Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T17:55:43.852Z Has data issue: false hasContentIssue false

1 - Disseminated intravascular coagulation in obstetrics, pregnancy, and gynecology: Criteria for diagnosis and management

Published online by Cambridge University Press:  01 February 2010

Rodger L. Bick M.D., Ph.D., F.A.C.P.
Affiliation:
Clinical Professor of Medicine and Pathology, University of Texas Southwestern Medical Center, Director: Dallas Thrombosis Hemostasis and Vascular Medicine Clinical Center, Dallas, Texas, USA
Deborah Hoppensteadt Ph.D., D.I.C.
Affiliation:
Associate Professor of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Syndromes of disseminated intravascular coagulation in obstetrics, pregnancy and gynecology Objective criteria for diagnosis and management

Introduction

Disseminated intravascular coagulation is a confusing syndrome, regarding diagnostic and therapeutic modalities. Confusion and controversy stem from (1) the fact that many unrelated clinical scenario may induce DIC (2) a lack of uniformity in clinical manifestations (3) confusion regarding appropriate laboratory diagnosis and (4) unclear guidelines for management with respect to specific therapeutic modalities potentially available. Recommendations for and evaluation of management becomes even more difficult because: (1) the morbidity and survival is often dependent on the specific cause of DIC and (2) few of the generally used specific modes of therapy, heparin, antithrombin concentrate, protein C concentrate, and others, have been subjected to objective prospective randomized trials, except antithrombin concentrates.

This chapter provides specific and objective guidelines and criteria for (1) the clinical diagnosis, (2) laboratory diagnosis, and (3) to provide objective systems to assess efficacy of any given specific therapeutic modality, independent of influences of the underlying (inducing) disease causing the DIC in obstetrical, pregnancy or gynecological patients. This approach allows for objective decisions regarding diagnosis and management in particular obstetric and gynecological settings and in individual patients. A general review of the etiology, pathophysiology, clinical and laboratory diagnosis, and management modalities suggested for DIC in obstetrics and gynecology is provided.

Disseminated intravascular coagulation (DIC) is an intermediary mechanism of disease usually seen in association with well-defined clinical disorders.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bick, R. L.Disseminated intravascular coagulation: objective criteria for diagnosis and management. Medical Clinics North America, 78: 511, 1994.CrossRefGoogle ScholarPubMed
Bick, R. L. Disseminated intravascular coagulation syndromes in obstetrics, pregnancy and gynecology. In Bick, R. L., ed. Hematology Oncology Clinics North America, W. B. Saunders, Philadelphia, 10: 999, 2000.Google Scholar
Bick, R. L.Disseminated intravascular coagulation: etiology, pathophysiology, diagnosis and management: guidelines for care. Clinical Applied Thrombosis Hemostasis, 8: 1, 2002.CrossRefGoogle Scholar
Bick, R. L.Disseminated intravascular coagulation: pathophysiological mechanisms and manifestations. Sem. Thromb. Hemostas., 24: 3, 1998.CrossRefGoogle ScholarPubMed
Bick, R. L.Disseminated intravascular coagulation: objective laboratory diagnostic criteria and guidelines for management. Clinics in Laboratory Medicine, 14: 729, 1994.Google ScholarPubMed
Bick, R. L. and Baker, W. F.Disseminated intavascular coagulation. Hematologic Pathology, 6: 1, 1992.Google Scholar
Lasch, H. G. and Henne, D. L., Huth, K. and Sandritter, W.Pathophysiology, clinical manifestations, and therapy of consumptive coagulopathy. Am. J. Cardiol., 20: 381, 1967.CrossRefGoogle Scholar
Rodriquez-Erdman, F.Bleeding due to increased intravascular blood coagulation: hemorrhagic syndromes caused by consumption of blood-clotting factors (consumption coagulopathies). N. Eng. J. Med., 273: 1370, 1965.CrossRefGoogle Scholar
Seegers, W. H.Factors in the control of bleeding. Cincinnati J. Med., 31: 395, 1950.Google ScholarPubMed
Ratnoff, O. D., Pritchard, J. A., Colopy, J. A.Hemorrhagic states during pregnancy. I. N. Engl. J. Med., 253: 63, 1955.CrossRefGoogle Scholar
Ratnoff, O. D., Pritchard, J. A., Colopy, J. A.Hemorrhagic states during pregnancy. II. N. Engl. J. Med., 253: 97, 1955.CrossRefGoogle Scholar
Bick, R. L.Disseminated intravascular coagulation: objective criteria for clinical and laboratory diagnosis and assessment of therapeutic response. Clin. Appl. Thrombosis Hemostasis, 1: 3, 1995.CrossRefGoogle Scholar
Bick, R. L. Syndromes of disseminated intravascular coagulation. Chapter 2. In Disseminated Intravascular Coagulation and Related Syndromes. CRC Press, Boca Raton, FL, 1982.Google Scholar
Steiner, P. E. and Lushbough, C. C.Maternal pulmonary embolism by amniotic fluid as a cause of shock and unexplained deaths in obstetrics. JAMA, 117: 1245, 1941.CrossRefGoogle Scholar
Graeff, N. and Kuhn, W. The Amniotic Infection Syndrome In Coagulation Disorders in Obstetrics. W. B. Saunders, Philadelphia, 1980. pp. 91–5.Google Scholar
Sperry, K.Amniotic fluid embolism: to understand an enigma. JAMA, 255: 2183, 1986.CrossRefGoogle ScholarPubMed
Fiana, S.Maternal mortality in Sweden: 1955–1974. Acta Obstet. Gynecol. Scand., 57: 129, 1978.CrossRefGoogle Scholar
Locksmith, G. J.Amniotic fluid embolism. Obstetrics & Gynecology Clinics of North America, 26: 435, 1999.CrossRefGoogle ScholarPubMed
Nadesan, K. and Jayalakshmi, P.Sudden maternal deaths from amniotic fluid embolism. Ceylon Medical Journal, 42: 185, 1997.Google ScholarPubMed
Gilbert, W. M. and Danielsen, B.Amniotic fluid embolism: decreased mortality in a population-based study. Obstetrics & Gynecology, 93: 973, 1999.Google ScholarPubMed
Lamy, C., Sharshar, T. and Mas, J. L.Cerebrovascular diseases in pregnancy and puerperium. Revue Neurologique, 152: 422, 1996.Google ScholarPubMed
Mas, J. L. and Lamy, C.Stroke in pregnancy and the puerperium. [Review] [89 refs.] Journal of Neurology, 245: 305, 1998.CrossRefGoogle ScholarPubMed
Peterson, E. P. and Taylor, H. B.Amniotic fluid embolism: an analysis of 40 cases. Obstet. Gynecol., 35: 787, 1970.Google ScholarPubMed
Aznar, J., Gilabert, J., Estelles, A., et al. Evaluation of the soluble fibrin monomer complexes and other coagulation parameters in obstetric patients. Thromb. Research, 27: 691, 1982.CrossRefGoogle ScholarPubMed
Minna, J. D., Robboy, S. J. and Coleman, R. W. Disseminated intravascular coagulation in man. Charles C. Thomas, Springfield, IL, 1974, pp. 12–15 and pp. 156–7.
