Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T06:49:17.152Z Has data issue: false hasContentIssue false

5 - Electroencephalography and Event-Related Brain Potentials

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 4: 544554.Google Scholar
Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen. Archives für Psychiatrie Nervenkrankheiten, 87: 527570.Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10: 433436.Google Scholar
Brazdil, M., Roman, R., Falkenstein, M., Daniel, P., Jurak, P., & Rektor, I. (2002). Error processing: evidence from intracerebral ERP recordings. Experimental Brain Research, 146: 460466.CrossRefGoogle ScholarPubMed
Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents: EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13: 407420.CrossRefGoogle ScholarPubMed
Cheour, M., Leppanen, P. H., & Kraus, N. (2000). Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical Neurophysiology, 111: 416.Google Scholar
Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Csepe, V. (1995). On the origin and development of the mismatch negativity. Ear and Hearing, 16: 91104.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G. & Baillet, S. (1998). A phonological representation in the infant brain. Neuroreport, 9: 18851888.Google Scholar
Delorme, A. & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134: 921.CrossRefGoogle ScholarPubMed
Eimer, M. & Kiss, M. (2008). Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 208: 14231433.Google Scholar
Fischer, C., Luaute, J., Adeleine, P., & Morlet, D. (2004). Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology, 63: 669673.CrossRefGoogle ScholarPubMed
Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 231292). Oxford University Press.Google Scholar
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011a). Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology, 48: 17111725.Google Scholar
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011b). Mass univariate analysis of event-related brain potentials/fields II: simulation studies. Psychophysiology, 48: 17261737.Google Scholar
Hopf, J.-M., Luck, S. J., Boelmans, K., Schoenfeld, M. A., Boehler, N., Rieger, J., & Heinze, H.-J. (2006). The neural site of attention matches the spatial scale of perception. Journal of Neuroscience, 26: 35323540.CrossRefGoogle ScholarPubMed
Kappenman, E. S., Farrens, J. L., Luck, S. J., & Hajcak Proudfit, G. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5: 1368.Google Scholar
Kappenman, E. S., Kaiser, S. T., Robinson, B. M., Morris, S. E., Hahn, B., Beck, V. M., Leonard, C. J., Gold, J. M., & Luck, S. J. (2012). Response activation impairments in schizophrenia: evidence from the lateralized readiness potential. Psychophysiology, 49: 7384.Google Scholar
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47: 888904.Google Scholar
Kappenman, E. S. & Luck, S. J. (2012). ERP components: the ups and downs of brainwave recordings. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 330). Oxford University Press.Google Scholar
Kappenman, E. S., Luck, S. J., Kring, A. M., Lesh, T. A., Mangun, G. R., Niendam, T., Ragland, J. D., Ranganath, C., Solomon, M., Swaab, T.Y., & Carter, C. S. (2016). Electrophysiological evidence for impaired control of motor output in schizophrenia. Cerebral Cortex, 18911899.Google Scholar
Kappenman, E. S., MacNamara, A., & Hajcak Proudfit, G. (2015). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task. Social Cognitive and Affective Neuroscience, 10: 577583.Google Scholar
Kayser, J., Tenke, C. E., Bhattacharya, N., Stuart, B. K., Hudson, J., & Bruder, G. E. (2000). Direct comparison of geodesic sensor net (128-channel) and conventional (30-channel) ERPs in tonal and phonetic oddball tasks. Psychophysiology, 37: S17.Google Scholar
Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: a comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45: 250274.Google Scholar
Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20: 245251.Google Scholar
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197: 792795.CrossRefGoogle ScholarPubMed
Lopez-Calderon, J. & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8: 213.Google Scholar
Lorenzo-Lopez, L., Amenedo, E., & Cadaveira, F. (2008). Feature processing during visual search in normal aging: electrophysiological evidence. Neurobiology of Aging, 29: 11011110.Google Scholar
Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 329360). Oxford University Press.Google Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd edn. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85: 174195.Google Scholar
Luck, S. J. & Kappenman, E. S. (eds.) (2012). The Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46: 776786.Google Scholar
Luck, S. J., Mathalon, D. H., O’Donnell, B. F., Spencer, K. M., Javitt, D. C., Ulhaaus, P. F., & Hämäläinen, M. S. (2011). A roadmap for the development and validation of ERP biomarkers in schizophrenia research. Biological Psychiatry, 70: 2834.Google Scholar
Makeig, S. & Onton, J. (2012). ERP features and EEG dynamics: an ICA perspective. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 5186). Oxford University Press.Google Scholar
Maris, E. & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164: 177190.Google Scholar
Näätänen, R. & Kreegipuu, K. (2012). The mismatch negativity (MMN). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 143157). Oxford University Press.Google Scholar
Nunez, P. L. & Srinivasan, R. (2006). Electric Fields of the Brain, 2nd edn. Oxford University Press.Google Scholar
Ochoa, C. J. & Polich, J. (2000). P300 and blink instructions. Clinical Neurophysiology, 111: 9398.Google Scholar
Peirce, J. W. (2007). PsychoPy: psychophysics software in Python. Journal of Neuroscience Methods, 162: 813.Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10: 437442.Google Scholar
Perez, V. B. & Vogel, E. K. (2012). What ERPs can tell us about working memory. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 361372). Oxford University Press.Google Scholar
Picton, T. W. (2011). Human Auditory Evoked Potentials. San Diego, CA: Plural Publishing.Google Scholar
Polich, J. (2012). Neuropsychology of P300. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 159188). Oxford University Press.Google Scholar
Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. New York: Elsevier.Google Scholar
Roach, B. J. & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34: 907926.CrossRefGoogle Scholar
Sawaki, R. & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72: 14551470.Google Scholar
Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38: 343358.Google Scholar
Tanner, D., Morgan-Short, K., & Luck, S. J. (in press). How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology.Google Scholar
Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51: 515.Google Scholar
Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30: 98119.Google Scholar
Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28: 3042.Google Scholar
Yeung, N. (2004). Relating cognitive and affective theories of the error-related negativity. In Ullsperger, M. & Falkenstein, M. (eds.), Errors, Conflicts, and the Brain: Current Opinions on Performance Monitoring (pp. 6370). Leipzig: MPI of Cognitive Neuroscience.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×