, T. J., Broadband all-dielectric magnifying lens for far-field high-resolution imaging, Adv. Mater. 25(48), 69636968 (2013).
20.Casse, B. D. F., Lu, W. T., Huang, Y. J., Gultepe, E., Menon, L., Sridhar, S., Super-resolution imaging using a three-dimensional metamaterials nanolens, Appl. Phys. Lett. 96, 023114 (2010).
21.Liu, R., Ji, C., Mock, J., Chin, J., Cui, T., Smith, D., Broadband ground-plane cloak, Science 323, 366369 (2009).
22.Ma, H. F., Cui, T. J., Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(21) (2010).
23.Jiang, W. X., Ma, H. F., Cheng, Q., Cui, T. J., Illusion media: Generating virtual objects using realizable metamaterials, Appl. Phys. Lett. 96, 121910 (2010).
24.Lai, Y., Ng, J., Chen, H., Han, D., Xiao, J., Zhang, Z., Chan, C. T., Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett. 102(25), 253902 (2009).
25.Jiang, W. X., Qiu, C. W., Han, T., Zhang, S., Cui, T. J., Creation of ghost illusions using wave dynamics in metamaterials, Adv. Func. Mater. 23(32),40284034 (2013).
26.Pendry, J. B., A chiral route to negative refraction, Science 306(5700), 13531355 (2004).
27.Yao, J., Liu, Z., Liu, Y., Wang, Y., Sun, C., Bartal, G., Stacy, A. M., Zhang, X., Optical negative refraction in bulk metamaterials of nanowires, Science 321(5891), 930 (2008).
28.Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C. M., Negative refraction by photonic crystals, Nature 423, 604605 (2003).
29.Zhang, C., Cui, T. J., Negative reflections of electromagnetic waves in a strong chiral medium, Applied Physics Letters 91, 194101 (2007).
30.Yang, X. M., Zhou, X. Y., Cheng, Q., Ma, H. F., Cui, T. J., Diffuse reflections by randomly gradient index metamaterials, Optical Letters 35(6),808810.
31.Lee, S. H., Park, C. M., Seo, Y. M., Kim, C. K., Reversed Doppler effect in double negative metamaterials, Phys. Rev. Lett. 81, 241102 (2010).
32.Cheng, Q., Cui, T. J., Jiang, W. X., Cai, B. G., Reversed Doppler effect in double negative metamaterials, New. J. Phys. 12, 063006 (2010).
33.Narimanov, E. E., Kildishev, A. V., Optical black hole: Broadband omnidirectional light absorber, Appl. Phys. Lett. 95, 041106 (2009).
34.Ma, H. F., Cui, T. J., Three-dimensional broadband and broad-angle transformation-optics lens, Nat. Commun. 1, 124 (2010).
35.Ziolkowski, R. W., Erentok, A., Metamaterial-based efficient electrically small antennas, IEEE Trans. Antenna & Propagat. 54(7), 2113–2130.
36.Ma, H. F., Chen, X., Chen, H. S., Yang, X. M., Jiang, W. X., Cui, T. J., Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials, Appl. Phys. Lett. 95, 094107 (2009).
37.Chen, X., Ma, H. F., Zhou, X. Y., Jiang, W. X., Cui, T. J., Three-dimensional broadband and high-directivity lens antenna made of metamaterials, J. Appl. Phys. 110, 044904 (2011).
38.Qi, M. Q., Tang, W. X., Cui, T. J., A broadband Bessel beam launcher using metamaterial lens, Sci. Rep. 5, 11732 (2015).
39.Cheng, Q., Ma, H. F., Cui, T. J., Broadband planar Luneburg lens based on complementary metamaterials, Appl. Phys. Lett. 95, 101901 (2009).
40.Zhou, B., Yang, Y., Cui, T. J., Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials, J. Appl. Phys. 110, 084908 (2011).
41.Mei, Z. L., Bai, J., Niu, T. M., Cui, T. J., A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenna & Propagat. 60(1), 398401 (2012).
42.Ma, H. F., Cai, B. G., Zhang, T. X., Yang, Y., Jiang, W. X., Cui, T. J., Three-dimensional gradient-index materials and their applications in microwave lens antennas, IEEE Trans. Antenna & Propagat. 61(5), 25612569 (2013).
43.Lin, X. Q., Cui, T. J., Chin, J. Y., Yang, X. M., Cheng, Q., Liu, R., Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens, Appl. Phys. Lett. 92, 131904 (2018).
44.Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., Padilla, W. J., Perfect metamaterial absorber, Phys. Rev. Lett. 100, 207402 (2008).
45.Liu, S., Chen, H. B., Cui, T. J., A broadband terahertz absorber using multi-layer stacked bars, Appl. Phys. Lett. 106, 151601 (2015).
46.Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., Fan, K., Zhang, X., Padilla, W. J., Averitt, R. D., Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization, Phys. Rev. B 78, 244103 (2008).
47.Li, H., Yuan, L. H., Shen, X. P., Cheng, Q., Cui, T. J., Ultrathin multiband gigahertz metamaterial absorbers, J. Appl. Phys. 110, 014909 (2011).
48.Shen, X. P., Cui, T. J., Zhao, J., Ma, H. F., Jiang, W. X., Li, H., Polarization-independent wide-angle triple-band metamaterial absorber, Opt. Express 19(10),94019407 (2011).
49.Grady, N. K., Heyes, J. E., Chowdhury, D. R., Zeng, Y., Reiten, M. T., Azad, A. K., Taylor, A. J., Dalvit, D. A. R., Chen, H. T., Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science 340 (6138),13041307 (2013).
