Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T15:20:21.430Z Has data issue: false hasContentIssue false

21 - CMV modulation of the host response to infection

from Part II - Basic virology and viral gene effects on host cell functions: betaherpesviruses

Published online by Cambridge University Press:  24 December 2009

A. Louise McCormick
Affiliation:
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford CA
Edward S. Mocarski Jr.
Affiliation:
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford CA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Betaherpesviruses such as HCMV dramatically affect host cell physiology and encode a wide variety of functions that modulate the infected host cell as well as the immune response (Mocarski, 2002, 2004). Major structural and nonstructural proteins modulate host cell transcriptional repression (Saffert and Kalejta, 2006, Tavalai et al., 2006), cell-intrinsic responses (Abate et al., 2004; Goldmacher, 2004), responses to interferon (Child et al., 2004; Khan et al., 2004) and natural killer (NK) lymphocytes (Lodoen and Lanier, 2005), and adaptive antibody or T-lymphocyte immunity (Chapter 62). The host immune components that are targets of modulation by HCMV are the same host functions that are important in suppressing virus infection, suggesting that the balance between host clearance and viral escape mechanisms dictates many aspects of viral pathogenesis. By reducing the overall impact of antiviral defenses, HCMV seems to be able to escape the full brunt of host innate and adaptive immunity, thereby allowing the virus to persist. It now appears that an overwhelming majority of viral gene products are dedicated to modulation of host cell and immune modulation (Chapter 15). The overwhelming majority (∼100 gene products) may be implicated in modulation because they are dispensable for replication in cultured fibroblasts (Dunn et al., 2003; Yu et al., 2003).

During infection, HCMV and other cytomegaloviruses have a striking impact on cellular gene expression, cell cycle progression, and cellular behavior. More limited information suggests that roseolaviruses, HHV -6A, HHV -6B, and HHV -7 have a similar impact on cells (Chapters 18 and 47).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 324 - 338
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abate, D. A., Watanabe, S., and Mocarski, E. S. (2004). Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J. Virol., 78, 10995–11006.CrossRefGoogle ScholarPubMed
AbuBakar, S., Au, W. W., Legator, M. S., and Albrecht, T. (1988). Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells. Environ. Mol. Mutagen., 12, 409–420.CrossRefGoogle ScholarPubMed
Adair, R., Liebisch, G. W., and Colberg-Poley, A. M. (2003). Complex alternative processing of human cytomegalovirus UL 37 pre-mRNA. J. Gen. Virol., 84, 3353–3358.CrossRefGoogle Scholar
Adamo, J. E., Schroer, J., and Shenk, T. (2004). Human cytomegalovirus TRS 1 protein is required for efficient assembly of DNA-containing capsids. J. Virol., 78, 10221–10229.CrossRefGoogle Scholar
Albrecht, T., Boldogh, I., and Fons, M. P. (1992). Receptor-initiated activation of cells and their oncogenes by herpes-family viruses. J. Invest. Dermatol., 98(6 Suppl), 29S–35S.CrossRefGoogle ScholarPubMed
Allart, S., Martin, H., Detraves, C., Terrasson, J., Caput, D., and Davrinche, C. (2002). Human cytomegalovirus induces drug resistance and alteration of programmed cell death by accumulation of deltaN-p73alpha. J. Biol. Chem., 277, 29063–29068.CrossRefGoogle ScholarPubMed
Andoniou, C. E., Andrews, D. M., Manzur, M., Ricciardi-Castagnoli, P., and Degli-Esposti, M. A. (2004). A novel checkpoint in the Bcl-2-regulated apoptotic pathway revealed by murine cytomegalovirus infection of dendritic cells. J. Cell Bio., 166, 827–837.CrossRefGoogle ScholarPubMed
Arnoult, D., Bartle, L. M., Skaletskaya, A.et al. (2004). Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc. Natl Acad. Sci. USA, 101, 7988–7993.CrossRefGoogle Scholar
