Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: October 2014

Chapter 12 - Acute, focal neurological symptoms

Related content

Powered by UNSILO


1. BradleyWG, DaroffRB, FenichelGM, MarsdenCD (2000). Diagnosis of neurological disease. In BradleyWG, DaroffRB, FenichelGM, MarsdenCD, eds. Neurology in Clinical Practice, 3rd edn. New York: Marcel Dekker, pp. 3–8.
2. CaplanLR (2000). Diagnosis and the clinical encounter. In CaplanLR, ed. Caplan’s Stroke, 3rd edn. Boston: Butterworth-Heinemann, pp. 51–71.
3. CaplanLR, HollanderJ (2011). The general systemic and neurological examinations. In SheltonCT, ed. The Effective Clinical Neurologist, 3rd edn. Shelton, CT: People’s Medical Publishing House-USA, pp. 63–103.
4. JauchEC, SaverJL, AdamsHP, et al., on behalf of the American Heart Association Stroke Council, Council on Cardiovascular Nursing, Council on Peripheral Vascular Disease, and Council on Clinical Cardiology (2013). Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44: 870–947.
5. WinklerDT, FluriF, FuhrP, et al. (2009). Thrombolysis in stroke mimics: frequency, clinical characteristics, and outcome. Stroke 40: 1522–1525.
6. ScottPA, SilbergleitR (2003). Misdiagnosis of stroke in tissue plasminogen activator-treated patients: characteristics and outcomes. Ann Emerg Med 42: 611–618.
7. ChernyshevOY, Martin-SchildS, AlbrightKC, BarretoA, et al. (2010). Safety of tPA in stroke mimics and neuroimaging – negative cerebral ischemia. Neurology 74: 1340–1345.
8. Cochrane MillerJ (2006). Neuroimaging for headaches. In LeeSI, ed. Radiology Rounds: A Newsletter for Referring Physicians. Massachusetts, MA: Massachusetts General Hospital, Department of Radiology, vol 4, issue 10.
9. GonzálezRG, CopenWA, SchaeferPW, et al. (2013). The Massachusetts General Hospital acute stroke imaging algorithm: an experience and evidence based approachJ NeuroInterventional Surg 5: i7–i12.
10. NoguchiK, OgawaT, InugamiA, et al. (1995). Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 196: 773–777.
11. SamesTA, StorrowAB, FinkelsteinJA, MagoonMR (1996). Sensitivity of new-generation computed tomography in subarachnoid hemorrhage. Acad Emerg Med 3: 16–20.
12. TomuraN, UemuraK, InugamiA, et al. (1988). Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology 168: 463–467.
13. TruwitCL, BarkovichAJ, Gean-MartonA, HibriN, NormanD (1990). Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology 176: 801–806.
14. von KummerR, Meyding-LamadeU, ForstingM, et al. (1994). Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR 15: 9–15.
15. MoulinT, CattinF, Crépin-LeblondT, et al. (1996). Early CT signs in acute middle cerebral artery infarction: predictive value for subsequent infarct locations and outcome. Neurology 47: 366–375.
16. MannoEM, NicholsDA, FulghamJR, WijdicksEF (2003). Computed tomographic determinants of neurologic deterioration in patients with large middle cerebral artery infarctions. Mayo Clin Proc 78: 156–160.
17. SmithWS, TsaoJW, BillingsME, et al. (2006). Prognostic significance of angiographically confirmed large vessel intracranial occlusion in patients presenting with acute brain ischemia. Neurocrit Care 4: 14–17.
18. TomsickT, BrottT, BarsanW, et al. (1996). Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. AJNR 17: 79–85.
19. FlackeS, UrbachH, KellerE, et al. (2000). Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 215: 476–482.
20. BarberPA, DemchukAM, HudonME, et al. (2001). Hyperdense sylvian fissure MCA “dot” sign: a CT marker of acute ischemia. Stroke 32: 84–88.
21. LearyMC, KidwellCS, VillablancaJP, et al. (2003). Validation of computed tomographic middle cerebral artery “dot” sign: an angiographic correlation study. Stroke 34: 2636–2640.
22. ArnoldM, NedeltchevK, SchrothG, et al. (2004). Clinical and radiological predictors of recanalisation and outcome of 40 patients with acute basilar artery occlusion treated with intra-arterial thrombolysis. J Neurol Neurosurg Psychiatr 75: 857–862.