50.Chin, J. Y., Lu, M., Cui, T. J., Metamaterial polarizers by electric-field-coupled resonators, Appl. Phys. Lett. 93, 251903 (2008).
51.Ye, Y., He, S., 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity, Appl. Phys. Lett. 96, 203501 (2010).
52.Yang, X. M., Zhou, X. Y., Cheng, Q., Ma, H. F., Cui, T. J., Diffuse reflections by randomly gradient index metamaterials, Optics Letters 35(6), 808810 (2010).
53.Kildishev, A. V., Boltasseva, A., Shalaev, V. M., Planar photonics with metasurfaces, Science 339 (6125), 1232009 (2013).
54.Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., Gaburro, Z., Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333337 (2011).
55.Khoo, E. H., Li, E. P., Crozier, K. B., Plasmonic wave plate based on subwavelength nanoslits, Optics Letters 36, 24982500 (2011).
56.Zhao, Y., Alù, A., Manipulating light polarization with ultrathin plasmonic metasurfaces, Phys. Rev. B 84, 205428 (2011).
57.Pors, A., Nielsen, M. G., Eriksen, R. L., Bozhevolnyi, S. I., Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett. 13, 829834 (2013).
58.Genevet, P., Yu, N., Aieta, F., Lin, J., Kats, M. A., Blanchard, R., Scully, M. O., Gaburro, Z., Capasso, F., Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett. 100, 013101 (2012).
59.Liu, Y. and Zhang, X., Metasurfaces for manipulating surface plasmons, Appl. Phys. Lett. 103, 141101 (2013).
60.Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett. 12, 49324936 (2012).
61.Munk, B. A., Frequency selective surfaces: Theory and design, Wiley, 2000.
62.Huang, J., Encinar, J. A., Introduction to Reflectarray antenna, Wiley, 2007.
63.Capolino, F., Part I: Super-resolution, Applications of metamaterials, in P. A. Belov, ed., Metamaterials handbook, Taylor & Francis, 2009 2.8–2.10.
64.Capolino, F., Theory and phenomena of metamaterials, in Metamaterials handbook, Taylor & Francis, 2009.
65.Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., Padilla, W. J., A metamaterial absorber for the terahertz regime: Design, fabrication and characterization, Opt. Express 16, 71817188 (2008).
66.Dayal, G., Ramakrishna, S. A., Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane, Opt. Express 22, 15104 (2014).
67.Liu, X. L., Starr, T., Starr, A. F., Padilla, W. J., Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104, 207403 (2010).
68.Pu, M. B., Hu, C. G., Wang, M., Huang, C., Zhao, Z. Y., Wang, C. T., Feng, Q., Luo, X. G., Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Opt. Express 19, 17413 (2011).
69.Aydin, K., Ferry, V. E., Briggs, R. M., Atwater, H. A., Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Nat. Commun. 2, 517 (2011).
70.Yeo, W. G., Nahar, N. K., Sertel, K., Far‐IR multiband dual‐polarization perfect absorber for wide incident angles, Microwave Opt. Technol. Lett. 55, 632 (2013).
71.Fang, Z. Y., Zhen, Y. R., Fan, L. R., Zhu, X., Nordlander, P., Tunable wide-angle plasmonic perfect absorber at visible frequencies, Phys. Rev. B 85, 245401 (2012).
72.Ma, Y., Chen, Q., Grant, J., Saha, S. C., Khalid, A., Cumming, D. R. S., A terahertz polarization insensitive dual band metamaterial absorber, Opt. Lett. 36, 945947 (2011).
73.Wang, B. X., Zhai, X., Wang, G. Z., Huang, W. Q., Wang, L. L, A novel dual-band terahertz metamaterial absorber for a sensor application, J. Appl. Phys. 117, 014504 (2015).
74.Liu, S., Zhuge, J. C., Ma, S. J., Chen, H. B., Bao, D., He, Q., Zhou, L., Cui, T. J., A bi-layered quad-band metamaterial absorber at terahertz frequencies, J. Appl. Phys. 118, 245304 (2015).
75.Yahiaoui, R., Guillet, J. P., Miollis, F. D., Mounaix, P., Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications, Optics Letters 38, 49884990 (2013).
76.Shen, X. P., Yang, Y., Zang, Y., Gu, J. Q., Han, J. G., Zhang, W. L., Cui, T. J., Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation, Appl. Phys. Lett. 101, 154102 (2012).
77.Zhu, J. F., Ma, Z. F., Sun, W. J., Ding, F., He, Q., Zhou, L., Ma, Y. G., Ultra-broadband terahertz metamaterial absorber, Appl. Phys. Lett. 105, 021102 (2014).
78.Grant, J., Ma, Y., Saha, S., Khalid, A., Cumming, D. R. S., Polarization insensitive, broadband terahertz metamaterial absorber, Optics Letters 36, 34763478 (2011).
79.Yu, N. F., Aieta, F., Genevet, P., Kats, M. A., Gaburro, Z., Capasso, F., Broadband, A, Background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett. 12, 63286333 (2012).
80.Yu, N., Genevet, P., Aieta, F., Kats, M., Blanchard, R., Aoust, G., Tetienne, J. P., Gaburro, Z., Capasso, F., Flat optics: Controlling wavefronts with optical antenna metasurfaces, IEEE J. Select. Topics Quantum Electron. 19, 4700423 (2013).
81.Blanchard, R., Aoust, G., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., Capasso, F., Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B 85, 155457 (2012).