Aguillon, A., Andrus, T., Grayson, A., et al. Amniotic fluid embolism: a review. Obstet. Gynecol. Survey, 17: 619, 1962.CrossRefGoogle ScholarPubMed
Cortney, L. D.Amniotic fluid embolism. Obstet. Gynecol. Survey, 29: 169, 1974.CrossRefGoogle Scholar
D'Addato, F., Repinto, A. and Angeli, G.Amniotic fluid embolism in trial of labor. A case report. Minerva Ginecologica, 49: 217, 1997.Google ScholarPubMed
Judich, A., Kuriansky, J., Engelberg, I., et al. Amniotic fluid embolism following blunt abdominal trauma in pregnancy. Injury, 29: 475, 1998.CrossRefGoogle ScholarPubMed
Morgan, M.Amniotic fluid embolism. Anesthesia, 34: 20, 1979.CrossRefGoogle ScholarPubMed
Price, T., Baker, V. V. and Cefalo, R. L.Amniotic fluid embolism: three case reports with a review of the literature. Obstet. Gynecol. Survey, 40: 462, 1985.CrossRefGoogle ScholarPubMed
Albrechtsen, O. K.Hemorrhagic disorders following amniotic fluid embolism. Clinical Obstet. Gynecol., 7: 361, 1964.CrossRefGoogle Scholar
Russell, W. S. and Jones, W. H.Amniotic fluid embolism: a review of the syndrome with a report of 4 Cases. Obstet. Gynecol., 26: 476, 1965.Google ScholarPubMed
Gross, P. and Benz, E. J.Pulmonary embolism by amniotic fluid: report of three cases with a new diagnostic procedure. Surg. Gynecol. Obstet., 85: 315, 1947.Google ScholarPubMed
Reid, D. E., Weiner, A. E. and Roby, C. L.Intravascular clotting and afibrinogenemia, the presumptive lethal factors in the syndrome of amniotic fluid embolism. Am. Journal Obstet. Gynecol., 66: 466, 1953.CrossRefGoogle ScholarPubMed
Aznar, J., Gilabert, J., Estelles, A., et al. Evaluation of plasminogen and other fibrinolytic parameters in the amniotic fluid (letter)Thromb. Haemostas., 43: 182, 1980.Google Scholar
Beller, F. K., Douglas, A. W., Debrovnet, C. H., et al. The fibrinolytic system in amniotic fluid embolism. Am. Journal Obstet. Gynecol., 87: 48, 1963.CrossRefGoogle Scholar
Atwood, H. D.The histological diagnosis of amniotic fluid embolism. Journal Path. Bacterial, 76: 211, 1958.CrossRefGoogle Scholar
Yaffe, H., Eldor, A., Hornshtein, E., et al. Thromboplastic activity in amniotic fluid during pregnancy. Obstet. Gynecol., 50: 454, 1977.Google ScholarPubMed
Yaffe, H., Hay-am, E. and Sadovsky, E.Thromboplastic activity of amniotic fluid in term and postmature Gestations. Obstet. Gynecol., 57: 490, 1981.Google ScholarPubMed
Liban, E. and Raz, S.A clinicopathologic study of fourteen cases of amniotic fluid embolism. Am. Journal Clinical Pathol., 51: 477, 1969.CrossRefGoogle ScholarPubMed
Sparr, R. A. and Prichard, J. A.Studies to detect the escape of amniotic fluid into the maternal circulation during parturition. Surg. Gynecol. Obstet., 107: 560, 1958.Google ScholarPubMed
Petroianu, G. A., Altmannsberger, S. H., Maleck, W. H., et al. Meconium and amniotic fluid embolism: effects on coagulation in pregnant mini-pigs. Critical Care Medicine, 27: 348, 1999.CrossRefGoogle ScholarPubMed
Kobayashi, H., Ooi, H., Hayakawa, H., et al. Histological diagnosis of amniotic fluid embolism by monoclonal antibody TKH-2 that recognizes NeuAc alpha 2–6GalNAc epitope. Human Pathology, 28: 428, 1997.CrossRefGoogle ScholarPubMed
Oi, H., Kobayashi, H., Hirashima, Y., et al. Serological and immunohistochemical diagnosis of amniotic fluid embolism. Seminars in Thrombosis & Hemostasis, 24: 479, 1998.CrossRefGoogle ScholarPubMed
Lunetta, P. and Penttila, A.Immunohistochemical identification of syncytiotrophoblastic cells and megakaryocytes in pulmonary vessels in a fatal case of amniotic fluid embolism. International Journal of Legal Medicine, 108: 210, 1996.CrossRefGoogle Scholar
Bick, R. L., Dukes, M. L., Wilson, W. L., et al. Antithrombin III (AT-III) as a diagnostic aid in disseminated intravascular coagulation. Thromb. Res., 10: 721, 1977.CrossRefGoogle ScholarPubMed
Vedernikov, Y. P., Saade, G. R., Zlatnik, M., et al. The effect of amniotic fluid on the human omental artery in vitro. Am. J. Obstet. Gynecol., 180: 454, 1999.CrossRefGoogle ScholarPubMed
Khong, T. Y.Expression of endothelin-1 in amniotic fluid embolism and possible pathophysiological mechanism. Brit. J. Obstet. Gynaecol., 105: 802, 1998.CrossRefGoogle ScholarPubMed
English, C. J., Poller, L. and Burslem, R. W.A study of the procoagulant properties of amniotic fluid and their correlation with the lecithin/sphingomyelin ratio. Brit. J. Obstet. Gynaecol., 88: 133, 1981.CrossRefGoogle ScholarPubMed
Pusey, M. L. and Mende, T. J.Studies on the procoagulant activity of human amniotic fluid I. Stability and coagulation factor requirements. Throb. Res., 39: 355, 1985.CrossRefGoogle ScholarPubMed
Pusey, M. L. and Mende, T. J.Studies on the procoagulant activity of human amniotic Fluid II. The role of Factor VII. Thromb. Res., 39: 571, 1985.CrossRefGoogle ScholarPubMed
Bick, R. L. and Murano, G. Physiology of hemostasis (Chapter 1) In Disorders of Thrombosis & Hemostasis: Clinical & Laboratory Practice, Lippincott Williams & Wilkins, Philadelphia, 2002, p. 1.Google Scholar
Bussen, S., Schwarzmann, G. and Steck, T.Clinical aspects and therapy of amniotic fluid embolism. Illustration based on a case report. Zeitschrift fur Geburtshilfe und Neonatologie, 201: 95, 1997.Google ScholarPubMed
Davies, S.Amniotic fluid embolism and isolated disseminated intravascular coagulation. Canadian Journal of Anaesthesia, 46: 456, 1999.CrossRefGoogle ScholarPubMed
Heerden, P. V., Webb, S. A., Hee, G., et al. Inhaled aerosolized prostacyclin as a selective pulmonary vasodilator for the treatment of severe hypoxaemia. Anaesthesia & Intensive Care, 24: 87, 1996.Google ScholarPubMed