23. GoldmakherGV, CamargoEC, FurieKL, et al. (2009). Hyperdense basilar artery sign on unenhanced CT predicts thrombus and outcome in acute posterior circulation stroke. Stroke 40: 134–139.
24. DemchukAM, HillMD, BarberPA, et al; National Institute of Neurological Disorders and Stroke rtPA Stroke Study Group, NIH (2005). Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA Stroke Study. Stroke 36: 2110–2115.
25. DzialowskiI, HillMD, CouttsSB, et al. (2006). Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke 37: 973–978.
26. PatelSC, LevineSR, TilleyBC, et al; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, NIH (2001). Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA 286: 2830–2838.
27. KidwellCS, AlgerJR, Di SalleF, et al. (1999). Diffusion MRI in patients with transient ischemic attacks. Stroke 30: 1174–1180.
28. von KummerR, BourquainH, BastianelloS, et al. (2001). Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 219: 95–100.
29. The European Stroke Organisation (ESO) Executive Committee and the ESO Writing Committee (2008). Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 25: 457–507.
30. LarrueV, von KummerR, del ZoppoG, BluhmkiE (1997). Hemorrhagic transformation in acute ischemic stroke: potential contributing factors in the European Cooperative Acute Stroke Study. Stroke 28: 957–960.
31. KastrupO, WankeI, MaschkeM (2005). Neuroimaging of infections. NeuroRx: 2: 324–332.
32. MohrJP, BillerJ, HilalSK, et al. (1995). Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26: 807–812.
33. BarberPA, DarbyDG, DesmondPM, et al. (1999). Identification of major ischemic change: diffusion-weighted imaging versus computed tomography. Stroke 30: 2059–2065.
34. FiebachJB, SchellingerPD, JansenO, et al. (2002). CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33: 2206–2210.
35. GonzálezRG, SchaeferPW, BuonannoFS, et al. (1999). Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210: 155–162.
36. AyH, BuonannoFS, RordorfG, et al. (1999). Normal diffusion-weighted MRI during stroke-like deficits. Neurology 52: 1784–1792.
37. BarberPA, DarbyDG, DesmondPM, et al. (1998). Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 51: 418–426.
38. LeeLJ, KidwellCS, AlgerJ, StarkmanS, SaverJL (2000). Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 31: 1081–1089.
39. LövbladKO, LaubachHJ, BairdAE, et al. (1998). Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR 19: 1061–1066.
40. LutsepHL, AlbersGW, DeCrespignyA, et al. (1997). Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41: 574–580.
41. van EverdingenKJ, van der GrondJ, KappelleLJ, RamosLM, MaliWP (1998). Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 29: 1783–1790.
42. WarachS, ChienD, LiW, RonthalM, EdelmanRR (1992). Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42: 1717–1723.
43. AlbersGW, LansbergMG, NorbashAM, et al. (2000). Yield of diffusion-weighted MRI for detection of potentially relevant findings in stroke patients. Neurology 54: 1562–1567.
44. BryanRN, LevyLM, WhitlowWD, et al. (1991). Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJNRl 12: 611–620.
45. PerkinsCJ, KahyaE, RoqueCT, RochePE, NewmanGC (2001). Fluid-attenuated inversion recovery and diffusion- and perfusion-weighted MRI abnormalities in 117 consecutive patients with stroke symptoms. Stroke 32: 2774–2781.
46. WienerJI, KingJT Jr., MooreJR, LewinJS (2001). The value of diffusion-weighted imaging for prediction of lasting deficit in acute stroke: an analysis of 134 patients with acute neurologic deficits. Neuroradiology 43: 435–441.
47. ArauzA, MurilloL, CantúC, BarinagarrementeriaF, HigueraJ (2003). Prospective study of single and multiple lacunar infarcts using magnetic resonance imaging: risk factors, recurrence, and outcome in 175 consecutive cases. Stroke 34: 2453–2458.
48. AyH, Oliveira-FilhoJ, BuonannoFS, et al. (1999). Diffusion-weighted imaging identifies a subset of lacunar infarction associated with embolic source. Stroke 30: 2644–2650.
49. BairdAE, LövbladKO, SchlaugG, EdelmanRR, WarachS (2000). Multiple acute stroke syndrome: marker of embolic disease?Neurology 54: 674–678.