82.Kats, M., Genevet, P., Aoust, G., Yu, N., Blanchard, R., Aieta, F., Gaburro, Z., Capasso, F., Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl Acad. Sci. USA 109, 1236412368 (2012).
83.Aieta, F., Kabiri, A., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., Capasso, F., Reflection and refraction of light from metasurfaces with phase discontinuities, J. Nanophoton. 6, 063532 (2012).
84.Yang, Y. M., Wang, W. Y., Moitra, P., Kravchenko, I. I., Briggs, D. P., Valentine, J., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett. 14, 13941399 (2014).
85.Xie, Z. W., Wang, X. K., Ye, J. S, Feng, S. F., Sun, W. F., Akalin, T., Zhang, Y., Spatial terahertz modulator, Sci. Rep. 3, 3347 (2013).
86.Chen, W. T., Yang, K. Y., Wang, C. M., Huang, Y. W., Sun, G., Chiang, I., Liao, C. Y., Hsu, W. L., Lin, H. T., Sun, S. L., Zhou, L., Liu, A. Q., Tsai, D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images, Nano Lett. 14, 225230 (2014).
87.Ling, X. H., Liu, H., Teng, J. H., Danner, A., Zhang, S., Qiu, C. W., Visible-frequency metasurface for structuring and spatially multiplexing optical vortices, Adv. Mater. 28, 25332539 (2016).
88.Huang, L. L., Chen, X. Z., Mühlenbernd, H., Zhang, H., Chen, S. M.. Bai, B. F., Tan, Q. F., Jin, G. F., Cheah, K. W., Qiu, C. W., Li, J. S., Zentgraf, T., Zhang, S., Three-dimensional optical holography using a plasmonic metasurface, Nat. Commun. 4, 2808 (2013).
89.Montelongo, Y., Tenorio, J. O. T., Williams, C., Zhang, S., Milne, W. I., Wilkinson, T. D., Plasmonic nanoparticle scattering for color holograms, Proc. Natl. Acad. Sci. 111, 1267912683 (2014).
90.Ye, W. M., Zeuner, F., Li, X., Reineke, B., He, S., Qiu, C. W., Liu, J., Wang, Y. T., Zhang, S., Zentgraf, T., Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7, 11930 (2016).
91.Ma, Z. J., Hanham, S. M., Allbella, P., Ng, B., Lu, H. T., Gong, Y. D., Maier, S. A., Hong, M. H., Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photon. 3, 10101018 (2016).
92.Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., Capasso, F., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science 352, 11901194 (2016).
93.Tseng, M. L., Hsiao, H.-H., Chu, C. H., Chen, M. K., Sun, G., Liu, A-Q, Tsai, D. P., Metalenses: advances and applications, Adv. Opt. Mater. 6(18), 1800554 (2019).
94.Wang, S., Wu, P. C., Su, V.-C., Lai, T.-C., Chen, M.-K., Kuo, H. Y., Chen, B. H., Chen, Y. H., Huang, T.-T., Wang, J.-H., Lin, R.-M., Kuan, C.-H., Li, T., Wang, Z., Zhu, S., Tsai, D. P., A broadband achromatic metalens in the visible, Nat. Nanotech. 13(3), 227 (2018).
95.Zang, W., Yuan, Q., Chen, R., Li, L., Li, T., Zou, X., Zhang, G., Chen, Z., Wang, S., Wang, Z., Zhu, S. N., Chromatic dispersion manipulation based on metalenses, Adv. Mater. 1904935 (2019).
96.Bomzon, Z., Kleiner, V., Hasman, E., Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings, Appl. Phys. Lett. 79, 15871589 (2001).
97.Bomzon, Z, Kleiner, V, Hasman, E., Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings, Optics Letters 26, 14241426 (2001).
98.Monticone, F., Estakhri, N. M., Alù, A., Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110, 203903 (2013).
99.Pfeiffer, C., Grbic, A., Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett. 110, 197401 (2013).
100.Schelkunoff, S. A., Some equivalence theorems of electromagnetics and their application to radiation problems, Bell Syst. Tech. J. 15, 92112 (1936).
101.Alù, A., Mantle cloak: Invisibility induced by a surface, Phys. Rev. B 80, 245115 (2009).
102.Chen, P.-Y., Alù, A., Mantle cloaking using thin patterned metasurfaces, Phys. Rev. B 84, 205110 (2011).
103.Chen, P.-Y., Argyropoulos, C., Alù, A., Broadening the cloaking bandwidth with non-Foster metasurfaces, Phys. Rev. Lett. 111, 233001 (2013).
104.Liu, S., Xu, H. X., Zhang, H. C., Cui, T. J., Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt. Express 22, 1340313417 (2014).
105.Liu, S., Zhang, H. C., Xu, H. X., Cui, T. J., Nonideal ultrathin mantle cloak for electrically large conducting cylinders. Journal of the Optical Society of America A 31, 20752082 (2014).
106.Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M., Smith, D. R., Infrared metamaterial phase holograms. Nat. Mater. 11, 450454 (2012).
107.Ni, X. J., Kildishev, A. V., Shalaev, V. M., Metasurface holograms for visible light, Nat. Commun. 4, 2807 (2013).
108.Zheng, G., Muhlenbernd, H., Kenney, M., Li, G., Zentgraf, T., Zhang, S., Metasurface holograms reaching 80% efficiency, Nat. Nanotechnology, 10, 308312 (2015).
109.Huang, Y. W., Chen, W. T., Tsai, W. Y., Wu, P. C., Wang, C. M., Sun, G., Tsai, D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images, aluminum plasmonic multicolor meta-hologram, Nano Lett. 15, 31223127 (2015).