Strickland, M. A., Bates, A. W., Whitworth, H. S., et al. Amniotic fluid embolism: prophylaxis with heparin and aspirin. South. Med. Journal, 78: 377, 1985.CrossRefGoogle ScholarPubMed
Bick, R. L., Fekete, L. F. and Wilson, W. L.Treatment of disseminated intravascular coagulation with antithrombin III. Trans. Am. Soc. Hematol., 1976, p. 167.Google ScholarPubMed
Vinazzer, H.Antithrombin III in shock and disseminated intravascular coagulation. Clin. Appl. Thromb. Hemost., 1: 62, 1995.CrossRefGoogle Scholar
Vinazzer, H.Hereditary and acquired antithrombin deficiency. Seminars Thrombosis Hemostasis, 25: 257, 1999.CrossRefGoogle ScholarPubMed
Suzuki, S. and Morishita, S.Hypercoagulability and DIC in high-risk infants. Seminars in Thrombosis & Hemostasis, 24: 463, 1998.CrossRefGoogle ScholarPubMed
Bick, R. L., Arun, B. and Frenkel, E. P.Disseminated intravascular coagulation: clinical and pathophysiological mechanisms and manifestations. Haemostasis, 29: 111, 1999.Google ScholarPubMed
Bick, R. L.Disseminated intravascular coagulation: objective clinical and laboratory diagnosis, treatment and assessment of therapeutic response. Seminars Thrombosis Hemostasis, 22: 69, 1996.CrossRefGoogle ScholarPubMed
Hafter, R. and Graeff, H.Molecular aspects of defibrination in a reptilase-treated case of “dead-fetus syndrome”. Thromb. Res., 7: 391, 1975.CrossRefGoogle Scholar
Steichele, D. F.Consumptive coagulopathy in obstetrics and gynecology. Thromb. Diath. Haemorrh. (Suppl.), 36: 177, 1969.Google Scholar
Brenner, B. M. Vascular injury to the kidney (Chapter 277). In Fauci, A. S., Braunwald, E., Isselbacher, K. J., et al. eds. Principles of internal Medicine, Edn 14. McGraw-Hill, St. Louis, MO. 1998, p. 1558.Google Scholar
Mjahed, K., Hammamouchi, B., Hammoudi, D., et al. Critical analysis of hemostasis disorders in the course of eclampsia. Report of 106 cases. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction, 27: 607, 1998.Google ScholarPubMed
Porozhanova, V., Bozhinova, S. and Khristova, V.The perinatal outcome in adolescents with eclampsia and the HELLP syndrome. Akusherstvo i Ginekologiia, 35: 14, 1996.Google ScholarPubMed
Yao, T., Yao, H. and Wang, H.Diagnosis and treatment of nephrotic syndrome during pregnancy. Chinese Medical Journal, 109: 471, 1996.Google ScholarPubMed
Bonnar, J., McNicol, G. P. and Douglas, A. S.Coagulation and fibrinolytic systems in pre-eclampsia and eclampsia. Br. Med. J., 1: 12, 1971.CrossRefGoogle Scholar
Schjetlein, R., Haugen, G. and Wisloff, F.Markers of intravascular coagulation and fibrinolysis in preeclampsia: association with intrauterine growth retardation. Acta Obstetricia et Gynecologica Scandinavica, 76: 541, 1997.CrossRefGoogle ScholarPubMed
Verduzco Rodriguez, L., Gonzalez Puebla, E., Manffrini Madrid, F., et al. D-dimer in different stages of pregnancy toxemia. A pilot study. Ginecologia y Obstetricia de Mexico, 66: 77, 1998.Google ScholarPubMed
Ishibashi, M., Ito, N., Fujita, M., et al. Endothelin-1 as an aggravating factor of disseminated intravascular coagulation associated with malignant neoplasms. Cancer, 73: 191, 1994.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Jones, S. L.HELLP: A cry for laboratory assistance – a comprehensive review of the HELLP syndrome highlighting the role of the laboratory. Hematopathology & Molecular Hematology, 11: 147, 1998.Google ScholarPubMed
Carpani, G., Bozzo, M., Ferrazzi, E., et al. The evaluation of maternal parameters at diagnosis may predict HELLP syndrome severity. J. Maternal Fetal Neonatal Medicine, 13: 147, 2003.CrossRefGoogle ScholarPubMed
Cincotta, R. and Ross, A.A review of eclampsia in Melbourne: 1978–1992. Australian & New Zealand Journal of Obstetrics & Gynaecology, 36: 264, 1996.CrossRefGoogle ScholarPubMed
D'Anna, R.The HELLP syndrome. Notes on its pathogenesis and treatment. Minerva Ginecologica, 48: 147, 1996.Google ScholarPubMed
Portis, R., Jacobs, M. A., Skerman, J. H., et al. HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets) pathophysiology and anesthetic considerations. AANA Journal, 65: 37, 1997.Google ScholarPubMed
Stone, J. H.HELLP Syndrome: hemolysis, elevated liver enzymes, and low platelets. JAMA, 280: 559, 1998.CrossRefGoogle ScholarPubMed
Debette, M., Samuel, D., Ichai, P., et al. Labor complications of the HELLP syndrome without any predictive factors. Gastroenterologie Clinique et Biologique, 23: 264, 1999.Google ScholarPubMed
Paternoster, D. M., Rodi, J., Santarossa, C., et al. Acute pancreatitis and deep vein thrombosis associated with the HELLP syndrome. Minerva Ginecologica, 51: 31, 1999.Google ScholarPubMed
Sheikh, R. A., Yasmeen, S., Pauly, M. P., et al. Spontaneous intrahepatic hemorrhage and hepatic rupture in the HELLP syndrome: four cases and a review. Journal of Clinical Gastroenterology, 28: 323, 1999.CrossRefGoogle ScholarPubMed
Weemhoff, R. A., Loon, A. J. and Aarnoudse, J. G.Liver rupture in pregnancy: a life-threatening complication of the HELLP syndrome. Nederlands Tijdschrift voor Geneeskunde, 140: 2140, 1996.Google ScholarPubMed
Magann, E. F. and Martin, J. N.Twelve steps to optimal managment of HELLP Syndrome. Clinical Obstet. Gynecol., 42: 532, 1999.CrossRefGoogle Scholar
O'Boyle, J. D., Magann, E. F., Waxman, E., et al. Dexamethasone-facilitated postponement of delivery of an extremely preterm pregnancy complicated by the syndrome of hemolysis, elevated liver enzymes, and low platelets. Military Medicine, 164: 316, 1999.CrossRefGoogle ScholarPubMed
Vigil-De Gracia, P. and Garcia-Caceres, E.Dexamethasone in the post-partum treatment of HELLP syndrome. International Journal of Gynaecology & Obstetrics, 59: 217, 1997.CrossRefGoogle ScholarPubMed