50. CasoV, BudakK, GeorgiadisD, SchuknechtB, BaumgartnerRW (2005). Clinical significance of detection of multiple acute brain infarcts on diffusion weighted magnetic resonance imaging. J Neurol Neurosurg Psychiatr 76: 514–518.
51. EtgenT, Gräfin von EinsiedelH, RöttingerM, et al. (2004). Detection of acute brainstem infarction by using DWI/MRI. Eur Neurol 52: 145–150.
52. GerratyRP, ParsonsMW, BarberPA, et al. (2002). Examining the lacunar hypothesis with diffusion and perfusion magnetic resonance imaging. Stroke 33: 2019–2024.
53. KeirSL, WardlawJM, BastinME, DennisMS (2004). In which patients is diffusion-weighted magnetic resonance imaging most useful in routine stroke care?J Neuroimaging 14: 118–122.
54. MullinsME, SchaeferPW, SorensenAG, et al. (2002). CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224: 353–360.
55. SeifertT, EnzingerC, StorchMK, et al. (2005). Acute small subcortical infarctions on diffusion weighted MRI: clinical presentation and aetiology. J Neurol Neurosurg Psychiatr 76: 1520–1524.
56. TakahashiK, KobayashiS, MatuiR, YamaguchiS, YamashitaK (2002). The differences of clinical parameters between small multiple ischemic lesions and single lesion detected by diffusion-weighted MRI. Acta Neurol Scand 106: 24–29.
57. WesselsT, RöttgerC, JaussM, et al. (2005). Identification of embolic stroke patterns by diffusion-weighted MRI in clinically defined lacunar stroke syndromes. Stroke 36: 757–761.
58. WitykRJ, GoldsboroughMA, HillisA, et al. (2001). Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery. Arch Neurol 58: 571–576.
59. BradleyWG Jr., SchmidtPG (1985). Effect of methemoglobin formation on the MR appearance of subarachnoid hemorrhage. Radiology 156: 99–103.
60. EdelmanRR, JohnsonK, BuxtonR, et al. (1986). MR of hemorrhage: a new approach. AJNR 7: 751–756.
61. GomoriJM, GrossmanRI, GoldbergHI, ZimmermanRA, BilaniukLT (1985). Intracranial hematomas: imaging by high-field MR. Radiology 157: 87–93.
62. HaymanLA, TaberKH, FordJJ, BryanRN (1991). Mechanisms of MR signal alteration by acute intracerebral blood: old concepts and new theories. AJNR 12: 899–907.
63. KidwellCS, ChalelaJA, SaverJL, et al. (2004). Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292: 1823–1830.
64. LinfanteI, LlinasRH, CaplanLR, WarachS (1999). MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 30: 2263–2267.
65. PatelMR, EdelmanRR, WarachS (1996). Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 27: 2321–2324.
66. SchellingerPD, JansenO, FiebachJB, HackeW, SartorK (1999). A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 30: 765–768.
67. FiebachJB, SchellingerPD, GassA, et al (2004). Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35: 502–506.
68. ChalelaJA, KangDW, WarachS (2004). Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimaging 14: 54–57.
69. KidwellCS, SaverJL, VillablancaJP, et al. (2002). Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 33: 95–98.
70. WongKS, ChanYL, LiuJY, GaoS, LamWW (2003). Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 60: 511–513.
71. KakudaW, ThijsVN, LansbergMG, et al; DEFUSE Investigators (2005). Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology 65: 1175–1178.
72. KharitonovaT, ThorénM, AhmedN, et al; SITS investigators (2009). Disappearing hyperdense middle cerebral artery sign in ischaemic stroke patients treated with intravenous thrombolysis: clinical course and prognostic significance. J Neurol Neurosurg Psychiatr 80: 273–278.
73. LinfanteI, LlinasRH, SelimM, et al. (2002). Clinical and vascular outcome in internal carotid artery versus middle cerebral artery occlusions after intravenous tissue plasminogen activator. Stroke 33: 2066–2071.
74. ManelfeC, LarrueV, von KummerR, et al. (1999). Association of hyperdense middle cerebral artery sign with clinical outcome in patients treated with tissue plasminogen activator. Stroke 30: 769–772.