110.Huang, L., Muhlenbernd, H., Li, X., Song, X., Bai, B., Wang, Y., Zentgraf, T., Broadband hybrid holographic multiplexing with geometric metasurfaces, Adv. Mat. 27, 64446449 (2015).
111.Wong, H., Cheah, K. W., Pun, E. Y. B., Zhang, S., Chen, X. Z., Helicity multiplexed broadband metasurface holograms, Nat. Commun. 6, 8241 (2015).
112.Fang, X., Ren, H., Gu, M., Orbital angular momentum holography for high-security encryption, Nat. Photon. 14(12), 102108 (2020).
113.Minovich, A., Neshev, D. N., Powell, D. A., Shadrivov, I. V., Kivshar, Y. S., Tunable fishnet metamaterials infiltrated by liquid crystals, Appl. Phys. Lett. 96, 193103 (2010).
114.Decker, M., Kremers, C., Minovich, A., Staude, I., Miroshnichenko, A. E., Chigrin, D., Neshev, D. N., Jagadish, C., Kivshar, Y. S., Electro-optical switching by liquid-crystal controlled metasurfaces, Opt. Express 21, 88798885 (2013).
115.Kats, M. A., Blanchard, R., Genevet, P., Yang, Z., Qazilbash, M. M., Basov, D. N., Ramanathan, S., Capasso, F., Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Optics Letters 38, 368370 (2013).
116.Biener, G., Niv, A., Kleiner, V., Hasman, E., Geometrical phase image encryption obtained with space-variant subwavelength gratings, Optics Letters 30, 10961098 (2005).
117.Yirmiyahu, Y., Niv, A., Biener, G., Kleiner, V., Hasman, E., Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements, Optics Letters 31, 32523254 (2006).
118.Zhu, W. M., Liu, A. Q., Bourouina, T., et.al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 3, 1274 (2012).
119.Ou, J. Y., Plum, E., Jiang, L., Zheludev, N. I.. Reconfigurable photonic metamaterials, Nano. Lett. 11, 2142 (2011).
120.Lapine, M., Shadrivov, I. V., Powell, D. A., Kivshar, Y. S.. Magnetoelastic metamaterials, Nat. Mater. 11, 30 (2012).
121.Zhang, J., Macdonald, K. F., Zheludev, N. I.. Nonlinear dielectric optomechanical metamaterials. Light: Sci. Appl. 2, e96 (2013).
122.Kuzyk, A., Schreiber, R., Zhang, H., et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 826866 (2014).
123.Biener, G., Niv, A., Kleiner, V., Hasman, E., Space-variant polarization scrambling for image encryption obtained with subwavelength gratings, Opt. Commun. 261, 512 (2006).
124.Kasirga, T. S., Ertas, Y. N., Bayindir, M., Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009).
125.Klein, M. W., Enkrich, C., Wegener, M., Linden, S., Second-harmonic generation from magnetic metamaterials, Science 313, 502504 (2006).
126.Valev, V. K., Silhanek, A. V., Verellen, N., Gillijns, W., van Dorpe, P., Aktsipetrov, O. A., Vandenbosch, G. A. E., Moshchalkov, V. V., Verbiest, T., Asymmetric optical second-harmonic generation from chiral-shaped gold nanostructures, Phys. Rev. Lett. 104, 127401 (2010).
127.Husu, H., Canfield, B. K., Laukkanen, J., Bai, B., Kuittinen, M., Turunen, J., Kauranen, M., Chiral coupling in gold nanodimers, Appl. Phys. Lett. 93, 183115 (2008).
128.Chen, P.-Y., Argyropoulos, C., Alù, A., Enhanced nonlinearities using plasmonic nanoantennas, Nanophotonics 1, 221233 (2012).
129.Lapine, M., Shadrivov, I. V., Kivshar, Y. S., Nonlinear metamaterials, Rev. Mod. Phys. 86, 10931123 (2014).
130.Yao, Y., Kats, M. A., Genevet, P., Yu, N. F., Song, Y., Kong, J., Capasso, F., Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 12571264 (2013).
131.Feng, Z., Wang, Y, Schlather, A. E., Liu, Z., Ajayan, P. M., de Abajo, F. J. G., Norlander, P., Zhu, X., Halas, N. J., Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14, 299304 (2014).
132.Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y, Freitag, M., Zhu, W., Avouris, P., Xia, F., Tunable infrared plasmonic devices using graphene/insulator stacks, Nature Nanotechnol. 7, 330334 (2012).
133.Thongrattanasiri, S., Koppens, F. H. L, de Abajo, F. J. G., Complete optical absorption in periodically patterned graphene, Phys. Rev. Lett. 108, 047401 (2012).
134.van Nieuwstadt, J. A. H., Sandtke, M., Harmsen, R. H., Segerink, F. B., Prangsma, J. C., Enoch, S., Kuipers, L., Strong modification of the nonlinear optical response of metallic subwavelength hole arrays, Phys. Rev. Lett. 97, 146102 (2006).
135.Chen, H.-T., Padilla, W. J., Cich, M. J., Azad, A. K., Averitt, R. D., Taylor, A. J., A metamaterial solid-state terahertz phase modulator, Nat. Photon. 3, 148141 (2009).
136.Chan, W. L., Chen, H. T., Taylor, A. J., Brener, I., Cich, M. J., Mittleman, D. M., A spatial light modulator for terahertz beams, Appl. Phys. Lett. 94, 213511 (2009).
