Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T15:51:07.804Z Has data issue: false hasContentIssue false

22 - Introduction to the human γ-herpesviruses

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Richard Longnecker
Affiliation:
Feinberg School of Medicine, Northwestern University Medical School, Chicago, IL, USA
Frank Neipel
Affiliation:
Institute for Clinical and Molecular Virology, University of Erlangen, Germany
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

This chapter will provide a brief background into the γ-herpesviruses family in comparison to other members of the herpesvirus family; but the primary focus of this chapter will be to recount the discovery of the two human γ-herpesviruses (EBV and KSHV) and the diseases associated with infection of each virus, a brief introduction into their life cycles, and finally a description of the genome characteristics of the viruses including a description of their respective genomes. In many ways, the discovery and association with human diseases for both EBV and KSHV have many parallels despite almost three decades separating their discoveries and association with human disease.

The γ-herpesvirus family

The γ-herpesviruses are a subfamily of herpesviruses that were first distinguished by their cellular tropism for lymphocytes. Subsequent molecular phylogenetic analyses have confirmed the close relationship among these viruses that is distinct from the α- and β-herpesviruses subfamilies (Fig. 22.1). Gammaherpesvirinae is currently divided into two genera, Lymphocryptoviridae which includes human Epstein–Barr virus (EBV or HHV 4) and Rhadinoviridae, which includes human Kaposi's sarcoma-associated herpesvirus (KSHV or HHV 8). Recent studies suggest that primate rhadinoviruses can be further subdivided in KSHV -like viruses, a second closely related but distinct lineage of Old World primate viruses related to the rhesus rhadinovirus (RRV), and the New World monkey rhadinoviruses represented by herpesvirus saimiri (HVS). A more detailed analysis of the non-human γ-herpesviruses will be discussed in Chapters 60 and 61.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 341 - 359
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coakley, D. (1992). Irish masters of medicine. Town House Publishing, 333–344.
Epstein, A. (1994). Thirty years of Epstein–Barr virus. Epstein–Barr Virus Report, 1(1), 3–4.Google Scholar
Epstein, A. (1999). On the discovery of Esptein–Barr virus: a memoir. Epstein–Barr Virus Report, 6(3), 58–63.Google Scholar
Glermser, B. (1970). Mr. Burkitt and Africa. New York and Cleveland: The World Publishing Company.
Henle, W., Henle, G., and Lennette, E. T. (1979). The Epstein–Barr virus. Sci. Am., 241(1), 48–59.CrossRefGoogle ScholarPubMed
Moore, P. S. and Chang, Y. (1998). The discovery of KSHV (HHV8). Epstein–Barr Virus Report, 5(1), 1–2.Google Scholar
Ambroziak, J. A., Blackbourn, D. J., Harndier, B. G.et al. (1995). Herpes-like sequences in HIV -infected and uninfected Kaposi's sarcoma patients. Science, 268(5210), 582–583.CrossRefGoogle ScholarPubMed
Andreoni, M., Sarmati, L., Nicastri, E.et al. (2002). Primary human herpesvirus 8 infection in immunocompetent children. 287(10), 1295–1300.PubMed
Arvanitakis, L., Mesri, E. A., Nador, R. G.et al. (1996). Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein–Barr virus. Blood, 88(7), 2648–2654.Google ScholarPubMed
Babcock, G. J. and Thorley-Lawson, D. A. (2000). Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc. Natl Acad. Sci. USA, 97(22), 12250–12255.CrossRefGoogle Scholar
Babcock, G. J., Decker, L. L., Volk, M., and Thorley-Lawson, D. A. (1998). EBV persistence in memory B cells in vivo. Immunity, 9(3), 395–404.CrossRefGoogle Scholar