75. TanIY, DemchukAM, HopyanJ, et al. (2009). CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR 30: 525–531.
76. NicholsC, KhouryJ, BrottT, BroderickJ (2008). Intravenous recombinant tissue plasminogen activator improves arterial recanalization rates and reduces infarct volumes in patients with hyperdense artery sign on baseline computed tomography. J Stroke Cerebrovasc Dis 17: 64–68.
77. LevMH, FarkasJ, RodriguezVR, et al. (2001). CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25: 520–528.
78. LinK, RapalinoO, LawM, et al. (2008). Accuracy of the Alberta Stroke Program Early CT Score during the first 3 hours of middle cerebral artery stroke: comparison of noncontrast CT, CT angiography source images, and CT perfusion. AJNR 29: 931–936.
79. RyooJW, NaDG, KimSS, et al. (2004). Malignant middle cerebral artery infarction in hyperacute ischemic stroke: evaluation with multiphasic perfusion computed tomography maps. J Comput Assist Tomogr 28: 55–62.
80. MattleHP, ArnoldM, GeorgiadisD, et al. (2008). Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign. Stroke 39: 379–383.
81. ZaidatOO, SuarezJI, SantillanC, et al. (2002). Response to intra-arterial and combined intravenous and intra-arterial thrombolytic therapy in patients with distal internal carotid artery occlusion. Stroke 33: 1821–1826.
82. SimsJR, RordorfG, SmithEE, et al. (2005). Arterial occlusion revealed by CT angiography predicts NIH stroke score and acute outcomes after IV tPA treatment. AJNR 26: 246–251.
83. CouttsSB, LevMH, EliasziwM, et al. (2004). ASPECTS on CTA source images versus unenhanced CT: added value in predicting final infarct extent and clinical outcome. Stroke 35: 2472–2476.
84. Torres-MozquedaF, HeJ, YehIB, et al. (2008). An acute ischemic stroke classification instrument that includes CT or MR angiography: the Boston Acute Stroke Imaging Scale. AJNR 29: 1111–1117.
85. FurlanA, HigashidaR, WechslerL, et al. (1999). Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism. JAMA 282: 2003–2011.
86. HackeW, KasteM, BluhmkiE, et al. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359: 1317–1329.
87. EastonJD, SaverJL, AlbersGW, et al. (2009). Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. Stroke 40: 2276–2293.
88. AdamsRJ, AlbersG, AlbertsMJ, et al. (2008). Update to the AHA/ASA recommendations for the prevention of stroke in patients with stroke and transient ischemic attack [published correction appears in Stroke 2010;41:e455]. Stroke 39: 1647–1652.
89. BuskensE, NederkoornPJ, Buijs-Van Der WoudeT, et al. (2004). Imaging of carotid arteries in symptomatic patients: cost-effectiveness of diagnostic strategies. Radiology 233: 101–112.
90. LovettJK, DennisMS, SandercockPA, et al. (2003). Very early risk of stroke after a first transient ischemic attack. Stroke 34: e138–e140.
91. RothwellPM, GilesMF, FlossmannE, et al. (2005). A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet 366: 29–36.
92. CarrollBA (1989). Duplex sonography in patients with hemispheric symptoms. J Ultrasound Med 8: 535–540.
93. AlexandrovAV, BrodieDS, McLeanA, et al. (1997). Correlation of peak systolic velocity and angiographic measurement of carotid stenosis revisited. Stroke 28: 339–342.
94. RankeC, TrappeHJ (1997). Blood flow velocity measurements for carotid stenosis estimation: interobserver variation and interequipment variability. VASA 26: 210–214.
95. CurleyPJ, NorrieL, NicholsonA, GallowayJM, WilkinsonAR (1998). Accuracy of carotid duplex is laboratory specific and must be determined by internal audit. Eur J Vasc Endovasc Surg 15: 511–514.
96. KuntzKM, PolakJF, WhittemoreAD, SkillmanJJ, KentKC (1997). Duplex ultrasound criteria for the identification of carotid stenosis should be laboratory specific. Stroke 28: 597–602.
97. BlakeleyDD, OddoneEZ, HasselbladV, SimelDL, MatcharDB (1995). Noninvasive carotid artery testing: a meta-analytic review. Ann Intern Med 122: 360–367.
