Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:17:10.648Z Has data issue: false hasContentIssue false

9 - Chronic myeloproliferative disorders and systemic mastocytosis

Published online by Cambridge University Press:  07 August 2009

Attilio Orazi
Affiliation:
Indiana University
Dennis P. O'Malley
Affiliation:
Indiana University
Daniel A. Arber
Affiliation:
Stanford University, California
Get access

Summary

Introduction

The chronic myeloproliferative disorders (CMPD) are a clinically heterogeneous group of clonal proliferations of stem cell origin characterized, at least initially, by marrow hypercellularity with varying degrees of marrow fibrosis and an increase in the production of one or more terminally differentiated cell types (George & Arber, 2003). These differentiated elements may accumulate in the marrow, in peripheral blood, and in other organs (e.g., spleen). All types of CMPD have a variable tendency to undergo disease progression that may terminate in bone marrow failure due to myelofibrosis or in transformation to an acute leukemic phase, occasionally preceded by a brief myelodysplastic phase. In CMPD, a definite diagnosis usually cannot be made by morphologic examination alone (Anastasi & Vardiman, 2000). The evaluation of bone marrow histology, however, holds an important role in confirming the diagnosis and excluding unsuspected pathology. Expert opinion should be sought if bone marrow histology is to be used as a major diagnostic criterion, since the changes which are specifically associated with the various subtypes of CMPD (see later) are often subtle and difficult to recognize in morphologically less-than-optimal processed samples. This greatly reduces the value of bone marrow histopathology in inexperienced hands (Pearson, 2001).