Babcock, G. J., Decker, L. L., Freeman, R. B., and Thorley-Lawson, D. A. (1999). Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J. Exp. Med., 190(4), 567–576.CrossRefGoogle Scholar
Babcock, G. J., Hochberg, D., and Thorley-Lawson, D. A. (2000). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity, 13(4), 497–506.CrossRefGoogle ScholarPubMed
Baer, R., Bankier, A. T., Biggin, M. D.et al. (1984). DNA sequence and expression of the B95–8 Epstein–Barr virus genome. Nature, 310(5974), 207–211.CrossRefGoogle ScholarPubMed
Barozzi, P., Luppi, M., Facchetti, F.et al. (2003). Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat. Med., 9(5), 554–561.CrossRefGoogle ScholarPubMed
Beral, V., Peterman, T. A., Berkelman, R. L., and Jaffe, H. W. (1990). Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection?Lancet, 335, 123–128.CrossRefGoogle ScholarPubMed
Blackbourn, D. J., Lennette, E., Klencke, B.et al. (2000). The restricted cellular host range of human herpesvirus 8. Aids, 14(9), 1123–1133.CrossRefGoogle ScholarPubMed
Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br. J. Surg., 46(197), 218–223.CrossRefGoogle ScholarPubMed
Burkitt, D. and O'Conor, G. T. (1961). Malignant lymphoma in African children. I. A clinical syndrome. Cancer, 14, 258–269.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Burnside, K. L., Ryan, J. T., Bielefeldt-Ohmann, H. (2006). RFHVMn ORF 73 is structurally related to the KSHV ORF 73 latency-associated nuclear antigen (LANA) and is expressed in retroperitoneal fibromatosis (RF) tumor cells. Virology, July 29.CrossRefGoogle Scholar
Castleman, B., Iverson, L., and Menendez, V. P. (1956). Localized mediastinal lymphnode hyperplasia resembling thymoma. Cancer, 9(4), 822–830.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Cesarman, E., Chang, Y., Moore, P. S., and Knowles, D. M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS -related body-cavity-based lymphomas. N. Engl. J. Med., 332, 1186–1191.CrossRefGoogle ScholarPubMed
Chang, Y., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS - associated Kaposi's sarcoma. Science, 266, 1865–1869.CrossRefGoogle ScholarPubMed
Chen, F., Zou, J. Z., di Renzol, L.et al. (1995). A subpopulation of normal B cells latently infected with Epstein–Barr virus resembles Burkitt lymphoma cells in expressing EBNA -1 but not EBNA -2 or LMP 1. J. Virol. 69(6), 3752–3758.Google Scholar
Cool, C. D., Rai, P. R., Jeager, M. E.et al. (2003). Expression of human herpesvirus 8 in primary pulmonary hypertension. N. Engl. J. Med., 349(12), 1113–1122.CrossRefGoogle ScholarPubMed
Daibata, M., Miyoshi, I., Taguchi, H.et al. (2004). Absence of human herpesvirus 8 in lung tissues from Japanese patients with primary pulmonary hypertension. Respir. Med., 98(12), 1231–1232.CrossRefGoogle ScholarPubMed
Dambaugh, T., Hennessy, K., Chanmankit, L., and Kieff, E. (1984). U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl Acad. Sci. USA, 81(23), 7632–7636.CrossRefGoogle ScholarPubMed
Desrosiers, R. C., Sasseville, V. G., Czajak, S. C.et al. (1997). A herpesvirus of rhesus monkeys related to the human Kaposi's sarcoma-associated herpesvirus. J. Virol., 71(12), 9764–9769.Google ScholarPubMed
Alberti, L., Piattelli, A., Artese, L.et al. (1997). Human herpesvirus 8 variants in sarcoid tissues. Lancet, 350(9092), 1655–1661.CrossRefGoogle ScholarPubMed
Drotar, M. E., Silva, S., Barone, E.et al. (2003). Epstein–Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. Int. J. Cancer, 106(3), 388–395.CrossRefGoogle ScholarPubMed
Dupin, N., Diss, T. L., Kellam, P.et al. (2000). HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV -8-positive plasmablastic lymphoma. Blood, 95(4), 1406–1412.Google ScholarPubMed
Ensoli, B. and St∞rzl, M. (1998). Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. 9(1), 63–83.PubMed