Yalcin, O. T., Sener, T., Hassa, H., et al. Effects of postpartum corticosteroids in patients with HELLP syndrome. International Journal of Gynaecology & Obstetrics, 61: 141, 1998.CrossRefGoogle ScholarPubMed
Hamada, S., Takishita, Y., Tamura, T., et al. Plasma exchange in a patient with postpartum HELLP syndrome. Journal of Obstetrics and Gynaecology Research, 22: 371, 1996.CrossRefGoogle Scholar
Owen, C. A., Bowie, E. J. W. and Cooper, H. A.Turnover of fibrinogen and platelets in dogs undergoing induced intravascular coagulation. Thromb. Res., 2: 251, 1973.CrossRefGoogle Scholar
Rath, W.Aggressive versus conservative management of HELLP syndrome – a status assessment. Geburtshilfe und Frauenheilkunde, 56: 265, 1996.CrossRefGoogle ScholarPubMed
Spivack, J. L., Sprangler, D. B. and Bell, W. R.Defibrination after intra-amniotic injection of hypertonic saline. N. Engl. J. Med., 287: 321, 1972.CrossRefGoogle Scholar
Frenkel, E. and Bick, R. L. Thrombohemorrhagic defects associated with malignancy (Ch. 12) In Disorders of Thrombosis & Hemostasis: Clinical & Laboratory Practice, Lippincott Williams & Wilkins, Philadelphia, 2002, p. 265.Google Scholar
Bick, R. L. Alterations of hemostasis associated with malignancy (Ch. 11). In Murano, G., Bick, R. L., eds. Basic Concepts of Hemostasis and Thrombosis, CRC Press, Boca Raton, FL, 1980, p. 213.Google Scholar
Bick, R. L. Alterations of hemostasis in malignancy (Ch. 12) In Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice, ASCP Press, Chicago, 1992, p. 239.Google Scholar
Bick, R. L., Strauss, J. F. and Rutherford, C. J., et al. Thrombosis and hemorrhage in oncology patients. Hematology Oncology Clinics North America, 10: 875, 1996.CrossRefGoogle ScholarPubMed
Cafagna, D. and Ponte, E.Pulmonary embolism of paraneoplastic origin. Minerva Medica, 88: 523, 1997.Google ScholarPubMed
Frenkel, U. P. and Bick, R. L.Issues of thrombosis and hemorrhagic events in patients with cancer. Anticancer Research, 18: 1, 1998.Google Scholar
Weltermann, A., Mitterbauer, G. J., Mittebauer, M., et al. Disseminated intravascular coagulation (DIC) with massive hyperfibrinolysis in metastatic uterine cancer: observations on the effects on the coagulopathy of various treatments. Weiner Klinische Wochenschrift, 110: 53, 1998.Google ScholarPubMed
Bick, R. L.Coagulation abnormalities in malignancy. Seminars Thrombosis Hemostasis, 18: 353, 1992.CrossRefGoogle ScholarPubMed
Bick, R. L. Disseminated intravascular coagulation: section 6. Conn's Current Therapy. W. B. Saunders, Philadelphia, 2003, p. 442.Google Scholar
Bick, R. L.Disseminated intravascular coagulation: a clinical review. Sem. Thromb. Hemostas., 14: 299, 1988.CrossRefGoogle ScholarPubMed
Bick, R. L. and Kunkel, L.Disseminated intravascular coagulation. Int. J. Hematology, 55: 1, 1992.Google ScholarPubMed
Bick, R. L. and Scates, S.Disseminated intravascular coagulation. Laboratory Medicine, 23: 161, 1992.CrossRefGoogle Scholar
Bick, R. L.Disseminated intravascular coagulation and related syndromes. A review. Am. J. Hematol., 5: 265, 1978.CrossRefGoogle Scholar
Davis, R. B., Theologides, A. and Kennedy, B. J.Comparative studies of blood coagulation and platelet aggregation in patients with cancer and non-malignant disease. Ann. Intern. Med., 71: 67, 1969.CrossRefGoogle Scholar
Goodnight, S. H.Bleeding and intravascular clotting in malignancy: a review. Ann. NY Acad. Sci., 230: 271, 1974.CrossRefGoogle ScholarPubMed
Gralnick, H. R. and Tan, H. K.Acute promyelocytic leukemia. A model for understanding the role of the malignant cells in hemostasis. Human Path, 5: 661, 1974.CrossRefGoogle ScholarPubMed
Leavy, R. A.Kahn, S. B. and Brodsky, I.Disseminated intravascular coagulation: a complication of chemotherapy in acute promyelocytic leukemia. Cancer, 26: 142, 1970.3.0.CO;2-J>CrossRefGoogle Scholar
Bick, R. L.Disseminated intravascular coagulation: current concepts of etiology, pathophysiology, diagnosis and management. (Ch. 8) In Hematology Oncology Clinics North America, 17: 149, 2003.CrossRefGoogle Scholar
Pineo, G. F., Brain, M. C. and Gallus, A. S.Tumors, mucus production, and hypercoagulability. Ann. NY Acad. Sci., 230: 262, 1974.CrossRefGoogle ScholarPubMed
Pineo, G. F., Regorczi, F., Hatton, M. W. C.The activation of coagulation by extracts of mucin: a possible pathway of intravascular coagulation accompanying adenocarcinomas. J. Lab. Clin. Med., 82: 255, 1973.Google ScholarPubMed
Harpel, P. C.Alpha-2-plasmin inhibitor and alpha-2-macroglobulin-plasmin complexes in plasma. J. Clin. Invest., 68: 46, 1981.CrossRefGoogle Scholar
Bick, R. L. Basic mechanisms of hemostasis pertaining to DIC (Ch. 1). In Disseminated Intravascular Coagulation and Related Syndromes. CRC Press, Boca Raton, FL, 1983, p. 1.Google Scholar
Bick, R. L. Disseminated intravascular coagulation and related syndromes (Ch. 7). In Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. ASCP Press, Chicago, 1992, p. 137.Google Scholar
Cheung, D. K., Raaf, J. H.Selection of patients with malignant ascites for a peritoneovenous shunt. Cancer, 50: 1204, 1982.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Harmon, D. C., Demirjian, Z. and Ellman, L.Disseminated intravascular coagulation with the peritoneovenous shunt. Ann. Int. Med., 90: 714, 1979.CrossRefGoogle ScholarPubMed
Lerner, R. G., Nelson, J. C., Corines, P., et al. Disseminated intravascular coagulation: complication of LeVeen peritoneovenous shunts. JAMA, 240: 2064, 1984.CrossRefGoogle Scholar
Stein, S. F., Fulenwider, J. T. and Ansley, J. D.Accelerated fibrinogen and platelet destruction after peritoneovenous shunting. Arch. Int. Med., 141: 1149, 1981.CrossRefGoogle ScholarPubMed