Baillie, J., Sahlender, D. A., and Sinclair, J. H. (2003). Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF -alpha receptor. J. Virol., 77, 7007–7016.CrossRefGoogle ScholarPubMed
Belzacq, A. S., Hamel, El C., Vieira, H. L.et al. (2001). Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD 437. Oncogene, 20, 7579–7587.CrossRefGoogle Scholar
Benedict, C. A., Butrovich, K. D., Lurain, N. S.et al. (1999). Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J. Immunol., 162, 6967–6970.Google ScholarPubMed
Benedict, C. A., Angulo, A., Patterson, G.et al. (2004). Neutrality of the canonical NF -kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J. Virol., 78, 741–750.CrossRefGoogle ScholarPubMed
Biswas, N., Sanchez, V., and Spector, D. H. (2003). Human cytomegalovirus infection leads to accumulation of geminin and inhibition of the licensing of cellular DNA replication. J. Virol., 77, 2369–2376.CrossRefGoogle ScholarPubMed
Blankenship, C. A., and Shenk, T. (2002). Mutant human cytomegalovirus lacking the immediate-early TRS 1 coding region exhibits a late defect. J. Virol., 76, 12290–12299.CrossRefGoogle Scholar
Boehme, K. W., Singh, J., Perry, S. T., and Compton, T. (2004). Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J. Virol., 78, 1202–1211.CrossRefGoogle ScholarPubMed
Boldogh, I., AbuBakar, S., and Albrecht, T. (1990). Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science, 247, 561–564.CrossRefGoogle ScholarPubMed
Boldogh, I., AbuBakar, S., Millinoff, D., Deng, C. Z., and Albrecht, T. (1991). Cellular oncogene activation by human cytomegalovirus. Lack of correlation with virus infectivity and immediate early gene expression. Arch. Virol., 118, 163–177.CrossRefGoogle ScholarPubMed
Boldogh, I., Bui, T. K., Szaniszlo, P., Bresnahan, W. A., Albrecht, T., and Hughes, T. K. (1997). Novel activation of gamma-interferon in nonimmune cells during human cytomegalovirus replication. Proc. Soc. Exp. Biol. Med., 215, 66–73.CrossRefGoogle ScholarPubMed
Bonin, L. R. and McDougall, J. K. (1997). Human cytomegalovirus IE 2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J. Virol., 71, 5861–5870.Google Scholar
Boya, P., Gonzalez-Polo, R. A., Poncet, D.et al. (2003a). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 22, 3927–3936.CrossRefGoogle Scholar
Boya, P., Morales, M. C., Gonzalez-Polo, R. A.et al. (2003b). The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene, 22, 6220–6230.CrossRefGoogle Scholar
Boya, P., Pauleau, A. L., Poncet, D., Gonzalez-Polo, R. A., Zamzami, N., and Kroemer, G. (2004). Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta, 1659, 178–189.CrossRefGoogle ScholarPubMed
Boyle, K. A., Pietropaolo, R. L., and Compton, T. (1999). Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol. Cell. Biol., 19, 3607–3613.CrossRefGoogle ScholarPubMed
Bresnahan, W. A. and Shenk, T. E. (2000). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cellsProc. Natl Acad. Sci. USA, 97, 14506–14511.CrossRefGoogle ScholarPubMed
Bresnahan, W. A., Boldogh, I., Thompson, E. A., and Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology, 224, 150–160.CrossRefGoogle ScholarPubMed
Bresnahan, W. A., Thompson, E. A., and Albrecht, T. (1997). Human cytomegalovirus infection results in altered Cdk2 subcellular localization. J. Gen. Virol., 78, 1993–1997.CrossRefGoogle ScholarPubMed
Browne, E. P. and Shenk, T. (2003). Human cytomegalovirus UL 83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl Acad. Sci. USA, 100, 11439–11444.CrossRefGoogle Scholar
Browne, E. P., Wing, B., Coleman, D., and Shenk, T. (2001). Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol., 75, 12319–12330.CrossRefGoogle ScholarPubMed
Brune, W., Menard, C., Heesemann, J., and Koszinowski, U. H. (2001). A ribonucleotide reductase homologue of cytomegalovirus and endothelial cell tropism. Science, 291, 303–305.CrossRefGoogle Scholar
Brune, W., Nevels, M., and Shenk, T. (2003). Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein. J. Virol., 77, 11633–11643.CrossRefGoogle ScholarPubMed