98. LongA, LepoutreA, CorbillonE, BranchereauA (2002). Critical review of non- or minimally invasive methods (duplex ultrasonography, MR- and CT-angiography) for evaluating stenosis of the proximal internal carotid artery. Eur J Vasc Endovasc Surg 24: 43–52.
99. NederkoornPJ, ElgersmaOE, van der GraafY, et al. (2003). Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology 228: 677–682.
100. BabikianVL, PochayV, BurdetteDE, BrassML (1991). Transcranial Doppler sonographic monitoring in the intensive care unit. J Intensive Care Med 6: 36–44.
101. NewellDW, AaslidR (1992). Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev 4: 122–143.
102. NowakA, KacinskiM (2009). Transcranial Doppler evaluation in migraineurs. Neurol Neurochir Pol 43: 162–172.
103. BaumgartnerRW, MattleHP, AaslidR (1995). Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography: methods, applications, advantages, and limitations. J Clin Ultrasound 23: 89–111.
104. de BrayJM, JosephPA, JeanvoineH, et al. (1988). Transcranial Doppler evaluation of middle cerebral artery stenosis. J Ultrasound Med 7: 611–616.
105. DemchukAM, ChristouI, WeinTH, et al. (2000). Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 10: 1–12.
106. RorickMB, NicholsFT, AdamsRJ (1994). Transcranial Doppler correlation with angiography in detection of intracranial stenosis. Stroke 25: 1931–1934.
107. SloanMA, AlexandrovAV, TegelerCH, et al. (2004). Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 62: 1468–1481.
108. WongKS, LiH, LamWW, ChanYL, KayR (2002). Progression of middle cerebral artery occlusive disease and its relationship with further vascular events after stroke. Stroke 33: 532–536.
109. ZanetteEM, FieschiC, BozzaoL, et al. (1989). Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke 20: 899–903.
110. FeldmannE, WilterdinkJL, KosinskiA, et al. (2007). The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. Neurology 68: 2099–2106.
111. AlexandrovAV, MolinaCA, GrottaJC, et al. (2004). Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 351: 2170–2178.
112. SaqqurM, UchinoK, DemchukAM, et al. (2007). Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 38: 948–954.
113. ChristouI, AlexandrovAV, BurginWS, et al. (2000). Timing of recanalization after tissue plasminogen activator therapy determined by transcranial Doppler correlates with clinical recovery from ischemic stroke. Stroke 31: 1812–1816.
114. DemchukAM, BurginWS, ChristouI, et al. (2001). Thrombolysis In Brain Ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke 32: 89–93.
115. ImrayCH, TiivasCA (2005). Are some strokes preventable? The potential role of transcranial Doppler in transient ischaemic attacks of carotid origin. Lancet Neurol 4: 580–586.
116. MarkusHS, DrosteDW, KapsM, et al. (2005). Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 111: 2233–2240.
117. PoppertH, SadikovicS, SanderK, WolfO, SanderD (2006). Embolic signals in unselected stroke patients: prevalence and diagnostic benefit. Stroke 37: 2039–2043.
118. GoutmanSA, KatzanIL, GuptaR (2012). Transcranial Doppler with bubble study as a method to detect extracardiac right-to-left shunts in patients with ischemic stroke. J Neuroimaging Aug 28. doi:10.1111/j.1552-6569.2012.00738.x. [Epub ahead of print]
119. EstebanJM, CerveraV (2004). Perfusion CT and angio CT in the assessment of acute stroke. Neuroradiology 46: 705–715.
120. BashS, VillablancaJP, JahanR, et al. (2005). Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR 26: 1012–1021.
121. GrafJ, SkuttaB, KuhnFP, FerbertA (2000). Computed tomographic angiography findings in 103 patients following vascular events in the posterior circulation: potential and clinical relevance. J Neurol 247: 760–766.
122. MollR, DinkelHP (2001). Value of the CT angiography in the diagnosis of common carotid artery bifurcation disease: CT angiography versus digital subtraction angiography and color flow Doppler. Eur J Radiol 39: 155–162.
123. SuwanwelaNC, PhanthumchindaK, SuwanwelaN (2002). Transcranial Doppler sonography and CT angiography in patients with atherothrombotic middle cerebral artery stroke. AJNR 23: 1352–1355.
124. Nguyen-HuynhMN, WintermarkM, EnglishJ, et al. (2008). How accurate is CT angiography in evaluating intracranial atherosclerotic disease?Stroke 39: 1184–1188.