137.Smith, D. R., Schultz, S., Markoš, P, Soukoulis, C. M., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B 65, 195104 (2002).
138.Liu, R. P., Cui, T. J., Huang, D., Zhao, B., Smith, D. R., Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory, Phys. Rev. E 76, 026606 (2007).
139.Holloway, C. L., Kuester, E. F., Gordon, J. A., O’Hara, J., Booth, J., Smith, D. R., An overview of the theory and applications of metasurfaces, the two-dimensional equivalents of metamaterials, IEEE Trans. Antennas Propag. Mag. 54, 1035 (2012).
140.Cui, T. J., Qi, M. Q., Wan, X., Zhao, J., Cheng, Q., Lights coding metamaterials, digital metamaterials and programmable metamaterials, Light: Sci. Appl. 3, e214 (2014).
141.Nayeri, P., Yang, F., Elsherbeni, A., Beam-scanning reflectarray antennas: A technical overview and state of the art, IEEE Trans. Antennas Propag. Mag. 57, 3247 (2015).
142.Nayeri, P., Yang, F., Elsherbeni, A., Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance, IEEE Trans. Antennas Propag. 61, 45884597 (2013).
143.Cui, T. J., Liu, S., Zhang, L., Information metamaterials and metasurfaces, J. Mater. & Chem. C 5, 36443668 (2017).
144.Liu, S., Cui, T. J., Concepts, working principles, and applications of coding and programmable metamaterials, Adv. Opt. Mater. 5(22), 1700624 (2017).
145.Gao, L. H., Cheng, Q., Yang, J., Ma, S. J., Zhao, J., Liu, S., Chen, H. B., He, Q., Jiang, W. X., Ma, H. F., Wen, Q. Y., Liang, L. J., Jin, B. B., Liu, W. W., Zhou, L., Yao, J. Q., Wu, P. H., Cui, T. J., Broadband diffusion of terahertz waves by multi-bit coding metasurfaces, Light: Sci. Appl. 2015, 4, e324 (2015).
146.Liang, L. J., Qi, M. Q., Yang, J., Shen, X. P., Zhai, J. Q., Xu, W. Z., Jin, B. B., Liu, W. W., Feng, Y. J., Zhang, C. H., Lu, H., Chen, H. T., Kang, L., Xu, W. W., Chen, J., Cui, T. J., Wu, P. H., Liu, S. G., Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials, Adv. Opt. Mater. 3, 13741380 (2015).
147.Liu, S., Noor, A., Du, L. L., Zhang, L., Xu, Q., Wang, K. L. T. Q., Tian, Z., Tang, W. X., Han, J. G., Zhang, W. L., Zhou, X. Y., Cheng, Q., Cui, T. J., Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces, ACS Photon. 3, 19681977 (2016).
148.Wang, Z. W., Zhang, Q., Zhang, K., Hu, G. K., Tunable digital metamaterial for broadband vibration isolation at low frequency, Adv. Mater. 28, 98579861 (2016).
149.Xie, B. Y., Tang, K., Cheng, H., Liu, Z. Y., Chen, S. Q., Tian, J. G., Coding acoustic metasurfaces, Adv. Mater. 29, 1603507 (2016).
150.Xie, B. Y., Tang, H. C., Liu, Z. Y., Chen, S. Q., Tian, J. G., Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl. 7, 024010 (2017).
151.Saadat, S., Adnan, M., Mosallaei, H., Afshari, E., Composite metamaterial and metasurface integrated with non-foster active circuit elements: A bandwidth-enhancement investigation, IEEE Trans. Antennas Propag. 61, 12101218 (2013).
152.Barbuto, M., Monti, A., Bilotti, F., Toscano, A., Design of a non-foster actively loaded SRR and application in metamaterial-inspired components, IEEE Trans. Antennas Propag. Mag. 61, 12191227 (2012).
153.Hrabar, S., Krois, I., Bonic, I., Kiricenko, A., Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial, Appl. Phys. Lett. 102, 054108 (2013).
154.Elliott, R., Azimuthal surface waves on circular cylinders, Trans. IRE Profession. Group Antennas Propagat. 2, 7181 (1954).
155.Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolous, N., Yablonovitch, E., High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Techn. 47, 20592074 (1999).
156.Liu, S., Cui, T. J., Zhang, L., Xu, Q., Wang, Q., Wan, X., Gu, J. Q., Tang, W. X., Qi, M. Q., Han, J. G., Zhang, W. L., Zhou, X. Y., Cheng, Q., Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams., Adv. Sci. 3, 1600156 (2016).
157.Liu, S., Cui, T. J., Flexible controls of scattering clouds using coding metasurfaces, Sci. Rep. 6, 37545 (2016).
158.Liu, S., Cui, T. J., Flexible controls of terahertz waves using coding and programmable metasurfaces, IEEE J. Sel. Top. Quantum Electron. 23, 112 (2016).
159.Moccia, M., Liu, S., Wu, R. Y., Castaldi, G., Andreone, A., Cui, T. J., Galdi, V.. Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and sub-optimal design. Adv. Opt. Mater. 5, 1700455 (2017).
160.Padooru, Y. R., Yakovlev, A. B., Chen, P. Y., Alù, A., Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays, J. Appl. Phys. 112, 034907 (2012).
161.Rainwater, D., Kerkhoff, A., Melin, K., Soric, J., Moreno, G., Alù, A., Experimental verification of three-dimensional plasmonic cloaking in free-space, New J. Phys. 14, 013054 (2012).