Cantrell, S. R., and Bresnahan, W. A. (2005). Interaction between the human cytomegalovirus UL 82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J. Virol., 79, 7792–7802.CrossRefGoogle Scholar
Caposio, P., Dreano, M., Garotta, G., Gribaudo, G., and Landolfo, S. (2004). Human cytomegalovirus stimulates cellular IKK 2 activity and requires the enzyme for productive replication. J. Virol., 78, 3190–3195.CrossRefGoogle Scholar
Cassady, K. A. (2005). Human cytomegalovirus TRS 1 and IRS 1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J. Virol., 79, 8707–8715.CrossRefGoogle Scholar
Castillo, J. P., Yurochko, A. D., and Kowalik, T. F. (2000). Role of human cytomegalovirus immediate–early proteins in cell growth control. J. Virol., 74, 8028–8037.CrossRefGoogle ScholarPubMed
Chaudhuri, A. R., St. Jeor, S., and Maciejewski, J. P. (1999). Apoptosis induced by human cytomegalovirus infection can be enhanced by cytokines to limit the spread of virus. Exp. Hematol., 27, 1194–1203.CrossRefGoogle ScholarPubMed
Cheeseman, S. H., Rinaldo, C. J., and Hirsch, M. S. (1977). Use of interferon in cytomegalovirus infections in man. Tex. Rep. Biol. Med., 35, 523–527.Google ScholarPubMed
Child, S. J., Jarrahian, S., Harper, V. M., and Geballe, A. P. (2002). Complementation of vaccinia virus lacking the double-stranded RNA -binding protein gene E3L by human cytomegalovirus. J. Virol., 76, 4912–4918.CrossRefGoogle ScholarPubMed
Child, S. J., Hakki, M., Niro, K. L., and Geballe, A. P. (2004). Evasion of cellular antiviral responses by human cytomegalovirus TRS 1 and IRS 1. J. Virol., 78, 197–205.CrossRefGoogle Scholar
Chiou, S. H., Liu, J. H., Hsu, W. M.et al. (2001). Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus- induced apoptosis in human retina. J. Immunol., 167, 4098–4103.CrossRefGoogle ScholarPubMed
Compton, T. (2004). Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol., 14, 5–8.CrossRefGoogle ScholarPubMed
Cuconati, A. and White, E. (2002). Viral homologs of BCL -2: role of apoptosis in the regulation of virus infection. Genes Dev., 16, 2465–2478.CrossRefGoogle ScholarPubMed
DeMeritt, I. B., Milford, L. E., and Yurochko, A. D. (2004). Activation of the NF -kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate–early promoter. J. Virol., 78, 4498–4507.CrossRefGoogle ScholarPubMed
DeFilippis, V. and Fruh, K. (2005). Rhesus cytomegalovirus particles prevent activation of interferon regulatory factor 3. J. Virol., 79, 6419–6431.CrossRefGoogle ScholarPubMed
DeFilippis, V. R., Robinson, B., Keck, T. M., Hansen, S. G., Nelson, J. A., and Fruh, K. J. (2006). Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J. Virol., 80, 1032–1037.CrossRefGoogle ScholarPubMed
DeFilippis, V., and Fruh, K. (2005). Rhesus cytomegalovirus particles prevent activation of interferon regulatory factor 3. J. Virol., 79(10), 6419–31.CrossRefGoogle ScholarPubMed
Deng, C. Z., AbuBakar, S., Fons, M. P.et al. (1992). Cytomegalovirus-enhanced induction of chromosome aberrations in human peripheral blood lymphocytes treated with potent genotoxic agents. Environ. Mol. Mutagen, 19, 304–310.CrossRefGoogle ScholarPubMed
Dittmer, D. and Mocarski, E. S. (1997). Human cytomegalovirus infection inhibits G1/S transition. J. Virol., 71, 1629–1634.Google ScholarPubMed
Dunn, W., Chou, C., Li, H.et al. (2003). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100, 14223–14228.CrossRefGoogle ScholarPubMed
Eickhoff, J. E. and Cotten, M. (2005). NF-kappaB activation can mediate inhibition of human cytomegalovirus replication. J. Gen. Virol., 86, 285–295.CrossRefGoogle ScholarPubMed
Everett, R. D. (2006). Interactions between DNA viruses, ND 10 and the DNA damage response. Cell Microbiol, 8, 365–374.CrossRefGoogle Scholar
Everett, H. and McFadden, G. (1999). Apoptosis: an innate immune response to virus infection. Trends Microbiol., 7, 160–165.CrossRefGoogle ScholarPubMed