125. HiraiT, KorogiY, OnoK, et al. (2002). Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR 23: 93–101.
126. LevMH, SegalAZ, FarkasJ, et al. (2001). Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32: 2021–2028.
127. SkuttaB, FürstG, EilersJ, FerbertA, KuhnFP (1999). Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography. AJNR 20: 791–799.
128. LubezkyN, FajerS, BarmeirE, KarmeliR (1998). Duplex scanning and CT angiography in the diagnosis of carotid artery occlusion: a prospective study. Eur J Vasc Endovasc Surg 16: 133–136.
129. GladstoneDJ, KapralMK, FangJ, LaupacisA, TuJV (2004). Management and outcomes of transient ischemic attacks in Ontario. CMAJ 170: 1099–1104.
130. AndersonGB, AshforthR, SteinkeDE, FerdinandyR, FindlayJM (2000). CT angiography for the detection and characterization of carotid artery bifurcation disease. Stroke 31: 2168–2174.
131. BergMH, ManninenHI, RäsänenHT, VanninenRL, JaakkolaPA (2002). CT angiography in the assessment of carotid artery atherosclerosis. Acta Radiol 43: 116–124.
132. LeclercX, GodefroyO, LucasC, et al. (1999). Internal carotid arterial stenosis: CT angiography with volume rendering. Radiology 210: 673–682.
133. RandouxB, MarroB, KoskasF, et al. (2001). Carotid artery stenosis: prospective comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Radiology 220: 179–185.
134. SchellingerPD, JansenO, FiebachJB, et al. (2000). Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. AJNR 21: 1184–1189.
135. YucelEK, AndersonCM, EdelmanRR, et al. (1999). AHA scientific statement: magnetic resonance angiography: update on applications for extracranial arteries. Circulation 100: 2284–2301.
136. QureshiAI, IsaA, CinnamonJ, et al. (1998). Magnetic resonance angiography in patients with brain infarction. J Neuroimaging 8: 65–70.
137. CosottiniM, PingitoreA, PuglioliM, et al. (2003) Contrast-enhanced three-dimensional magnetic resonance angiography of atherosclerotic internal carotid stenosis as the noninvasive imaging modality in revascularization decision making. Stroke 34: 660–664.
138. GoyalM, NicolJ, GandhiD (2004). Evaluation of carotid artery stenosis: contrast-enhanced magnetic resonance angiography compared with conventional digital subtraction angiography. Can Assoc Radiol J 55: 111–119.
139. HustonJ 3rd., FainSB, WaldJT, et al. (2001). Carotid artery: elliptic centric contrast-enhanced MR angiography compared with conventional angiography. Radiology 218: 138–143.
140. RemondaL, HeidO, SchrothG (1998). Carotid artery stenosis, occlusion, and pseudo-occlusion: first-pass, gadolinium-enhanced, three-dimensional MR angiography: preliminary study. Radiology 209: 95–102.
141. SerfatyJM, ChirosselP, ChevallierJM, et al. (2000). Accuracy of three-dimensional gadolinium-enhanced MR angiography in the assessment of extracranial carotid artery disease. AJR 175: 455–463.
142. WestwoodME, KellyS, BerryE, et al. (2002). Use of magnetic resonance angiography to select candidates with recently symptomatic carotid stenosis for surgery: systematic review. BMJ 324: 198.
143. BerlettiR, CavagnaE, CiminiN, MorettoG, SchiavonF (2002). Dissection of epiaortic vessels: clinical appearance and potentiality of imaging techniques [in English, Italian]. Radiol Med 107: 35–46.
144. CliftonAG (2000). MR angiography. Br Med Bull 56: 367–377.
145. PatelMR, EdelmanRR (1996). MR angiography of the head and neck. Top Magn Reson Imaging 8: 345–365.
146. PhanT, HustonJ 3rd., BernsteinMA, RiedererSJ, BrownRD Jr (2001). Contrast-enhanced magnetic resonance angiography of the cervical vessels: experience with 422 patients. Stroke 32: 2282–2286.
147. OkumuraA, ArakiY, NishimuraY, et al. (2001). The clinical utility of contrast-enhanced 3D MR angiography for cerebrovascular disease. Neurol Res 23: 767–771.