Ensser, A., Pflanz, R., and Fleckenstein, B. (1997). Primary structure of the alcelaphine herpesvirus 1 genome. J. Virol., 71(9), 6517–6525.Google ScholarPubMed
Epstein, M. A., Achong, B. G., and Barr, Y. M. (1964). Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 15, 702–703.CrossRefGoogle Scholar
Epstein, M. A., Henle, G., Achong, B. G., and Barr, Y. M. (1965). Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J. Exp. Med., 121, 761–770.CrossRefGoogle ScholarPubMed
Fickenscher, H. and Fleckenstein, B. (2001). Herpesvirus saimiri. 356(1408), 545–567.PubMed
Gao, S. J., Kingsley, L., Li, M.et al. (1996). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. 2, 925–928.PubMed
Giddens, W. E. Jr., Tsai, C. C., Morton, W. R.et al. (1985). Retroperitoneal fibromatosis and acquired immunodeficiency syndrome in macaques. Pathologic observations and transmission studies. 119(2), 253–263.PubMed
Giraldo, G., Beth, E., and Haguenau, F. (1972). Herpes-type virus particles in tissue culture of Kaposi's sarcoma from different geographic regions. 49(6), 1509–1526.PubMed
Gratama, J. W., Oosterveer, M. A., Lepoutre, J.et al. (1989). Persistence and transfer of Epstein–Barr virus after allogeneic bone marrow transplantation. Transpl. Proc., 21(1 Pt 3), 3097–3098.Google ScholarPubMed
Henke-Gendo, C., Schulz, T. F., Hoeper, M. M.et al. (2004). HHV-8 in pulmonary hypertension. N. Engl. J. Med., 350(2), 194–195.Google Scholar
Henle, G. and Henle, W. (1966). Immunofluorescence in cells derived from Burkitt's lymphoma. J. Bacteriol., 91(3), 1248–1256.Google ScholarPubMed
Henle, W., Diehl, V., Kohn, G., Hausen, Zur H., and Henle, G. (1967). Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science, 157(792), 1064–1065.CrossRefGoogle ScholarPubMed
Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-type virus to infectious mononucleosis. Proc. Natl Acad. Sci. USA, 59(1), 94–101.CrossRefGoogle Scholar
Henle, G., Henle, W., Clifford, P.et al. (1969). Antibodies to Epstein–Barr virus in Burkitt's lymphoma and control groups. J. Natl Cancer Inst., 43(5), 1147–1157.Google ScholarPubMed
Henry, M., Uthman, A., Geusan, A.et al. (1999). Infection of circulating CD 34+ cells by HHV -8 in patients with Kaposi's sarcoma. 113(4), 613–616.
Hochberg, D., Middeldorp, J. M., Catalina, M.et al. (2004a). Demonstration of the Burkitt's lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc. Natl Acad. Sci. USA, 101(1), 239–244.CrossRefGoogle Scholar
Hochberg, D., Souza, T., Catalina, M.et al. (2004b). Acute infection with Epstein–Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol., 78(10), 5194–5204.CrossRefGoogle Scholar
Hutt-Fletcher, L. M. (1995). Epstein–Barr virus glycoproteins – beyond gp350/220. Epstein–Barr Virus Rep., 2(3), 49–53.Google Scholar
Jaffe, H. W., Choi, K., Thomas, P. A.et al. (1983). National case-control study of Kaposi's sarcoma and Pneumocystis carinii pneumonia in homosexual men: Part 1. Epidemiologic results. Ann. Intern. Med., 99(2), 145–151.CrossRefGoogle ScholarPubMed
Joseph, A. M., Babcock, G. J., and Thorley-Lawson, D. A. (2000a). Cells expressing the Epstein–Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J. Virol., 74(21), 9964–9971.CrossRefGoogle Scholar
Joseph, A. M., Babcock, G. J., and Thorley-Lawson, D. A. (2000b). EBV persistence involves strict selection of latently infected B cells. J. Immunol., 165(6), 2975–2981.CrossRefGoogle Scholar
Kaposi, M. (1872). Idiopathisches multiples Pigment-Sarcom der Haut. Archiv für Dermatol. Syphilis, 4, 265–273.CrossRefGoogle Scholar
Katano, H., Ito, K., Shibuya, K., Saji, T., Sato, Y., and Sata. T. (2005). Lack of human herpesvirus 8 infection in lungs of Japanese patients with primary pulmonary hypertension. J. Infect. Dis., 191(5), 743–745.CrossRefGoogle ScholarPubMed
Kedes, D. H., Operskalski, E., Busch, M.et al. (1996). The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med., 2(8), 918–924.CrossRefGoogle ScholarPubMed