Everett, H. and McFadden, G. (2001). Viral proteins and the mitochondrial apoptotic checkpoint. Cytokine Growth Factor Rev., 12, 181–188.CrossRefGoogle ScholarPubMed
Evers, D. L., Wang, X., and Huang, E. S. (2004). Cellular stress and signal transduction responses to human cytomegalovirus infection. Microbes. Infect., 6, 1084–1093.CrossRefGoogle ScholarPubMed
Ferri, K. F. and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat. Cell Biol., 3, E255–E263.CrossRefGoogle ScholarPubMed
Flebbe-Rehwaldt, L. M., Wood, C., and Chandran, B. (2000). Characterization of transcripts expressed from human herpesvirus 6A strain GS immediate-early region B U16–U17 open reading frames. J. Virol., 74, 11040–11054.CrossRefGoogle Scholar
Flores, E. R., Tsai, K. Y., Crowley, D.et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature, 416, 560–564.CrossRefGoogle ScholarPubMed
Fortunato, E. A. and Spector, D. H. (1998). p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J. Virol., 72, 2033–2039.Google ScholarPubMed
Fortunato, E. A., Dell'Aquila, M. L., and Spector, D. H. (2000a). Specific chromosome 1 breaks induced by human cytomegalovirus. Proc. Natl Acad. Sci. USA, 97, 853–858.CrossRefGoogle Scholar
Fortunato, E. A., McElroy, A. K., Sanchez, I., and Spector, D. H. (2000b). Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol, 8, 111–119.CrossRefGoogle Scholar
Fortunato, E. A., Sanchez, V., Yen, J. Y., and Spector, D. H. (2002). Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate–early gene expression that can be overcome by inhibition of the proteasome. J. Virol., 76, 5369–5379.CrossRefGoogle Scholar
Giaccia, A. J. and Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev., 12, 2973–2983.CrossRefGoogle ScholarPubMed
Goldmacher, V. S. (2004). Cell death suppressors encoded by cytomegalovirus. Prog. Mol. Subcell Biol., 36, 1–18.CrossRefGoogle ScholarPubMed
Goldmacher, V. S., Bartle, L. M., Skaletskaya, A.et al. (1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA, 96, 12536–12541.CrossRefGoogle Scholar
Hagemeier, C., Caswell, R., Hayhurst, G., Sinclair, J., and Kouzarides, T. (1994). Functional interaction between the HCMV IE 2 transactivator and the retinoblastoma protein. EMBO J., 13, 2897–2903.Google Scholar
Hahn, G., Khan, H., Baldanti, F., Koszinowski, U. H., Revello, M. G., and Gerna, G. (2002). The human cytomegalovirus ribonucleotide reductase homologue UL 45 is dispensable for growth in endothelial cells, as determined by a BAC -cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J. Virol., 76, 9551–9555.CrossRefGoogle Scholar
Hakki, M., and Geballe, A. P. (2005). Double-stranded RNA binding by human cytomegalovirus pTRS1. J. Virol., 79, 7311–7318.CrossRefGoogle ScholarPubMed
Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y. (2003). Apoptosis – the p53 network. J. Cell Sci., 116, 4077–4085.CrossRefGoogle ScholarPubMed
Hayajneh, W. A., Colberg-Poley, A. M., Skaletskaya, A.et al. (2001). The sequence and antiapoptotic functional domains of the human cytomegalovirus UL 37 exon 1 immediate early protein are conserved in multiple primary strains. Virology, 279, 233–240.CrossRefGoogle Scholar
Hayashi, M. L., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL 69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycleProc. Natl Acad. Sci. USA, 97, 2692–2696.CrossRefGoogle Scholar
Heider, J. A., Bresnahan, W. A., and Shenk, T. E. (2002). Construction of a rationally designed human cytomegalovirus variant encoding a temperature-sensitive immediate-early 2 protein. Proc. Natl Acad. Sci. USA, 99, 3141–3146.CrossRefGoogle ScholarPubMed
Hertel, L. and Mocarski, E. S. (2004). Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US 28 function. J. Virol., 78, 11988–12011.CrossRefGoogle Scholar
Hofmann, H., Sindre, H., and Stamminger, T. (2002). Functional Interaction between the pp71 Protein of Human Cytomegalovirus and the PML-Interacting Protein Human Daxx. J. Virol., 76, 5769–5783.CrossRefGoogle ScholarPubMed