148. GelalFM, KitisO, CalliC, et al. (2004). Craniocervical artery dissection: diagnosis and follow-up with MR imaging and MR angiography. Med Sci Monit 10: MT109–MT116.b
149. KellerE, FlackeS, GiesekeJ, et al. (1997). Craniocervical dissections: study strategies in MR imaging and MR angiography [in German]. Rofo 167: 565–571.
150. BarrJD (2004). Cerebral angiography in the assessment of acute cerebral ischemia: guidelines and recommendations. J Vasc Interv Radiol 15: S57–S66.
151. CitronSJ, WallaceRC, LewisCA, et al. (2003). Quality improvement guidelines for adult diagnostic neuroangiography: cooperative study between ASITN, ASNR, and SIR [republished from AJNR 2000; 21: 146–150 and J Vasc Interv Radiol 2000 11: 129–134]. J Vasc Interv Radiol 14: S257–S262.
152. CulebrasA, KaseCS, MasdeuJC, et al. (1997). Practice guidelines for the use of imaging in transient ischemic attacks and acute stroke: a report of the Stroke Council, American Heart Association. Stroke 28: 1480–1497.
153. RäsänenHT, ManninenHI, VanninenRL, et al. (1999). Mild carotid artery atherosclerosis: assessment by 3-dimensional time-of-flight magnetic resonance angiography, with reference to intravascular ultrasound imaging and contrast angiography. Stroke 30: 827–833.
154. SchenkEA, BondMG, AretzTH, et al. (1988). Multicenter validation study of real-time ultrasonography, arteriography, and pathology: pathologic evaluation of carotid endarterectomy specimens. Stroke 19: 289–296.
155. TrystramD, DormontD, Gobin MetteilMP, Iancu GontardD, MederJF (2002). Imaging of cervical arterial dissections: multi-center study and review of the literature [in French]. J Neuroradiol 29: 257–263.
156. WarrenDJ, HoggardN, WaltonL, et al. (2001). Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery 48: 973–982.
157. HankeyGJ, WarlowCP, SellarRJ (1990). Cerebral angiographic risk in mild cerebrovascular disease. Stroke 21: 209–222.
158. KaufmannTJ, HustonJ 3rd., MandrekarJN, et al. (2007). Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243: 812–819.
159. WillinskyRA, TaylorSM, TerBruggeK, et al. (2003). Neurologic complications of cerebral angiography: prospective analysis of 2, 899 procedures and review of the literature. Radiology 227: 522–528.
160. JohnstonDC, GoldsteinLB (2001). Clinical carotid endarterectomy decision making: noninvasive vascular imaging versus angiography. Neurology 56: 1009–1015.
161. NederkoornPJ, MaliWP, EikelboomBC, et al. (2002). Preoperative diagnosis of carotid artery stenosis: accuracy of noninvasive testing. Stroke 33: 2003–2008.
162. FlisCM, JägerHR, SidhuPS (2007). Carotid and vertebral artery dissections: clinical aspects, imaging features and endovascular treatment. Eur Radiol 17: 820–834.
163. GoyalMS, DerdeynCP (2009). The diagnosis and management of supraaortic arterial dissections. Curr Opin Neurol 22: 80–89.
164. LevMH, RomeroJM, GoodmanDN, et al. (2003). Total occlusion versus hairline residual lumen of the internal carotid arteries: accuracy of single section helical CT angiography. AJNR 24: 1123–1129.
165. KoroshetzWJ, GonzalezG. (1997). Diffusion-weighted MRI: An ECG for “Brain Attack” (editorial, comment). Annals Neurol 41:565–6.
166. SchrammP, SchellingerPD, KlotzE, et al. (2004). Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 35: 1652–1658.
167. AgarwalP, KumarS, HariharanS, et al. (2004) Hyperdense middle cerebral artery sign: can it be used to select intra-arterial versus intravenous thrombolysis in acute ischemic stroke?Cerebrovasc Dis 17: 182–190.
168. BendszusM, UrbachH, RiesF, SolymosiL (1998). Outcome after local intra-arterial fibrinolysis compared with the natural course of patients with a dense middle cerebral artery on early CT. Neuroradiology 40: 54–58.
169. DittrichR, KloskaSP, FischerT, et al. (2008). Accuracy of perfusion-CT in predicting malignant middle cerebral artery brain infarction. J Neurol 255: 896–902.