Bick, R. L. and Tse, N.Hemostasis abnormalities associated with prosthetic devices and organ transplantation. Laboratory Medicine, 23: 462, 1992.CrossRefGoogle Scholar
Egeberg, O.Blood coagulation and intravascular hemolysis. Scand. J. Clin. Lab. Invest., 14: 217, 1962.CrossRefGoogle ScholarPubMed
Krevins, J. R., Jackson, D. P., Cowley, C. L., et al. The nature of the hemorrhagic disorder accompanying hemolytic transfusion reactions in man. Blood, 12: 834, 1957.Google Scholar
Langdell, R. D. and Hedgpeth, E. M.A study of the role of hemolysis in the hemostatic defect of transfusion reactions. Thromb. Diath. Haemorrh., 3: 566, 1959.Google ScholarPubMed
Surgenor, D. M.Erythrocytes and blood coagulation. Thromb. Diath. Haemorrh., 32: 247, 1974.Google ScholarPubMed
Abildgaard, C. F., Corrigan, J. J., Seeler, R. A., et al. Meningiococcemia associated with intravascular coagulation. Pediatrics, 40: 78, 1967.Google Scholar
Corrigan, J. J.Changes in the blood coagulation system associated with septicemia. N. Engl. J. Med., 279: 851, 1968.CrossRefGoogle ScholarPubMed
Yoshikawa, T., Tanaka, R., and Guze, L. B.Infection and disseminated intravascular coagulation. Medicine (Baltimore), 50: 237, 1971.CrossRefGoogle ScholarPubMed
Ceriello, A., Giacomello, R., Colatutto, A., et al. Increased prothrombin fragment 1 + 2 in Type I diabetic patients. Haemostasis, 22: 50, 1992.Google ScholarPubMed
Cline, M. J., Melmon, K. L., Davis, W. C., et al. Mechanism of endotoxin interaction with leukocytes. Br. J. Haematol., 15: 539, 1968.CrossRefGoogle Scholar
McKay, D. G., and Shapiro, S. S.Alterations in the blood coagulation system induced by bacterial endotoxin I: in vitro (generalized Schwartzman reaction). J. Exp. Med., 107: 353, 1958.CrossRefGoogle Scholar
Cronberg, S., Skansberg, P., Nivenios-Larsson, K.Disseminated intravascular coagulation in septicemia caused by beta-hemolytic streptococci. Thromb. Res., 3: 405, 1973.CrossRefGoogle Scholar
Rubenberg, W. L., Baker, L. R., McBride, J. A., et al. Intravascular coagulation in a case of clostridium perfringens septicemia: treatment by exchange transfusion and heparin. Br. Med. J., 3: 271, 1967.CrossRefGoogle Scholar
Gagel, C., Linder, M., Muller-Berghous, G., et al. Virus infection and blood coagulation. Thromb. Diath. Haemorrh., 23: 1, 1970.Google Scholar
McKay, D. G. and Margaretten, W.Disseminated intravascular coagulation in virus diseases. Arch. Intern. Med., 120: 129, 1967.CrossRefGoogle ScholarPubMed
Salmon, S. J., Lambert, P. H., Louis, J.Pathogenesis of the intravascular coagulation syndrome induced by immunological reactions. Thromb. Diath. Haemorrh., 45: 161, 1971.Google Scholar
Muller-Berghaus, G.Pathophysiologic and biochemical events in disseminated intravascular coagulation: dysregulation of procoagulant and anticoagulant pathways. Sem. Thromb. Hemostas., 15: 58, 1989.CrossRefGoogle ScholarPubMed
McKay, D. G., Margaretten, W. and Csavossy, I.An electron microscope study of the effects of bacterial endotoxin on the blood-vascular system. Lab. Invest., 15: 1815, 1966.Google ScholarPubMed
Latallo, Z. S.Products of fibrin(ogen) proteolysis. Thromb. Diath. Haemorrh. (Suppl.), 24: 145, 1973.Google Scholar
Marder, V. J., Shulman, H. R. and Carroll, W. R.High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physico-chemical and immunological characterization. J. Biol. Chem., 244: 2111, 1969.Google Scholar
Marder, V. J., Budzynski, A. Z. and James, H. L.High molecular weight derivatives of human fibrinogen produced by plasmin. III. Their NH2-terminal amino acids and comparison of the “NH2-terminal amino disulfide knot”. J. Biol. Chem., 247: 4775, 1972.Google Scholar
Bang, N. U. and Chang, M.Soluble fibrin complexes. Seminar Thromb. Hemost., 1: 91, 1974.CrossRefGoogle Scholar
Breen, F. A. and Tullis, J. Z.Ethanol gelation, a rapid screening test for intravascular coagulation. Ann. Intern. Med., 69: 111, 1968.CrossRefGoogle ScholarPubMed
Fletcher, A. P., Alkjaersig, N., Fisher, S., et al. The proteolysis of fibrinogen by plasmin: the identification of thrombin-clottable fibrinogen derivatives which polymerize abnormally. J. Lab. Clin. Med., 68: 780, 1966.Google ScholarPubMed
Gurewich, V. and Hutchinson, E.Detection of intravascular coagulation by protamine sulfate and ethanol gelation tests. Thromb. Res., 2: 539, 1973.CrossRefGoogle Scholar
Bick, R. L.The clinical significance of fibrinogen degradation products. Seminars Thromb. Hemost., 8: 302, 1982.CrossRefGoogle ScholarPubMed
Kopec, M., Wegrzynowiczy, Z., Budzynski, A., et al. Interaction of fibrinogen degradation products with platelets. Exp. Biol. Med., 3: 73, 1968.Google Scholar
Niewiarowski, S., Regoeczi, E., Stewart, G., et al. Platelet interaction with polymerizing fibrin. J. Clin. Invest., 51: 685, 1972.CrossRefGoogle ScholarPubMed
Robson, S., Shephard, E. and Kirsch, R.Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1 beta, IL-6 and plasminogen activator inhibitors from monocytes in vitro. Br. J. Haematol., 86: 322, 1994.CrossRefGoogle ScholarPubMed
Gando, S., Kameue, T., Nanzaki, S., et al. Cytokines, soluble thrombomodulin and disseminated intravascular coagulation in patients with systemic inflammatory response syndrome. Thrombosis Research, 80: 519, 1995.CrossRefGoogle ScholarPubMed
Okajima, K., Uchiba, M., Murakami, K., et al. Plasma levels of soluble E-selectin in patients with disseminated intravascular coagulation. Am. J. Hematol., 54: 219, 1997.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Ono, S., Mochizuki, H. and Tamakuma, S.A clinical study on the significance of platelet-activating factor in the pathophysiology of septic disseminated intravascular coagulation in surgery. Am. J. Surgery, 171: 409, 1996.CrossRefGoogle ScholarPubMed