Holmes, A. R., Rasmussen, L., and Merigan, T. C. (1978). Factors affecting the interferon sensitivity of human cytomegalovirus. Intervirology, 9, 48–55.CrossRefGoogle ScholarPubMed
Inoue, Y., Yasukawa, M., and Fujita, S. (1997). Induction of T-cell apoptosis by human herpesvirus 6. J. Virol., 71, 3751–3759.Google ScholarPubMed
Ishov, A. M., Vladimirova, O. V., and Maul, G. G. (2002). Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND 10 facilitates initiation of viral infection at these nuclear domains. J. Virol., 76, 7705–7712.CrossRefGoogle Scholar
Isomura, H., Tsurumi, T., and Stinski, M. F. (2004). Role of the proximal enhancer of the major immediate-early promoter in human cytomegalovirus replication. J. Virol., 78, 12788–12799.CrossRefGoogle ScholarPubMed
Jan, G., Belzacq, A. S., Haouzi, D.et al. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ., 9, 179–188.CrossRefGoogle ScholarPubMed
Jault, F. M., Jault, J. M., Ruchti, F.et al. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J. Virol., 69, 6697–6704.Google ScholarPubMed
Johnson, R. A., Ma, X. L., Yurochko, A. D., and Huang, E. S. (2001a). The role of MKK 1/2 kinase activity in human cytomegalovirus infection. J. Gen. Virol., 82, 493–497.CrossRefGoogle Scholar
Johnson, R. A., Wang, X., Ma, X. L., Huong, S. M., and Huang, E. S. (2001b). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI 3-K activity inhibits viral replication and virus-induced signaling. J. Virol., 75, 6022–6032.CrossRefGoogle Scholar
Jurak, I., and Brune, W. (2006). Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J., 25, 2634–2642.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2002). Manipulation of the cell cycle by human cytomegalovirus. Front Biosci., 7, D295–D306.CrossRefGoogle ScholarPubMed
Khan, S., Zimmermann, A., Basler, M., Groettrup, M., and Hengel, H. (2004). A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J. Virol., 78, 1831–1842.CrossRefGoogle ScholarPubMed
Korioth, F., Maul, G. G., Plachter, B., Stamminger, T., and Frey, J. (1996). The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE 1. Exp. Cell. Res., 229, 155–158.CrossRefGoogle Scholar
Kouzarides, T., Bankier, A. T., Satchwell, S. C., Preddy, E., and Barrell, B. G. (1988). An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology, 165, 151–164.CrossRefGoogle ScholarPubMed
Kowalik, T. F., Wing, B., Haskill, J. S., Azizkhan, J. C., Baldwin, A. J., and Huang, E. S. (1993). Multiple mechanisms are implicated in the regulation of NF -kappa B activity during human cytomegalovirus infection. Proc. Natl Acad. Sci. USA, 90, 1107–1111.CrossRefGoogle ScholarPubMed
Langelier, Y., Bergeron, S., Chabaud, S.et al. (2002). The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J. Gen. Virol., 83, 2779–2789.CrossRefGoogle ScholarPubMed
Lodoen, M. B. and Lanier, L. L. (2005). Viral modulation of NK cell immunity. Nat. Rev. Microbiol., 3, 59–69.CrossRefGoogle ScholarPubMed
Lu, M. and Shenk, T. (1996). Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J. Virol., 70, 8850–8857.Google ScholarPubMed
Lu, M. and Shenk, T. (1999). Human cytomegalovirus UL 69 protein induces cells to accumulate in G1 phase of the cell cycle. J. Virol., 73, 676–683.Google Scholar
Lukac, D. M., Harel, N. Y., Tanese, N., and Alwine, J. C. (1997). TAF-like functions of human cytomegalovirus immediate-early proteins. J. Virol., 71, 7227–7239.Google ScholarPubMed
Marchini, A., Liu, H., and Zhu, H. (2001). Human cytomegalovirus with IE -2 (UL122) deleted fails to express early lytic genes. J. Virol., 75, 1870–1878.CrossRefGoogle ScholarPubMed
Margolis, M. J., Pajovic, S., Wong, E. L.et al. (1995). Interaction of the 72-kilodalton human cytomegalovirus IE 1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J. Virol., 69, 7759–7767.Google Scholar
Mate, J. L., Ariza, A., Munoz, A., Molinero, J. L., Lopez, D., and Navas-Palacios, J. J. (1998). Induction of proliferating cell nuclear antigen and Ki-67 expression by cytomegalovirus infection. J. Pathol., 184, 279–282.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