Classification of these disorders benefits from the integration of morphologic features with clinical, hematologic, and cytogenetic findings (Harris et al., 1999). Of major importance is the presence or absence of the Philadelphia chromosome (BCR/ABL or translocation 9;22), the defining feature of chronic myelogenous leukemia (CML).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altura, R. A., Head, D. R., & Wang, W. C. (2000). Long-term survival of infants with idiopathic myelofibrosis. British Journal of Haematology, 109, 459–62.CrossRefGoogle ScholarPubMed
Anastasi, J. & Vardiman, J. W. (2000). Chronic myelogenous leukemia and the myeloproliferative disorders. In Neoplastic Hematopathology, ed. Knowles, D. M., 2nd edn. Baltimore: Williams & Wilkins, pp. 1745–60.Google Scholar
Anastasi, J., Musvee, T., Roulston, D., Domer, P. H., Larson, R. A., & Vardiman, J. W. (1998). Pseudo-Gaucher histiocytes identified up to 1 year after transplantation for CML are BCR/ABL-positive. Leukemia, 12, 233–7.CrossRefGoogle ScholarPubMed
Bain, B. J. (1996). Eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. British Journal of Haematology, 95, 2–9.Google ScholarPubMed
Banavali, S., Silvestri, F., Hulette, B., et al. (1991). Expression of hematopoietic progenitor cell associated antigen CD34 in chronic myeloid leukemia. Leukemia Research, 15, 603–8.CrossRefGoogle ScholarPubMed
Barnes, D. J. & Melo, J. V. (2002). Cytogenetic and molecular genetic aspects of chronic myeloid leukemia. Acta Haematologica, 108, 180–202.CrossRefGoogle Scholar
Barosi, G., Ambrosetti, A., Finelli, C., et al. (1999). The Italian consensus conference on diagnostic criteria for myelofibrosis with myeloid metaplasia. British Journal of Haematology, 104, 730–7.CrossRefGoogle ScholarPubMed
Berkowicz, M., Rosner, E., Rechavi, G., et al. (1991). Atypical chronic myelomonocytic leukemia with eosinophilia and translocation (5;12): a new association. Cancer Genetics and Cytogenetics, 51, 277–8.CrossRefGoogle ScholarPubMed
Besses, C., Cervantes, F., Pereira, A., et al. (1999). Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia, 13, 150–4.CrossRefGoogle Scholar
Buckley, M. G., McEuen, A. R., & Walls, A. F. (1999). The detection of mast cell subpopulations in formalin-fixed human tissues using a new monoclonal antibody specific for chymase. Journal of Pathology, 189, 138–43.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Cervantes, F., Villamor, N., Esteve, J., et al. (1998). “Lymphoid” blast crisis of chronic myeloid leukaemia is associated with distinct clinicohaematological features. British Journal of Haematology, 100, 123–8.CrossRefGoogle ScholarPubMed
Cools, J., DeAngelo, D. J., Gotlib, J., et al. (2003). A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. New England Journal of Medicine, 348, 1201–14.CrossRefGoogle ScholarPubMed
Dewald, G. W. & Wright, P. I. (1995). Chromosome abnormalities in the myeloproliferative disorders. Seminars in Oncology, 22, 341–54.Google ScholarPubMed
Dupriez, B., Morel, P., Demory, J. L., et al. (1996). Prognostic factors in agnogenic myeloid metaplasia: a report of 195 cases with a new scoring system. Blood, 88, 1013–8.Google ScholarPubMed
Escribano, L., Orfao, A., Villarrubia, J., et al. (1997). Sequential immunophenotypic analysis of mast cells in a case of systemic mast cell disease evolving to a mast cell leukemia. Cytometry, 30, 98–102.3.0.CO;2-9>CrossRefGoogle Scholar
Facchetti, F., Tironi, A., Marocolo, D., et al. (1997). Histopathological changes in bone marrow biopsies from patients with chronic myeloid leukaemia after treatment with recombinant alpha-interferon. Histopathology, 31, 3–11.CrossRefGoogle ScholarPubMed
Gale, R. E. (2003). Pathogenic markers in essential thrombocythemia. Current Hematology Reports, 2, 242–7.Google ScholarPubMed
George, T. I. & Arber, D. A. (2003). Pathology of the myeloproliferative diseases. Hematology/Oncology Clinics of North America, 17, 1101–27.CrossRefGoogle ScholarPubMed
Guyotat, D., Campos, L., Thomas, X., et al. (1990). Myelodysplastic syndromes: a study of surface markers and in vitro growth patterns. American Journal of Hematology, 34, 26–31.CrossRefGoogle ScholarPubMed
Hamazaki, M. & Mugishima, H. (1981). Agnogenic myelofibrosis in children: a case report and review of the literature. Acta Pathologica Japonica, 31, 143–52.Google ScholarPubMed