Elsayed, Y., Nakagawa, K., Ichikawa, K., et al. Expression of tissue factor and interleukin-1 beta in a novel rabbit model of disseminated intravascular coagulation induced by carrageenan and lipopolysaccharide. Pathobiology, 63: 328, 1995.CrossRefGoogle Scholar
Hoffman, M. and Cooper, S. T.Thrombin enhances monocyte secretion of tumor necrosis factor and interleukin-1 by two distinct mechanisms. Blood Cells, Molecules and Diseases, 21: 156, 1995.CrossRefGoogle ScholarPubMed
Okajima, K., Fujise, R., Motosato, Y., et al. Plasma levels of granulocyte elastase-alpha 1-proteinase inhibitor complex in patients with disseminated intravascular coagulation: pathophysiologic implications. Am. J. Hematol., 47: 82, 1994.CrossRefGoogle ScholarPubMed
Muller-Berghous, G.Pathophysiology of generalized intravascular coagulation. Seminars Thromb. Hemost., 3: 209, 1977.CrossRefGoogle Scholar
Nilsson, I. M.Local fibrinolysis as a mechanism for haemorrhage. Thromb. Diath. Haemorh., 34: 623, 1975.Google ScholarPubMed
Stormorken, H.Relation of the fibrinolytic to other biological systems. Thromb. Diath. Haemorrh., 34: 378, 1975.Google ScholarPubMed
Schreiber, A. D., Austen, K. F.Interrelationships of the fibrinolytic, coagulation, kinin generation, and complement systems. Seminars Hematol., 6: 593, 1973.Google Scholar
Collins, P., Noble, K., Reittie, J., et al. Induction of tumor factor expression in human monocyte/endothelium cocultures. Br. J. Haematol., 91: 963, 1995.CrossRefGoogle Scholar
Gando, S., Nakanishi, Y. and Tedo, I.Cytokines and plasminogen activator inhibitor-1 in post-trauma disseminated intravascular coagulation: relationship to multiple organ dysfunction. Critical Care Medicine, 23: 1835, 1995.CrossRefGoogle Scholar
Kaplan, A., Meier, H. and Mandel, R.The Hageman factor dependent pathways of coagulation, fibrinolysis, and kinin generation. Seminars Thromb. Hemost., 3: 6, 1976.Google ScholarPubMed
Iwaarden, F. and Bouma, B.Role of high molecular weight kininogen in contact activation. Seminars Thromb. Hemost., 13: 15, 1987.CrossRefGoogle ScholarPubMed
Beller, F. K., Theiss, W.Fibrin derivitives, plasma hemoglobin and glomerular fibrin deposition in experimental intra-vascular coagulation. Thromb. Diath. Haemorrh., 29: 363, 1973.Google Scholar
McKay, D. G., Linder, M. M. and Cruse, V. K.Mechanisms of thrombosis of the microcirculation. Am. J. Pathol., 63: 231, 1971.Google Scholar
Bick, R. L.Disseminated intravascular coagulation. Hematology Oncology Clinics North America, 6: 1259, 1992.CrossRefGoogle ScholarPubMed
Lerner, R. G.The defibrination syndrome. Med. Clin. N. Am., 60: 871, 1976.CrossRefGoogle ScholarPubMed
Robboy, S. J., Coleman, R. W. and Minna, J. D.Pathology of disseminated intravascular coagulation (DIC). Analysis of 26 cases. Human Pathol., 3: 327, 1972.CrossRefGoogle ScholarPubMed
Owen, C. A. and Bowie, E. J. W.Chronic intravascular syndromes. Mayo Clinical Proc., 49: 673, 1974.Google ScholarPubMed
Skjorten, F.Hyaline microthrombi in an autopsy material. A quantitative study with discussion of the relationship to small vessel thrombosis. Acta Pathol. Microbiol. Scand., 76: 361, 1969.CrossRefGoogle Scholar
Bleyl, U.Morphologic diagnosis of disseminated intravascular coagulation: histologic, histochemical, and electron-microscopic studies. Seminars Thromb. Hemost., 3: 247, 1977.CrossRefGoogle Scholar
Morris, J. A., Smith, R. W. and Assali, N. S.Hemodynamic action of vaso-pressor and vaso-depressor agents in endotoxin shock. Am. J. Obstet. Gynecol., 91: 491, 1965.CrossRefGoogle Scholar
Bleyl, U., Kuhn, W. and Graeff, H.Reticulo-endotheliale clearance intravascaler. Fibrinmonere in der milz. Thromb. Diath. Haemorrh., 22: 87, 1969.Google Scholar
Boyd, J. F.Disseminated fibrin-thromboembolism among neonates dying within 48 hours of birth. Arch. Dis. Child., 42: 401, 1967.CrossRefGoogle Scholar
Bull, B., Kuhn, I. N.The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood, 35: 104, 1970.Google Scholar
Heyes, H., Kohle, W. and Slijerpcevic, B.The appearance of schistocytes in the peripheral blood in correlation to degree of disseminated intravascular coagulation. Haemostasis, 5: 66, 1976.Google ScholarPubMed
Bull, B., Rubenberg, M., Dacie, J., et al. Microangiopathic hemolytic anemia: mechanisms of red-cell fragmentation. Br. J. Haematol., 14: 643, 1968.CrossRefGoogle ScholarPubMed
Bick, R. L.Acquired platelet function defects. Hematology Oncology Clinics North America, 6: 1203, 1992.CrossRefGoogle ScholarPubMed
Karpatkin, S.Heterogeneity of human platelets. VI. Correlation of platelet function with platelet volume. Blood, 51: 307, 1978.Google ScholarPubMed
Blaisdell, F. W. and Stallone, R. J.The mechanism of pulmonary damage following traumatic shock. Surg. Gynecol. Obstet., 130: 15, 1970.Google ScholarPubMed
Breeman, V. L., Heustein, H. B. and Bruns, P. D.Pulmonary hyaline membranes studied with the electron microscope. Am. J. Pathol., 33: 769, 1957.Google Scholar
Martin, A. M., Soloway, H. B. and Simmons, R. L.Pathologic anatomy of the lungs following shock and trauma. J. Trauma, 8: 687, 1968.CrossRefGoogle ScholarPubMed
Soloway, H. B., Castillo, Y. and Martin, A. M.Adult hyaline membrane disease. Ann. Surg., 168: 937, 1968.CrossRefGoogle Scholar
Hardaway, R. M.Acute respiratory distress syndrome and disseminated intravascular coagulation. South Med. J., 71: 596, 1978.CrossRefGoogle ScholarPubMed
Hardaway, R. M.Syndromes of Disseminated Intravascular Coagulation with Special Reference to Shock and Hemorrhage. Charles C. Thomas, Springfield, Ill, 1966.Google Scholar