McCormick, A. L., Skaletskaya, A., Barry, P. A., Mocarski, E. S., and Goldmacher, V. S. (2003a). Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology, 316, 221–233.CrossRefGoogle Scholar
McCormick, A. L., Smith, V. L., Chow, D., and Mocarski, E. S. (2003b). Disruption of mitochondrial networks by the human cytomegalovirus UL 37 gene product viral mitochondrion-localized inhibitor of apoptosis. J. Virol., 77, 631–641.CrossRefGoogle Scholar
McCormick, A. L., Meiering, C. D., Smith, G. B., and Mocarski, E. S. (2005). Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J. Virol., 79, 12205–12217.CrossRefGoogle ScholarPubMed
Menard, C., Wagner, M., Ruzsics, Z.et al. (2003). Role of murine cytomegalovirus US 22 gene family members in replication in macrophages. J. Virol., 77, 5557–5570.CrossRefGoogle Scholar
Menegazzi, P., Galvan, M., Rotola, A.et al. (1999). Temporal mapping of transcripts in human herpesvirus-7. J. Gen. Virol., 80, 2705–2712.CrossRefGoogle ScholarPubMed
Mocarski, E. S. (2002). Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol., 10, 332–339.CrossRefGoogle ScholarPubMed
Mocarski, E. S. Jr. (2004). Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol., 6, 707–717.CrossRefGoogle ScholarPubMed
Mocarski, E. S., Jr. and Courcelle, C. T. (2001). Cytomegaloviruses and their replication. ed. In Fields Virology 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al. Vol. 2, pp. 2629–2673. Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Muganda, P., Carrasco, R., and Qian, Q. (1998). The human cytomegalovirus IE 2 86 kDa protein elevates p53 levels and transactivates the p53 promoter in human fibroblasts. Cell Mol. Biol., (Noisy-le-grand), 44, 321–331.Google ScholarPubMed
Murphy, E. A., Streblow, D. N., Nelson, J. A., and Stinski, M. F. (2000). The human cytomegalovirus IE 86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. J. Virol., 74, 7108–7118.CrossRefGoogle Scholar
Navarro, L., Mowen, K., Rodems, S.et al. (1998). Cytomegalovirus activates interferon immediate-early response gene expression and an interferon regulatory factor 3-containing interferon- stimulated response element-binding complex. Mol. Cell Biol., 18, 3796–3802.CrossRefGoogle ScholarPubMed
Netterwald, J. R., Jones, T. R., Britt, W. J., Yang, S. J., McCrone, I. P., and Zhu, H. (2004). Postattachment events associated with viral entry are necessary for induction of interferon- stimulated genes by human cytomegalovirus. J. Virol., 78, 6688–6691.CrossRefGoogle ScholarPubMed
Patrone, M., Percivalle, E., Secchi, M.et al. (2003). The human cytomegalovirus UL 45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J. Gen. Virol., 84, 3359–3370.CrossRefGoogle Scholar
Patterson, C. E. and Shenk, T. (1999). Human cytomegalovirus UL 36 protein is dispensable for viral replication in cultured cells. J. Virol., 73, 7126–7131.Google Scholar
Penfold, M. E. and Mocarski, E. S. (1997). Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology, 239, 46–61.CrossRefGoogle ScholarPubMed
Polster, B. M., Pevsner, J., and Hardwick, J. M. (2004). Viral Bcl-2 homologues and their role in virus replication and associated diseases. Biochim. Biophys. Acta, 1644, 211–227.CrossRefGoogle Scholar
Poma, E. E., Kowalik, T. F., Zhu, L., Sinclair, J. H., and Huang, E. S. (1996). The human cytomegalovirus IE 1–72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J. Virol., 70, 7867–7877.Google Scholar
Poncet, D., Larochette, N., Pauleau, A. L.et al. (2004). An anti-apoptotic viral protein that recruits Bax to mitochondria. J. Biol. Chem., 279, 22605–22614.CrossRefGoogle ScholarPubMed
Popkin, D. L. and Virgin, H. W. (2003). Murine cytomegalovirus infection inhibits tumor necrosis factor alpha responses in primary macrophages. J. Virol., 77, 10125–10130.CrossRefGoogle ScholarPubMed
Preston, C. M., Harman, A. N., and Nicholl, M. J. (2001). Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J. Virol., 75, 8909–8916.CrossRefGoogle Scholar