Komano, J., Maruo, S., Kurozumi, K., Oda, T., and Takada, K. (1999). Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J. Virol., 73(12), 9827–9831.Google ScholarPubMed
Lees, J. F., Arrand, J. E., Pepper, S. D.et al. (1993). The Epstein–Barr virus candidate vaccine antigen gp340/220 is highly conserved between virus types A and B. Virology, 195(2), 578–586.CrossRefGoogle ScholarPubMed
Lisitsyn, N. A., Lisitsyn, N. M., and Wigler, M. (1993). Cloning the differences between to complex genomes. Science, 259(5097), 946–951.CrossRefGoogle ScholarPubMed
Luppi, M., Barozzi, P., Rasini, V.et al. (2002). Severe pancytopenia and hemophagocytosis after HHV -8 primary infection in a renal transplant patient successfully treated with foscarnet. Transplantation, 74(1), 131–132.CrossRefGoogle Scholar
Marcelin, A. G., Roque-Afonso, A. M., Hurbova, M.et al. (2004). Fatal disseminated Kaposi's sarcoma following human herpesvirus 8 primary infections in liver-transplant recipients. Liver Transpl., 10(2), 295–300.CrossRefGoogle ScholarPubMed
Martin, J. N., Ganem, D. E., Osmond, D. H.et al. (1998). Sexual transmission and the natural history of human herpesvirus 8 infection. N. Engl. J. Med., 338(14), 948–954.CrossRefGoogle ScholarPubMed
Martro, E., Bulterys, M., Stewart, J. A.et al. (2004). Comparison of human herpesvirus 8 and Epstein–Barr virus seropositivity among children in areas endemic and non-endemic for Kaposi's sarcoma. J. Med. Virol., 72(1), 126–131.CrossRefGoogle ScholarPubMed
Mayama, S., Cuevas, L. E., Sheidon, J.et al. (1998). Prevalence and transmission of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. 77(6), 817–820.PubMed
McGeoch, D. J., Dolan, A., Donald, S., and Rixon, F. J. (1985). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J. Mol. Biol., 181(1), 1–13.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dalrymple, M. A., Davison, A. J.et al. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol., 69(7), 1531–1574.CrossRefGoogle Scholar
Miller, G., Shope, T., Lisco, H., Stitt, D., and Lipman, M. (1972). Epstein–Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc. Natl Acad. Sci. USA, 69(2), 383–387.CrossRefGoogle ScholarPubMed
Miyashita, E. M., Yang, B., Babcock, G. J., and Thorley-Lawson, D. A. (1997). Identification of the site of Epstein–Barr virus persistence in vivo as a resting B cell. J. Virol., 71(7), 4882–4891.Google ScholarPubMed
Moore, P. S., Gao, S. J., Dominguez, G.et al. (1996). Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J. Virol., 70(1), 549–558.Google ScholarPubMed
Old, L. L., Boyse, E. A., and Oettgen, H. F. (1966). Precipitating antibody in human serum to an an antigen present in cultured Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA, 56, 1678–1699.CrossRefGoogle Scholar
Parker, B. D., Bankier, A., Satchwell, S., Barrell, B., and Farrell, P. J. (1990). Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95–8 deletion region. Virology, 179(1), 339–346.CrossRefGoogle ScholarPubMed
Pellett, P. E., Wright, D. J., Engels, E. A.et al. (2003). Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. 43(9), 1260–1268.PubMed
Qu, L., Green, M., Webber, S.et al. (2000). Epstein–Barr virus gene expression in the peripheral blood of transplant recipients with persistent circulating virus loads. J. Infect. Dis., 182(4), 1013–1021.CrossRefGoogle ScholarPubMed
Raab, M. S., Albrecht, J. C., Birkmann, A.et al. (1998). The immunogenic glycoprotein gp35–37 of human herpesvirus 8 is encoded by open reading frame K8.1. J. Virol., 72(8), 6725–6731.Google ScholarPubMed
Renne, R., Zhong, W., Hemdier, B.et al. (1996). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat. Med., 2(3), 342–346.CrossRefGoogle ScholarPubMed