Harris, N. L., Jaffe, E. S., Diebold, J., et al. (1999). The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Annals of Oncology, 10, 1419–32.CrossRefGoogle Scholar
Harrison, C. N., Gale, R. E., Machin, S. J., & Linch, D. C. (1999). A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood, 93, 417–24.Google Scholar
Horny, H. P., Ruck, P., Krober, S., & Kaiserling, E. (1997). Systemic mast cell disease (mastocytosis): general aspects and histopathological diagnosis. Histology and Histopathology, 12, 1081–9.Google ScholarPubMed
Horny, H. P., Sillaber, C., Menke, D., et al. (1998). Diagnostic value of immunostaining for tryptase in patients with mastocytosis. American Journal of Surgical Pathology, 22, 1132–40.CrossRefGoogle ScholarPubMed
Horny, H. P., Sotlar, K., Sperr, W. R., & Valent, P. (2004). Systemic mastocytosis with associated clonal haematological non mast cell lineage disease: a histopathological challenge. Journal of Clinical Pathology, 57, 604–8.CrossRefGoogle ScholarPubMed
Huang, T. Y., Yam, L. T., & Li, C. Y. (1987). Radiological features of systemic mast-cell disease. British Journal of Radiology, 60, 765–70.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. (2001). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press.
Khalidi, H. S., Brynes, R. K., Medeiros, L. J., et al. (1998). The immunophenotype of blast transformation of chronic myelogenous leukemia: a high frequency of mixed lineage phenotype in “lymphoid” blasts and a comparison of morphologic, immunophenotypic, and molecular findings. Modern Pathology, 11, 1211–21.Google Scholar
LeBrun, D. P., Pinkerton, P. H., Sheridan, B. L., Chen-Lai, J., Dube, I. D., & Poldre, P. A. (1991). Essential thrombocythemia with the Philadelphia chromosome and BCR-ABL gene rearrangement: an entity distinct from chronic myeloid leukemia and Philadelphia chromosome-negative essential thrombocythemia. Cancer Genetics and Cytogenetics, 54, 21–5.CrossRefGoogle ScholarPubMed
Li, W. V., Kapadia, S. B., Sonmez-Alpan, E., & Swerdlow, S. H. (1996). Immunohistochemical characterization of mast cell disease in paraffin sections using tryptase, CD68, myeloperoxidase, lysozyme, and CD20 antibodies. Modern Pathology, 9, 982–8.Google ScholarPubMed
Macdonald, D., Aguiar, R. C., Mason, P. J., Goldman, J. M., & Cross, N. C. (1995). A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia, 9, 1628–30.Google ScholarPubMed
Manoharan, A. (1998). Idiopathic myelofibrosis: a clinical review. International Journal of Hematology, 68, 355–62.CrossRefGoogle ScholarPubMed
Melo, J. V. (1996). The molecular biology of chronic myeloid leukaemia. Leukemia, 10, 751–6.Google ScholarPubMed
Mesa, R. A., Silverstein, M. N., Jacobsen, S. J., Wollan, P. C., & Tefferi, A. (1999). Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted county study. American Journal of Hematology, 61, 10–15.3.0.CO;2-I>CrossRefGoogle Scholar
Mesa, R. A., Hanson, C. A., Rajkumar, S. V., Schroeder, G., & Tefferi, A. (2000). Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood, 15, 3374–80.Google Scholar
Mesa, R. A., Hanson, C. A., Li, C. Y., et al. (2002). Diagnostic and prognostic value of bone marrow angiogenesis and megakaryocyte c-Mpl expression in essential thrombocythemia. Blood, 99, 4131–7.CrossRefGoogle ScholarPubMed
Murphy, S. (1999). Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Seminars in Hematology, 36, 9–13.Google ScholarPubMed
Murphy, S., Peterson, P., Iland, H., & Laszlo, J. (1997). Experience of the Polycythemia Vera Study Group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Seminars in Hematology, 34, 29–39.Google Scholar
Nand, S., Stock, W., Godwin, J., & Fisher, S. G. (1996). Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. American Journal of Hematology, 52, 42–6.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Orazi, A. (1995). CD34 immunoperoxidase staining for the diagnosis of myelodysplastic syndromes and chronic myeloid leukaemia. Journal of Clinical Pathology, 48, 884.CrossRefGoogle Scholar
Orazi, A., Cattoretti, G., & Sozzi, G. (1989). A case of chronic neutrophilic leukemia with trisomy 8. Acta Haematologica, 81, 148–51.CrossRefGoogle ScholarPubMed
Orazi, A., Neiman, R. S., Cualing, H., Heerema, N. A., & John, K. (1994). CD34 immunostaining of bone marrow biopsy specimens is a reliable way to classify the phases of chronic myeloid leukemia. American Journal of Clinical Pathology, 101, 426–8.CrossRefGoogle ScholarPubMed