Reboredo, M., Greaves, R. F., and Hahn, G. (2004). Human cytomegalovirus proteins encoded by UL 37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J. Gen. Virol., 85, 3555–3567.CrossRefGoogle Scholar
Rodriguez, J. E., Loepfe, T. R., and Swack, N. S. (1987). Beta interferon production in primed and unprimed cells infected with human cytomegalovirus. Arch. Virol., 94, 177–189.CrossRefGoogle ScholarPubMed
Roumier, T., Vieira, H. L., Castedo, M.et al. (2002). The C-terminal moiety of HIV -1 Vpr induces cell death via a caspase-independent mitochondrial pathway. Cell Death Differ., 9, 1212–1219.CrossRefGoogle Scholar
Saffert, R. T., and Kalejta, R. F. (2006). Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J. Virol., 80, 3863–3871.CrossRefGoogle ScholarPubMed
Salvant, B. S., Fortunato, E. A., and Spector, D. H. (1998). Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J. Virol., 72, 3729–3741.Google ScholarPubMed
Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. G., and Mocarski, E. S. (1989). NF-kB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J., 8, 4251–4258.Google ScholarPubMed
Sanchez, V., McElroy, A. K., and Spector, D. H. (2003). Mechanisms governing maintenance of Cdk1/cyclin B1 kinase activity in cells infected with human cytomegalovirus. J. Virol., 77, 13214–13224.CrossRefGoogle ScholarPubMed
Sanchez, V., Clark, C. L., Yen, J. Y., Dwarakanath, R., and Spector, D. H. (2002). Viable human cytomegalovirus recombinant virus with an internal deletion of the IE 2 86 gene affects late stages of viral replication. J. Virol., 76, 2973–2989.CrossRefGoogle Scholar
Secchiero, P., Bertolaso, L., Casareto, L.et al. (1998). Human herpesvirus 7 infection induces profound cell cycle perturbations coupled to disregulation of cdc2 and cyclin B and polyploidization of CD 4(+) T cells. Blood, 92, 1685–1696.Google Scholar
Secchiero, P., Mirandola, P., Zella, D.et al. (2001). Human herpesvirus 7 induces the functional up-regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) coupled to TRAIL -R1 down-modulation in CD 4(+) T cells. Blood, 98, 2474–2481.CrossRefGoogle Scholar
Sedger, L. M., Shows, D. M., Blanton, R. A.et al. (1999). IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol., 163, 920–926.Google ScholarPubMed
Sedy, J. R., Gavrieli, M., Potter, K. G.et al. (2005). B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol., 6, 90–98.CrossRefGoogle Scholar
Simmen, K. A., Singh, J., Luukkonen, B. G.et al. (2001). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA, 98, 7140–7145.CrossRefGoogle ScholarPubMed
Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S., and Goldmacher, V. S. (2001). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA, 98, 7829–7834.CrossRefGoogle ScholarPubMed
Smith, G. B. and Mocarski, E. S. (2005). GADD45a directly enhances the mitochondrial apoptosis inhibitors Bcl-xL and vMIA. Nat. Cell Biol. (submitted for publication).Google Scholar
Song, Y. J. and Stinski, M. F. (2002). Effect of the human cytomegalovirus IE 86 protein on expression of E2F-responsive genes: A DNA microarray analysis. Proc. Natl Acad. Sci. USA, 99, 2836–2841.CrossRefGoogle ScholarPubMed
Speir, E., Modali, R., Huang, E. S.et al. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science, 265, 391–394.CrossRefGoogle ScholarPubMed
Su, Y., Adair, R., Davis, C. N., DiFronzo, N. L., and Colberg-Poley, A. M. (2003). Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL 37 exon 1 unspliced RNA production. J. Virol., 77, 12729–12741.CrossRefGoogle Scholar
Tanaka, K., Zou, J. P., Takeda, K.et al. (1999). Effects of human cytomegalovirus immediate-early proteins on p53- mediated apoptosis in coronary artery smooth muscle cellsCirculation, 99, 1656–1659.CrossRefGoogle ScholarPubMed
Tavalai, N., Papior, P., Rechter, S., Leis, M., and Stamminger, T. (2006). Evidence for a role of the cellular ND 10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J. Virol., 80, 8006–8018.CrossRefGoogle Scholar