Muller-Berghous, and Mann, G. B.Precipitation of ancrod-induced soluble fibrin by aprotinin and norepinephrine. Thromb. Res., 2: 305, 1973.CrossRefGoogle Scholar
Latour, J. G., Prejean, J. B. and Margaretten, W.Corticosteroids and the generalized Schwartzman reaction. Mechanisms of sensitization in the rabbit. Am. J. Pathol., 65: 189, 1971.Google ScholarPubMed
Bick, R. L.Clinical hemostasis practice: the major impact of laboratory automation. Seminars Thromb. Hemost., 9: 139, 1983.CrossRefGoogle ScholarPubMed
Fareed, J., Bick, R. L., Hoppenstedt, D., et al. Molecular markers of hemostatic activation: implications in the diagnosis of thrombosis, vascular and cardiovascular disorders. Clinics Laboratory Medicine, 15: 39, 1995.Google Scholar
Messmore, H. L.Automation in coagulation testing: clinical applications. Seminars Thromb. Hemost., 9: 335, 1983.CrossRefGoogle ScholarPubMed
Marder, V. J., Matchett, M. O. and Sherry, S.Detection of serum fibrinogen and fibrin degradation products: comparison of six techniques using purified products and application in clinical studies. Am. J. Med., 51: 71, 1971.CrossRefGoogle ScholarPubMed
Myers, A. R., Bloch, K. J. and Coleman, R. W.A comparative study of four methods for detecting fibrinogen degradation products in patients with various diseases. N. Engl. J. Med., 283: 663, 1970.Google Scholar
Gurewich, V., Lipinsky, B. and Lipinska, I.A comparative study of precipitation and paracoagulation by protamine sulfate and ethanol gelation tests. Thromb. Res., 2: 539, 1973.CrossRefGoogle Scholar
Hedner, U. and Nilsson, I. M.Parallel determinations of FDP and fibrin monomers with various methods. Thromb. Diath. Haemorrh., 28: 268, 1972.Google ScholarPubMed
Slaastad, R. A. and Godal, N. C.Coagulation profile and ethanol gelation test with special reference to components consumed during coagulation. Scand. J. Haematol., 16: 25, 1976.CrossRefGoogle ScholarPubMed
Sonnabend, D., Cooper, D. and Fiddes, P., et al. Fibrin degradation products in thromboembolic disease. Pathology, 4: 47, 1972.CrossRefGoogle Scholar
Stibbe, J., Gomes, M. and Ouda, A.The value of the FM-test (KABI) and thrombin-antithrombin-III complexes (TAT) in the management of DIC in cancer. Throm. Haemost., 65: 1238, 1989.Google Scholar
Francis, C. W. and Marder, V. J.A molecular model of plasmic degradation of cross-linked fibrin. Sem. Thromb. Hemostas., 8: 25, 1982.CrossRefGoogle Scholar
Plow, E. F. and Edgington, T. S.Surface markers of fibrinogen and its physiologic derivatives related by antibody probes. Seminars Thromb. Hemost., 8: 36, 1982.CrossRefGoogle Scholar
Matsumoto, T., Nishijima, Y., Teramura, Y., et al. Monoclonal antibodies to fibrinogen-fibrin degradation products which contain D-Domain. Thromb. Res., 38: 279, 1985.CrossRefGoogle ScholarPubMed
Rylatt, D. B., Blake, A. S., Cottis, L. E., et al. An immunoassay for human D-Dimer using monoclonal antibodies. Thromb. Res., 31: 767, 1983.CrossRefGoogle ScholarPubMed
Elms, M. J., Bunce, I. H., Bundesen, P. G.Measurement of cross-linked fibrin degradation products – an immunoassay using monoclonal antibodies. Thromb. Haemostas., 50: 591, 1983.Google Scholar
Ellis, D. R., Eaton, A. S., Plank, M. C., et al. A comparative evaluation of ELISA's for D-Dimer and related fibrin(ogen) degradation products. Blood Coagulation and Fibrinolysis, 4: 537, 1993.CrossRefGoogle Scholar
Murano, G.The molecular structure of fibrinogen. Seminars Thromb. Hemost., 1: 1, 1974.Google Scholar
Rosenberg, J. S., Beeler, D. L. and Rosenberg, R. D.Activation of human prothrombin by highly purified human factors V and Xa in the presence of human antithrombin. J. Biol. Chem., 250: 1607, 1975.Google Scholar
Tietel, J. M., Bauer, K. A., Lau, H. K., et al. Studies of the prothrombin activation pathway utilizing radioimmunoassays for the F2/F1 + 2 fragment and thrombin-antithrombin complex. Blood, 59: 1086, 1982.Google Scholar
Boneu, B., Bes, G., Pelzer, H., et al. D-dimers, thrombin antithrombin complexes and prothrombin fragments 1 + 2: diagnostic value in clinically suspected deep vein thrombosis. Thromb. Haemost., 65: 28, 1991.Google ScholarPubMed
Bruhn, H. D., Conard, J., Mannucci, M., et al. Multicentric evaluation of a new assay for prothrombin fragment F 1 + 2 determination. Thromb. Haemost., 68: 413, 1992.Google Scholar
Okamoto, K., Takaki, A., Takeda, S., et al. Coagulopathy in disseminated intravascular coagulation due to abdominal sepsis: determination of prothrombin fragment 1 + 2 and other markers. Haemostasis, 22: 17, 1992.Google ScholarPubMed
Pelzer, H., Schwarz, A. and Stuber, W.Determination of human prothrombin activation fragment 1 + 2 in plasma with an antibody against a synthetic peptide. Thromb. Haemost., 65: 153, 1991.Google ScholarPubMed
Sorensen, J. V., Jensen, H. P., Rahr, H. R., et al. F 1 + 2 and FPA in urine from patients with multiple trauma and healthy individuals: a pilot study. Thromb. Res., 67: 429, 1992.CrossRefGoogle Scholar
Bick, R. L. and Murano, G. Physiology of hemostasis (Ch. 84) In Bick, R. L., Bennett, J. M., Brynes, R. K., eds., Hematology: Clinical and Laboratory Practice, Mosby, Saint Louis, MO, 1993, p. 1285.Google Scholar
Bick, R. L. and McClain, B. J.A clinical comparison of chromogenic, fluorometric, and natural (fibrinogen) substrates for determination of antithrombin-III. Thromb. Haemost., 46: 364, 1981.Google Scholar
Fareed, J., Messmore, H. L., Walenga, J. M., et al. Laboratory evaluation of antithrombin III: a critical overview of currently available methods for antithrombin III measurements. Seminars Thromb. Hemost., 8: 288, 1982.CrossRefGoogle ScholarPubMed