162.Tang, K., Qiu, C., Lu, J., Ke, M., Liu, Z., Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits, J. Appl. Phys. 17, 024503 (2015).
163.Yang, Z., Gao, F., Shi, X., Lin, X., Gao, Z., Chong, Y., Zhang, B., Topological acoustics, Phys. Rev. Lett. 114, 114301(2015).
164.Xiao, M., Chen, W.-J., He, W.-Y., Chan, C. T., Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11, 920 (2015).
165.Khanikaev, A. B., Fleury, R., Mousavi, S. H., Alù, A., Topologically robust sound propagation in an angular momentum-biased graphene-like resonator lattice, Nat. Commun. 6, 8260 (2015).
166.Mousavi, S. H., Khanikaev, A. B., Wang, Z., Topologically protected elastic waves in phononic metamaterials, Nat. Commun. 6, 8682 (2015).
167.Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., Sheng, P., Locally resonant sonic materials, Science 289, 17341736 (2000).
168.Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, 452456 (2006).
169.Lakes, R. S., Advances in negative Poisson’s ratio materials, Adv. Mater. 5, 293296 (1993).
170.Bergamini, A., Delpero, T., de Simoni, L., di Lillo, L., Ruzzene, M., Ermanni, P., Phononic crystal with adaptive connectivity, Adv. Mater. 26, 13431347 (2014).
171.Zhu, R., Chen, Y. Y., Barnhart, M. V., Hu, G. K., Sun, C. T., Huang, G. L., Experimental study of an adaptive elastic metamaterial controlled by electric circuits, Appl. Phys. Lett. 108, 011905 (2016).
172.Casadei, F., Delpero, T., Bergamini, A., Ermanni, P., Ruzzene, M., Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys. 112, 064902 (2012).
173.Babaee, S., Viard, N., Wang, P., Fang, N. X., Bertoldi, K., Harnessing deformation to switch on and off the propagation of sound, Adv. Mater. 28, 16311635 (2016).
174.Wang, P., Casadei, F., Shan, S., Weaver, J. C., Bertoldi, K., Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett. 113, 014301 (2014).
175.Zhang, Q., Yan, D., Zhang, K., Hu, G., Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique, Sci. Rep. 5, 8936 (2015).
176.Zhang, Q., Zhang, K., Hu, G., Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique, Sci. Rep. 6, 22431 (2016).
177.Liu, S., Zhang, L., Yang, Q. L., Xu, Q., Yang, Y., Noor, A., Zhang, Q., Iqbal, S., Wan, X., Tian, Z., Tang, W. X., Cheng, Q., Han, J. G., Zhang, W. L., Cui, T. J., Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies, Adv. Opt. Mater. 4, 19651973 (2016).
178.Liu, L. X., Zhang, X. Q., Kenney, M., Su, X. Q., Xu, N. N., Ouyang, C. M., Shi, Y., Han, J. G., Zhang, W. L., Zhang, S., Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 50315036 (2014).
179.Zhang, X. Q., Tian, Z., Yue, W., Gu, J., Zhang, S., Hanand, J., Zhang, W., Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 2013, 25, 45674572.
180.Liu, S., Zhang, H. C., Zhang, L., Xu, Q., Yang, Q. L., Gu, J. Q., Ma, H. F., Jiang, W. X., Zhou, X. Y., Han, J. G., Zhang, W. L., Cheng, Q., Cui, T. J., Full-state controls of terahertz waves using tensor coding metasurfaces, ACS Appl. Mater. & Interfaces 9, 2150321514, (2017).
181.Sun, S. L., He, Q., Xiao, S. Y., Xu, Q., Li, X., Zhou, Lei, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11, 426431 (2011).
182.Yang, H. H., Yang, F., Xu, S. H., Mao, Y. L., Li, M. K., Cao, X. Y., Gao, J., A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization, and experiment, IEEE Trans. Antennas Propag. 64, 22462254 (2016).
183.Wan, X., Qi, M. Q., Chen, T. Q., Cui, T. J., Field-programmable beam reconfiguring based on digitally-controlled coding metasurface, Sci. Rep. 6, 20663 (2016).
184.Yang, H. H., Cao, X. Y., Yang, F., Gao, J., Xu, S. H., Li, M. K., Chen, X. B., Zhao, Y., Zheng, Y. J., Li, S. J., A programmable metasurface with dynamic polarization, scattering and focusing control, Sci. Rep. 6, 35692 (2016).
185.Kamoda, H., Iwasaki, T., Tsumochi, J., Kuki, T., Hashimoto, O., 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters, IEEE Trans. Antennas Propag. 59, 25242531 (2011).
186.Shannon, C. E., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review 5, 355 (2001).
187.Cui, T. J., Liu, S., Li, L. L., Information entropy of coding metasurface, Light: Sci. Appl. 5, e16172 (2016).
188.Wu, R. Y., Shi, C. B., Liu, S., Wu, W., Cui, T. J.. Addition theorem for digital coding metamaterials, Adv. Opt. Mater. 1701236 (2018).
189.Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T., Kelly, K. F., Baraniuk, R. G., Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 8391 (2008).
190.Watts, C. M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D. R., Padilla, W. J., Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics. 8, 605609 (2014).
191.Lipworth, G., Mrozack, A., Hunt, J., Marks, D. L., Driscoll, T., Brady, D., Smith, D. R., Metamaterial apertures for coherent computational imaging on the physical layer. J. Opt. Soc. Am. A 30, 16031612 (2013).
192.Hunt, J, J. Gollub, T. Driscoll, et al. Metamaterial microwave holographic imaging system, J. Opt. Soc. Am. A 31, 2109 (2014).