170. KakudaW, HamiltonS, ThijsVN, et al. (2008). Optimal outcome measures for detecting clinical benefits of early reperfusion: insights from the DEFUSE Study. J Stroke Cerebrovasc Dis 17: 235–240.
171. OlivotJM, MlynashM, ThijsVN, et al. (2008). Relationships between infarct growth, clinical outcome, and early recanalization in diffusion and perfusion imaging for understanding stroke evolution (DEFUSE). Stroke 39: 2257–2263.
172. ThomallaG, SchwarkC, SobeskyJ, et al. (2006). Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke 37: 852–858.
173. WarachS (2001). New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57: S48–S52.
174. WarachS (2003). Measurement of the ischemic penumbra with MRI: it’s about time. Stroke 34: 2533–2534.
175. WintermarkM, AlbersGW, AlexandrovAV, et al. (2008). Acute stroke imaging research roadmap. Stroke 39: 1621–1628.
176. AlbersGW, ThijsVN, WechslerL, et al. (2006). Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke evolution (DEFUSE) study. Ann Neurol 60: 508–517.
177. DavisSM, DonnanGA, ParsonsMW, et al. (2008). Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7: 299–309.
178. FurlanAJ, EydingD, AlbersGW, et al. (2006). Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37: 1227–1231.
179. GrottaJ (2002). Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke 33: 306–307.
180. HackeW, AlbersG, Al-RawiY, et al. (2005). The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36: 66–73.
181. BairdAE, BenfieldA, SchlaugG, et al. (1997). Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 41: 581–589.
182. BeaulieuC, de CrespignyA, TongDC, et al. (1999). Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46: 568–578.
183. TongDC, YenariMA, AlbersGW, et al. (1998). Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (< 6.5 hour) ischemic stroke. Neurology 50: 864–870.
184. ArakawaS, WrightPM, KogaM, et al. (2006). Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke 37: 1211–1216.
185. SchaeferPW, RoccatagliataL, LedezmaC, et al. (2006). First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. AJNR 27: 20–25.
186. SobeskyJ, Zaro WeberO, LehnhardtFG, et al. (2005). Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 36: 980–985.
187. WintermarkM, FlandersAE, VelthuisB, et al. (2006). Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37: 979–985.
188. GleasonS, FurieKL, LevMH, et al. (2001). Potential influence of acute CT on inpatient costs in patients with ischemic stroke. Acad Radiol 8: 955–964.
189. SmithWS, RobertsHC, ChuangNA, et al. (2003). Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR 24: 688–690.
190. JosephsonSA, DillonWP, SmithWS (2005). Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. Neurology 64: 1805–1806.
191. AspelinP, AubryP, FranssonSG, et al.; Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators (2003). Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348: 491–499.
192. RudnickMR, GoldfarbS (2003). Pathogenesis of contrast-induced nephropathy: experimental and clinical observations with an emphasis on the role of osmolality. Rev Cardiovasc Med 4: S28–S33.
193. KrolAL, DzialowskiI, RoyJ, et al. (2007). Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography [correction appears in Stroke 2007; 38: e97]. Stroke 38: 2364–2366.
194. WintermarkM, ReichhartM, CuisenaireO, et al. (2002). Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33: 2025–2031.
195. WintermarkM, ReichhartM, ThiranJP, et al. (2002). Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51: 417–432.
196. RobertsHC, RobertsTP, SmithWS, et al. (2001). Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. AJNR 22: 1077–1080.
197. KribbenA, WitzkeO, HillenU, et al. (2009). Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol 53: 1621–1628.
198. Perez-RodriguezJ, LaiS, EhstBD, FineDM, BluemkeDA (2009). Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment: report of 33 cases. Radiology 250: 371–377.
199. KarnikR, StelzerP, SlanyJ (1992). Transcranial Doppler sonography monitoring of local intra-arterial thrombolysis in acute occlusion of the middle cerebral artery. Stroke 23: 284–287.
200. ButcherK, ParsonsM, AllportL, et al. (2008). Rapid assessment of perfusion–diffusion mismatch. Stroke 39: 75–81.
201. ButcherKS, LeeSB, ParsonsMW, et al. (2007). Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke. Stroke 38: 941–947.
202. HackeW, FurlanAJ, Al-RawiY, et al. (2009). Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8: 141–150.