Bick, R. L.Clinical relevance of antithrombin III. Seminars Thromb. Hemost., 8: 276, 1982.CrossRefGoogle ScholarPubMed
Cronlund, M., Hardin, J., Burton, L., et al. Fibrinopeptide-A in plasma of normal subjects and patients with disseminated intravascular coagulation and systemic lupus erythematosis. J. Clin. Invest., 58: 142, 1976.CrossRefGoogle Scholar
Douglas, J. T., Shah, M., Lowe, G. D. O., et al. Fibrinopeptide-A and Beta-thromboglobulin levels in pre-eclampsia and hypertensive pregnancy. Thromb. Haemost., 46: 8, 1981.Google Scholar
Bauer, K. A., Weiss, L. M., Sparrow, D., et al. Aging-associated changes in indices of thrombin generation and protein C activation in humans. Normative aging study. J. Clin. Invest., 80: 1527, 1987.CrossRefGoogle ScholarPubMed
Clavin, S. A., Bobbitt, J. L., Shuman, R. T., et al. Use of peptidyl-4-methoxy-2-naphthylamides to assay plasmin. Anal. Biochem., 80: 355, 1977.CrossRefGoogle ScholarPubMed
Triplett, D. A., Harms, C., Hermelin, L., et al. Clinical studies of the use of fluorogenic substrate assay method for the determination of plasminogen. Thromb. Haemost., 42: 50, 1979.Google Scholar
Kowalski, E., Kopec, M. and Niewiarowski, S.An evaluation of the euglobulin method for the determination of fibrinolysis. J. Clin. Pathol., 12: 215, 1959.CrossRefGoogle ScholarPubMed
Menon, I. S.A study of the possible correlation of euglobulin lysis time and dilute blood clot lysis time in the determination of fibrinolytic activity. Lab. Pract., 17: 334, 1968.Google ScholarPubMed
Aoki, N., Moroi, M. and Matsuda, M.The behavior of alpha-2-plasmin inhibitor in fibrinolytic states. J. Clin. Invest., 60: 361, 1977.CrossRefGoogle Scholar
Collen, P.Identification and some properties of a new fast-acting plasmin inhibitor in human plasma. Eur. J. Biochem., 69: 209, 1976.CrossRefGoogle Scholar
Harpel, P. C., Mosesson, M. W., Cooper, N. R. Studies on the structure and function of alpha-2-macroglobulin and C1 inactivator. In Reich, E., Rifkin, D. B., Shaw, E. (eds.), Proteases and Biological Control, Cold Spring Harbor Symp., Cold Spring Harbor, NY, 1975, p. 387.Google Scholar
Takahashi, H., Koike, T., Yoshida, N., et al. Excessive fibrinolysis in suspected amyloidosis: demonstration of plasmin-alpha-2 plasmin inhibitor complex and von Willebrand factor fragment in plasma. Am. J. Hematol., 23: 153, 1986.CrossRefGoogle ScholarPubMed
Wiman, B., Jacobsson, L., Andersson, M., et al. Determination of plasmin-alpha-2-plasmin inhibitor complex in plasma samples by means of a radioimmunoassay. Scand. J. Clin. Lab. Invest., 43: 27, 1983.CrossRefGoogle Scholar
Harpel, P. C.Alpha-2-plasmin inhibitor and alpha-2-macroglobulin-plasmin complexes in plasma. J. Clin. Invest., 68: 46, 1981.CrossRefGoogle Scholar
Takahashi, H., Hanano, M., Takizawa, S., et al. Plasmin-alpha-2-plasmin inhibitor complex in plasma of patients with disseminated intravascular coagulation. Am. J. Hematol., 28: 162, 1988.CrossRefGoogle ScholarPubMed
Matsuda, T., Seki, T., Ogawara, M., et al. Comparison between plasma levels of B-thromboglobulin and platelet factor 4 in various diseases. Thromb. Haemost., 42: 288, 1979.Google Scholar
Zahavi, J. and Kakkar, V. V.B-thromboglobulin – a specific marker of in vivo platelet release reaction. Thromb. Haemost., 44: 23, 1980.Google Scholar
Kwaan, H. C.Disseminated intravascular coagulation. Med. Clin. N. Am., 56: 177, 1972.CrossRefGoogle ScholarPubMed
Bick, R. L.Clinical implications of molecular markers in hemostasis and thrombosis. Seminars Thromb. Hemostas., 10: 252, 1984.CrossRefGoogle ScholarPubMed
Feinstein, D. I.Treatment of disseminated intravascular coagulation. Sem. Thromb. Hemostas., 14: 351, 1988.CrossRefGoogle ScholarPubMed
Kuhn, W., Graeft, H.Gerinnungsstorungen in der Geburtshilfe. Theime Verlag, Stuttgart, 1977, p. 90.Google Scholar
Minna, J. D., Robboy, S., Coleman, R. W. Clinical aproach to a patient with suspected DIC. In Minna, J. D., Robboy, S. and Coleman, R. W. (eds). Disseminated Intravascular Coagulation. Charles C. Thomas, Springfield, IL, 1974, p. 167.Google Scholar
Thaler, E., and Lechner, K.Antithrombin III deficiency and thromboembolism. Clin. Haematol., 10: 369, 1981.Google ScholarPubMed
Bentley, P. G., Kakkar, V. V., Scully, M. F., et al. An objectice study of alternative methods of heparin administration. Thromb. Res., 18: 177, 1980.CrossRefGoogle Scholar
Kakkar, V. V.The clinical use of antithrombin III. Thromb. Haemost., 42: 265, 1979.Google Scholar
Hellgren, M., Hagnevik, K. and Robbe, H.Severe acquired antithrombin III deficiency in relation to hepatic and renal insufficiency and intruterine fetal death in late pregnancy. Gynecol. Obstet. Invest., 16: 107, 1983.CrossRefGoogle Scholar
McGehee, W. G., Paul, R. H. and Feinstein, D. I.Antithrombin III concentrate in the management of patients with acute fatty liver of pregnancy. Blood, 66: 282a, 1985.Google Scholar
Bick, R. L., Schmalhorst, W. R. and Fekete, L. F.Disseminated intravascular coagulation and blood component therapy. Transfusion (Philadelphia), 16: 361, 1976.CrossRefGoogle ScholarPubMed
Gralnick, H. R., Greipp, P.Thrombosis with epsilon-amino-caproic acid therapy. Am. J. Clin. Pathol., 56: 151, 1971.CrossRefGoogle Scholar
McNicol, G. P. and Douglas, A. S. Thrombolytic therapy and fibrinolytic inhibitors. In Human Blood Coagulation, Haemostasis, and Thrombosis. Oxford Press, London, 1972, p. 393.Google Scholar
Ratnoff, O. D.Epsilon aminocaproic acid: a dangerous weapon. N. Engl. J. Med., 280: 1124, 1969.CrossRefGoogle ScholarPubMed
Patterson, W. P. and Ringenberg, Q. S.The pathophysiology of thrombosis in cancer. Seminars Oncol., 17: 140, 1990.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×