Tang, Q. and Maul, G. G. (2006). Mouse cytomegalovirus crosses the species barrier with help from a few human cytomegalovirus proteins. J. Virol., 80, 7510–7521.CrossRefGoogle ScholarPubMed
Tenney, D. J. and Colberg-Poley, A. M. (1990). RNA analysis and isolation of cDNAs derived from the human cytomegalovirus immediate-early region at 0.24 map units. Intervirology, 31, 203–214.CrossRefGoogle ScholarPubMed
Tenney, D. J. and Colberg-Poley, A. M. (1991a). Expression of the human cytomegalovirus UL 36–38 immediate early region during permissive infection. Virology, 182, 199–210.CrossRefGoogle Scholar
Tenney, D. J. and Colberg-Poley, A. M. (1991b). Human cytomegalovirus UL 36–38 and US 3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J. Virol., 65, 6724–6734.Google Scholar
Vieira, H. L., Belzacq, A. S., Haouzi, D.et al. (2001). The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene, 20, 4305–4316.CrossRefGoogle ScholarPubMed
Wang, J., Marker, P. H., Belcher, J. D.et al. (2000). Human cytomegalovirus immediate early proteins upregulate endothelial p53 function. FEBS Lett., 474, 213–216.CrossRefGoogle ScholarPubMed
Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. (2003). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature, 424, 456–461.CrossRefGoogle ScholarPubMed
White, E. A., Clark, C. L., Sanchez, V., and Spector, D. H. (2004). Small internal deletions in the human cytomegalovirus IE 2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J. Virol., 78, 1817–1830.CrossRefGoogle Scholar
Wiebusch, L., Asmar, J., Uecker, R., and Hagemeier, C. (2003a). Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE 2-arrested cells. J. Gen. Virol., 84, 51–60.CrossRefGoogle Scholar
Wiebusch, L., and Hagemeier, C. (1999). Human cytomegalovirus 86-kilodalton IE 2 protein blocks cell cycle progression in G(1). J. Virol., 73, 9274–9283.Google Scholar
Wiebusch, L., and Hagemeier, C. (2001). The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. Embo. J., 20, 1086–1098.CrossRefGoogle ScholarPubMed
Wiebusch, L., Uecker, R., and Hagemeier, C. (2003). Human cytomegalovirus prevents replication licensing by inhibiting MCM loading onto chromatin. EMBO Rep., 4, 42–46.CrossRefGoogle ScholarPubMed
Yang, S., Netterwald, J., Wang, W., and Zhu, H. (2005). Characterization of the elements and proteins responsible for interferon-stimulated gene induction by human cytomegalovirus. J. Virol., 79, 5027–5034.CrossRefGoogle ScholarPubMed
Yu, D., Silva, M. C., and Shenk, T. (2003). Functional map of human cytomegalovirus AD 169 defined by global mutational analysis. Proc. Natl Acad. Sci. USA, 100, 12396–12401.CrossRefGoogle Scholar
Yu, Y. and Alwine, J. C. (2002). Human cytomegalovirus major immediate–early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3'-OH kinase pathway and the cellular kinase Akt. J. Virol., 76, 3731–3738.CrossRefGoogle ScholarPubMed
Yurochko, A. D., Kowalik, T. F., Huong, S. M., and Huang, E. S. (1995). Human cytomegalovirus upregulates NF -kappa B activity by transactivating the NF -kappa B p105/p50 and p65 promoters. J. Virol., 69, 5391–5400.Google ScholarPubMed
Yurochko, A. D., Hwang, E. S., Rasmussen, L., Keay, S., Pereira, L., and Huang, E. S. (1997a). The human cytomegalovirus UL 55 (gB) and UL 75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF -kappaB during infection. J. Virol., 71, 5051–5059.Google Scholar
Yurochko, A. D., Mayo, M. W., Poma, E. E., Baldwin, A. S. Jr., and Huang, E. S. (1997b). Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF -kappaB promoters. J. Virol., 71, 4638–4648.Google Scholar
Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE 1 and IE 2 proteins block apoptosis. J. Virol., 69, 7960–7970.Google Scholar
Zhu, H., Cong, J. P., and Shenk, T. (1997). Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNA s: induction of interferon-responsive RNA s. Proc. Natl Acad. Sci. USA, 94, 13985–13990.CrossRefGoogle Scholar
Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95, 14470–14475.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×