193.Watts, C. M., Liu, X., Padilla, W. J., Metamaterial electromagnetic wave absorbers, Adv. Opt. Mater. 24, 98120 (2012).
194.Sensale-Rodriguez, B., Rafique, S., Yan, R., Zhu, M., Protasenko, V., Jena, D., Liu, L., Xing, H. L. G., Terahertz imaging employing graphene modulator arrays, Opt. Express, 21(2),23242330 (2013).
195.Li, Y. B., Li, L. L., Xu, B. B., Wu, W., Wu, R. Y., Wan, X., Cheng, Q., Cui, T. J., Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging, Sci. Rep. 6, 23731 (2015).
196.Li, L., Hurtado, M., Xu, F., Zhang, B. C., Jin, T., Cui, T. J., Stevanovic, M. N., Nehorai, A., A survey on the low-dimensional-model-based electromagnetic imaging, Foundations and Trends in Signal Processing 12(2),107199 (2018).
197.Walther, B., Helgert, C., Rockstuhl, C., et al. Spatial and spectral light shaping with metamaterials, Adv. Mater. 24, 63006304 (2012).
198.Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W., Zheludev, N. I., An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 30503054 (2013).
199.Wang, Q., Rogers, E. T. F., Gholipour, B., Wang, C. M., Yuan, G. H., Teng, J. H., Zheludev, N. I., Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photon. 10, 6065 (2016).
200.Kaplan, G., Aydin, K., Scheuer, J., Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide, Opt. Mater. Express 5, 2513 (2015).
201.Dicken, M. J., Aydin, K., Pryce, I. M., Sweatlock, L. A., Boyd, E. M., Walavalkar, S., Ma, J., Atwater, H. A., Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17, 18330 (2009).
202.Tao, H., Strikwerda, A. C., Fan, K., Padilla, W. J., Zhang, X., Averitt, R. D., Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).
203.Ju, L., Geng, B. S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H. A., Liang, X. G., Zettl, A., Shen, T. R., Wang, F., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630634 (2011).
204.Huang, Y.-W., Lee, H. W. H., Sokhoyan, R., Pala, R. A., Thyagarajan, K., Han, S., Tsai, D. P., Atwater, H. A., Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 53195325 (2016).
205.Li, L., Cui, T. J., Ji, W., Liu, S., Ding, J., Wan, X., Li, Y. B., Jiang, M., Qiu, C.-W., Zhang, S., Electromagnetic reprogrammable coding metasurface holograms, Nat. Commun. 8, 197 (2017).
206.Gerchberg, R. W., Saxton, W. O., A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 227246 (1972).
207.Zhao, J., Yang, X., Dai, J. Y., Cheng, Q., Li, X., Qi, N. H., Ke, J. C., Bai, G. D., Liu, S., Jin, S., Alu, A., Cui, T. J., Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems, National Science Review 6(2), 231238 (2019).
208.Silva, A., Monticone, F., Castaldi, G., Baldi, V. G., Alù, A., Engheta, N., Performing mathematical operations with metamaterials, Science, 343, 160163 (2014).
209.Shrekenhamer, D., Chen, W. C., Padilla, W. J., Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett. 110, 177403 (2013).
210.Liu, X., Padilla, W. J., Dynamic manipulation of infrared radiation with MEMS metamaterials, Adv. Opt. Mater. 1, 559562 (2013).
211.Shi, S. F., Zeng, B., Han, H. L., Hong, X., Tsai, H. Z., Zettl, A., Crommie, M. F., Wang, F., Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures, Nano Lett. 15, 372 (2014).
212.Liu, X., Gu, J. Q., Singh, R., Ma, Y. F., Zhu, J., Tian, Z., He, M. X., Han, J. G., Zhang, W. L., Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode, Appl. Phys. Lett. 100, 131101 (2012).
213.Gu, J., Singh, R., Liu, X. J., Zhang, X. Q., Ma, Y. F., Zhang, S., Maier, S. A., Tian, Z., Azad, A. K., Chen, H. T., Taylor, A. J., Han, J. G., Zhang, W. L., Active control of electromagnetically induced transparency analog in terahertz metamaterials, Nat. Commun. 3, 1151 (2012).
214.Chen, H. T., O’Hara, J. F., Azad, A. K., Taylor, A. J., Averitt, R. D., Shrekenhamer, D. B., Padilla, W. J., Experimental demonstration of frequency-agile terahertz metamaterials, Nat. Photon. 2, 295298 (2008).
215.Chen, H. T., Yang, H., Singh, R., O’Hara, J. F., Azad, A. K., Trugman, S. A., Jia, Q. X., Taylor, A. J., Tuning the resonance in high-temperature superconducting terahertz metamaterials, Phys. Rev. Lett. 105, 247402 (2010).
216.Zhu, W. M., Song, Q. H., Yan, L. B., Zhang, W., Wu, P. C.. Chin, L. K., Cai, H., Tsai, D. P., Shen, Z. X., Deng, T. W., Ting, S. K., Gu, Y. D., Lo, G. Q., Kwong, D. L., Yang, Z. C., Huang, R., Liu, A. Q., Zheludev, N., A flat lens with tuneable phase gradient by using random access reconfigurable metamaterial, Adv. Mater. 27, 47394743 (2015).
217.Wu, P. C., Zhu, W. M., Shen, Z. X., Chong, P. H. J., Ser, W.. Tsai, D. P., Liu, A. Q., Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Adv. Opt. Mater. 5, 1600938 (2017).