Rettig, M. B., Ma, H. J., Vescio, R. A.et al. (1997). Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science, 276(5320), 1851–1854.CrossRefGoogle ScholarPubMed
Rickinson, A. B., Young, L. S., and Rowe, M. (1987). Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 61(5), 1310–1317.Google ScholarPubMed
Rimar, D., Rimar, Y., and Keynan, Y. (2006). Human herpesvirus-8: beyond Kaposi's. Isr. Med. Assoc. J., 8(7), 489–493.Google ScholarPubMed
Rose, T. M., Strand, K. B., Schultz, E. R.et al. (1997). Identification of two homologs of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J. Virol., 71(5), 4138–4144.Google ScholarPubMed
Ruf, I. K., Rhyne, P. W., Yang, C., Cleveland, J. L., and Sample, J. T. (2000). Epstein–Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J. Virol., 74(21), 10223–10228.CrossRefGoogle ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chen, M. C.et al. (1996). Nucleotide sequence of the Kaposi's sarcoma-accociated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Sample, J., Young, L., Martin, B.et al. (1990). Epstein–Barr virus types 1 and 2 differ in their EBNA -3A, EBNA -3B, and EBNA -3C genes. J. Virol., 64(9), 4084–4092.Google ScholarPubMed
Schatz, O., Monini, P., Bugarini, R.et al. (2001). Kaposi's sarcoma-associated herpesvirus serology in Europe and Uganda: multicentre study with multiple and novel assays, 65(1), 123–132.PubMed
Searles, R. P., Bergquam, E. P.Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73(4), 3040–3053.Google ScholarPubMed
Simpson, G. R., Schulz, T. F., Whitby, D.et al. (1996). Prevalence of Kaposi's sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet, 348(9035), 1133–1138.CrossRefGoogle ScholarPubMed
Sitki-Green, D., Covington, M., and Raab-Traub, N. (2003). Compartmentalization and transmission of multiple epstein-barr virus strains in asymptomatic carriers. J. Virol., 77(3), 1840–1847.CrossRefGoogle Scholar
Soulier, J., Grollet, L., Oksenhendler, E.et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood, 86, 1276–1280.Google ScholarPubMed
Thorley-Lawson, D. A. (2001). Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol., 1(1), 75–82.CrossRefGoogle Scholar
Tierney, R. J., Steven, N., Young, L. S., and Rickinson, A. B. (1994). Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Virol., 68(11), 7374–7385.Google ScholarPubMed
Wang, F. (2001). A new animal model for Epstein–Barr virus pathogenesis. Curr. Top. Microbiol. Immunol., 258, 201–219.Google ScholarPubMed
Wang, F., Rivailler, P., Rao, P.et al. (2001). Simian homologues of Epstein–Barr virus. Phil. Trans. R. Soc. Lond. B Biol. Sci., 356(1408), 489–497.CrossRefGoogle ScholarPubMed
Wilson, J. B., Bell, J. L., and Levine, A. J. (1996). Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J., 15(12), 3117–3126.Google ScholarPubMed
Wu, L., Lo, P., Yu, X.et al. (2000). Three-dimensional structure of the human herpesvirus 8 capsid., 74(20), 9646–9654.PubMed
Yang, B. T., Chen, S. C., Leach, M. W.et al. (2000). Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma, J. Exp. Med., 191(3), 445–454.CrossRefGoogle ScholarPubMed
Yao, Q. Y., Rickinson, A. B., and Epstein, M. A. (1985). A re-examination of the Epstein–Barr virus carrier state in healthy seropositive individuals. Int. J. Cancer, 35(1), 35–42.CrossRefGoogle ScholarPubMed
Yao, Q. Y., Ogan, P., Rowe, M., Wood, M., and Rickinson, A. B. (1989). Epstein–Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int. J. Cancer, 43(1), 67–71.CrossRefGoogle ScholarPubMed
Zimber, U., Addlinger, H. K., Lenoir, G. M.et al. (1986). Geographical prevalence of two types of Epstein–Barr virus. Virology, 154(1), 56–66.CrossRefGoogle ScholarPubMed
Hausen, zur H., O'Neill, F. J., Freese, U. K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272(5651), 373–375.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×