Orazi, A., Shendrik, I., Servida, P., & Ponzoni, M. (2001). Angiogenesis in agnogenic myeloid metaplasia. Modern Pathology, 14, 175A.Google Scholar
Pahl, H. L. (2003). PRV-1 mRNA expression and other molecular markers in polycythemia rubra vera. Current Hematology Reports, 2, 231–6.Google ScholarPubMed
Pane, F., Frigeri, F., Sindona, M., et al. (1996). Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood, 88, 2410–4.Google Scholar
Pardanani, A. D., Morice, W. G., Hoyer, J. D., & Tefferi, A. (2003a). Chronic basophilic leukemia: a distinct clinicopathologic entity. European Journal of Haematology, 71, 18–22.CrossRefGoogle Scholar
Pardanani, A. D., Reeder, T. L., Kimlinger, T. K., et al. (2003b). Flt-3 and c-kit mutation studies in a spectrum of chronic myeloid disorders including systemic mast cell disease. Leukemia Research, 27, 739–42.CrossRefGoogle Scholar
Pardanani, A. D., Kimlinger, T., Reeder, T., Li, C. Y., & Tefferi, A. (2004). Bone marrow mast cell immunophenotyping in adults with mast cell disease: a prospective study of 33 patients. Leukemia Research, 28, 777–83.CrossRefGoogle ScholarPubMed
Pearson, T. C. (2001). Evaluation of diagnostic criteria in polycythemia vera.Seminars in Hematology, 38 (1 Suppl. 2), 21–4.CrossRefGoogle ScholarPubMed
Prchal, J. T. (2001). Pathogenetic mechanisms of polycythemia vera and congenital polycythemic disorders. Seminars in Hematology, 38 (1 Suppl. 2), 10–20.CrossRefGoogle ScholarPubMed
Reilly, J. T., Snowden, J. A., Spearing, R. L., et al. (1997). Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. British Journal of Haematology, 98, 96–102.CrossRefGoogle ScholarPubMed
Reiter, A., Sohal, J., Kulkarni, S., et al. (1998). Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the (58;13)(p11;q12) myeloproliferative syndrome. Blood, 92, 1735–42.Google Scholar
Sekhar, M., Prentice, H. G., Popat, U., et al. (1996). Idiopathic myelofibrosis in children. British Journal of Haematology, 93, 394–7.CrossRefGoogle ScholarPubMed
Smith, J. D. & Lazarchick, J. (1999). Systemic mast cell disease with marrow and splenic involvement associated with chronic myelomonocytic leukemia. Leukemia and Lymphoma 32, 391–4.CrossRefGoogle ScholarPubMed
Tanzer, J. (1994). Clonality and karyotype studies in polycythemia vera. Nouvelle Revue Française d' Hématologie, 36, 167–72.Google ScholarPubMed
Thiele, J. & Kvasnicka, H.-M. (2000). Thrombocytosis versus thrombocythemia: differential diagnosis of elevated platelet count. Pathologe, 21, 31–8.CrossRefGoogle ScholarPubMed
Thiele, J. & Kvasnicka, H.-M. (2005). Diagnostic impact of bone marrow histopathology in polycythemia vera (PV). Histology and Histopathology, 20, 317–28.Google Scholar
Thiele, J., Kvasnicka, H.-M., Werden, C., Zankovich, R., Diehl, V., & Fischer, R. (1996). Idiopathic primary osteo-myelofibrosis: a clinico-pathological study on 208 patients with special emphasis on evolution, differentiation from essential thrombocythemia and variables of prognostic impact. Leukemia and Lymphoma, 22, 303–17.CrossRefGoogle ScholarPubMed
Thiele, J., Kvasnicka, H.-M., Boeltken, B., Zankovich, R., Diehl, V., & Fischer, R. (1999). Initial (prefibrotic) stages of idiopathic (primary) myelofibrosis (IMF): a clinicopathological study. Leukemia, 13, 1741–8.CrossRefGoogle ScholarPubMed
Thiele, J., Kvasnicka, H. M., Zankovich, R., & Diehl, V. (2000). Relevance of bone marrow features in the differential diagnosis between essential thrombocythemia and early stage idiopathic myelofibrosis. Haematologica, 85, 1126–34.Google ScholarPubMed
Thiele, J., Kvasnicka, H. M., Facchetti, F., Franco, V., Walt, J., & Orazi, A. (2005). European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica, 90, 1128–32.Google ScholarPubMed
Wang, J. K., Lin, D. T., Hsieh, H. C., Chuu, W. M., Wang, C. H., & Lin, K. S. (1990). Primary myelofibrosis in children: report of 4 cases. Journal of the Formosan Medical Association, 89, 719–23.Google ScholarPubMed
Wolf, B. C., Banks, P. M., Mann, R. B., & Neiman, R. S. (1988). Splenic hematopoiesis in polycythemia vera: a morphologic and immunohistologic study. American Journal of Clinical Pathology, 89, 69–75.CrossRefGoogle ScholarPubMed
Yang, F., Tran, T.-A., Carlson, J. A., His, E. D., Ross, C. W., & Arber, D. A. (2000). Paraffin section immunophenotype of cutaneous and extracutaneous mast cell disease: comparison to other hematopoietic neoplasms. American Journal of Surgical Pathology, 24, 703–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×