218.Yan, L. B., Zhu, W. M., Wu, P. C., Cai, H., Gu, Y. D., Chin, L. K., Shen, Z. X., Chong, P. H. J., Yang, Z. C., Ser, W., Tsai, D. P., Liu, A. Q., Adaptable metasurface for dynamic anomalous reflection, Appl. Phys. Lett. 110, 201904 (2017).
219.Yang, X., Xu, S. H., Yang, F., Li, M. K., Hou, Y. Q., Jiang, S. D., Liu, L, A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements, IEEE Trans. Antennas Propag. Mag. 65, 39593966 (2017).
220.Fusco, V. F., Mechanical beam scanning reflectarray, IEEE Trans. Antennas Propag. 53, 38423844 (2005).
221.Subbarao, B., Srinivasan, V., Fusco, V. F., Cahill, R., Element suitability for circularly polarised phase agile reflectarray applications, IEE Proc.-Microw., Antennas Propag. 151, 287292 (2004).
222.Srinivasan, V., Fusco, V. F., Circularly polarised mechanically steerable reflectarray, IEE Proc.-Microw. Antennas Propag. 152, 511514 (2005).
223.Ou, J. Y., Plum, E., Zhang, J. F., Zheludev, N. I., An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotech. 8, 252 (2013).
224.Zhang, L., Chen, X. Q., Liu, S., Zhang, Q., Zhao, J., Dai, J. Y., Bai, G. D., Wan, X., Cheng, Q., Castaldi, G., Galdi, V., Cui, T. J., Space-time-coding digital metasurfaces, Nat. Commun. 9, 4334 (2018).
225.Zhang, L., Wang, Z. X., Shao, R. W., Shen, J. L., Chen, X. Q., Wan, X., Cheng, Q., Cui, T. J., Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface, IEEE Transactions on Antennas and Propagation 67, DOI 10.1109/TAP.2019.2955219 (2019).
226.Zhang, L., Chen, X. Q., Shao, R. W., Dai, J. Y., Cheng, Q., Castaldi, G., Galdi, V., Cui, T. J., Breaking reciprocity with space-time-coding digital metasurfaces, Adv. Mater. 31, 1904069 (2019).
227.Bao, L., Ma, Q., Bai, G. D., Jing, H. B., Wu, R. Y., Yang, C., Wu, J., Fu, X., Cui, T. J., Design of digital coding metasurfaces with independent controls of phase and amplitude responses, Appl. Phys. Lett. 113, 063502 (2018).
228.Luo, J., Ma, Q., Jing, H. B., Bai, G. D., Wu, R. Y., Bao, L., Cui, T. J., 2-bit amplitude-modulated coding metasurfaces based on indium tin oxide films, J. Appl. Phys. 126, 113102 (2019).
229.Wu, R. Y., Zhang, L., Bao, L., Wu, L. W., Ma, Q., Bai, G. D., Wu, H. T., Cui, T. J., Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations, Adv. Opt. Mater. 7, 1801429 (2019).
230.Bao, L., Wu, R. Y., Fu, X., Ma, Q., Bai, G. D., Cui, T. J., Multi-beam forming and controls by metasurface with phase and amplitude modulations, IEEE Transactions on Antennas and Propagation 67(10),66806685 (2019).
231.Chen, L., Ma, Q., Jing, H. B., Cui, H. Y., Liu, Y., Cui, T. J., Spatial-energy digital coding metasurface based on active amplifier, Phys. Rev. Appl. 11, 054051 (2019).
232.Luo, Z., Chen, M. Z., Wang, Z. X., Zhou, L., Wang, Q., Li, Y. B., Cheng, Q., Ma, H. F., Cui, T. J., Digital nonlinear metasurface with highly customizable nonreciprocity, Adv. Funct. Mater. 29, 1906635 (2019).
233.Ma, Q., Chen, L., Jing, H. B., Hong, Q. R., Cui, H. Y., Liu, Y., Li, L., Cui, T. J., Controllable and programmable nonreciprocity based on detachable digital coding metasurface Adv. Opt. Mater. 7, 1901285 (2019).
234.Luo, Z., Wang, Q., Zhang, X. G., Wu, J. W., Dai, J. Y., Zhang, L., Wu, H. T., Zhang, H. C., Ma, H. F., Cheng, Q., Cui, T. J., Intensity-dependent metasurface with digitally-reconfigurable distribution of nonlinearity, Adv. Opt. Mater. 7, 1900792 (2019).
235.Li, L., Ruan, H., Liu, C., Li, Y., Shuang, Y., Alù, A., Qiu, C.-W., Cui, T. J., Machine-learning reprogrammable metasurface imager, Nat. Commun. 10, 1082 (2019).
236.Li, L., Shuang, Y., Ma, Q., Li, H., Zhao, H., Wei, M., Liu, C., Hao, C., Qiu, C. W., Cui, T. J., Intelligent metasurface imager and recognizer, Light: Sci. Appl. 8, 97 (2019).
237.Li, H. Y., Zhao, H. T., Wei, M. L., et al. Intelligent electromagnetic sensing with learnable data acquisition and processing, Patterns 1, 100006, (2020).
238.Ma, Q., Bai, G. D., Jing, H. B., Yang, C., Li, L., Cui, T. J., Smart metasurface with self-adaptively reprogrammable functions, Light: Sci. Appl. 8, 98 (2019).
239.Cui, T. J., Liu, S., Bai, G. D., Ma, Q., Direct transmission of digital message via programmable coding metasurface. Research 2584509 (2019).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.