Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:08:57.514Z Has data issue: false hasContentIssue false

5 - Local field potentials

Published online by Cambridge University Press:  05 October 2012

Claude Bédard
Affiliation:
Information and Complexity (UNIC), France
Alain Destexhe
Affiliation:
Information and Complexity (UNIC), France
Romain Brette
Affiliation:
Ecole Normale Supérieure, Paris
Alain Destexhe
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

Extracellular electric potentials, such as local field potentials (LFPs) or the electroencephalogram (EEG), are routinely measured in electrophysiological experiments. LFPs are recorded using micrometer-size electrodes, and sample relatively localized populations of neurons, as these signals can be very different for electrodes separated by 1 mm (Destexhe et al., 1999a) or by a few hundred micrometers (Katzner et al., 2009). In contrast, the EEG is recorded from the surface of the scalp using millimeter-scale electrodes and samples much larger populations of neurons (Niedermeyer and Lopes da Silva, 1998). LFPs are subject to much less filtering compared to EEG, because EEG signals must propagate through various media, such as cerebrospinal fluid, dura mater, cranium, muscle and skin. LFP signals are also filtered, because the recording electrode is separated from the neuronal sources by portions of cortical tissue. Besides these differences, EEG and LFP signals display the same characteristics during wake and sleep states (Steriade, 2003).

The observation that action potentials have a limited participation in the genesis of the EEG or LFPs dates from early studies. Bremer (1938, 1949) was the first to propose that the EEG is not generated by action potentials, based on the mismatch of the time course of EEG waves with action potentials. Eccles (1951) proposed that LFP and EEG activities are generated by summated postsynaptic potentials arising from the synchronized excitation of cortical neurons. Intracellular recordings from cortical neurons later demonstrated a close correspondence between EEG/LFP activity and synaptic potentials (Klee et al., 1965; Creutzfeldt et al., 1966a, 1966b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, J. and Petsche, H. (2001). Universality in the brain while listening to music. Proc. Biol. Sci., 268, 2423–2433.CrossRefGoogle ScholarPubMed
Bédard, C. and Destexhe, A. (2008). A modified cable formalism for modeling neuronal membranes at high frequencies. Biophys. J., 94, 1133–1143.CrossRefGoogle ScholarPubMed
Bédard, C. and Destexhe, A. (2009). Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys. J., 96, 2589–2603.CrossRefGoogle ScholarPubMed
Bédard, C., Kröger, H. and Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys. J., 86, 1829–1842.CrossRefGoogle ScholarPubMed
Bédard, C., Kröger, H. and Destexhe, A. (2006a). Model of low-pass filtering of local field potentials in brain tissue. Phys. Rev. E, 73, 051911.CrossRefGoogle ScholarPubMed
Bédard, C., Kröger, H. and Destexhe, A. (2006b). Does the 1/f frequency scaling of brain signals reflect self-organized critical states?Phys. Rev. Lett., 97, 118102.CrossRefGoogle ScholarPubMed
Bédard, C., Rodrigues, S., Roy, N., Contreras, D. and Destexhe, A. (2010). Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials. J. Comput. Neurosci., 29, 389–403.CrossRefGoogle ScholarPubMed
Beggs, J. and Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J. Neurosci., 23, 11167–11177.CrossRefGoogle ScholarPubMed
Braitenberg, V. and Shüz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity (2nd edition). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bremer, F. (1938). L'activité électrique de L'écorce cérébrale. Actual. Sci. Ind. 658, 3–46.Google Scholar
Bremer, F. (1949). Considérations sur l'origine et la nature des “ondes” cérébrales. Electroencephalogr. Clin. Neurophysiol., 1, 177–193.Google Scholar
Buckingham, M. J. J. (1985). Noise in Electronic Devices and Systems. New York: John Wiley & Sons.Google Scholar
Bullock, T. H. (1997). Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc. Natl. Acad. Sci. USA, 94, 1–6.CrossRefGoogle ScholarPubMed
Cajal, R. (1909). Histologie du Système Nerveux de l'Homme et des Vertébrés. Paris: Maloine.Google Scholar
Cole, K. S. and Cole, R.H. (1941). Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys., 9, 341–351.CrossRefGoogle Scholar
Creutzfeldt, O., Watanabe, S. and Lux, H. D. (1966a). Relation between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol., 20, 1–18.Google Scholar
Creutzfeldt, O., Watanabe, S. and Lux, H. D. (1966b). Relation between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr. Clin. Neurophysiol., 20, 19–37.Google Scholar
Debye, P. and Hückel, E. (1923). The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys. Z., 24, 185206.Google Scholar
Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABAB receptors. J. Neurosci., 18, 9099–9111.CrossRefGoogle ScholarPubMed
Destexhe, A. and Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81, 1531–1547.CrossRefGoogle ScholarPubMed
Destexhe, A., Contreras, D. and Steriade, M. (1999a). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci., 19, 4595–4608.CrossRefGoogle ScholarPubMed
Destexhe, A., McCormick, D. A. and Sejnowski, T. J. (1999b). Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges. Prog. Brain Res., 121, 289–307.Google ScholarPubMed
Diard, J. -P., Le Gorrec, B. and Montella, C. (1999). Linear diffusion impedance. General expression and applications. J. Electroanal. Chem., 471, 126–131.CrossRefGoogle Scholar
Eccles, J.C. (1951). Interpretation of action potentials evoked in the cerebral cortex. J. Neurophysiol., 3, 449–464.Google ScholarPubMed
Foster, K.R. and Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng., 17, 25–104.Google ScholarPubMed
Gabriel, S., Lau, R.W. and Gabriel, C. (1996a). The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol., 41, 2231–2249.CrossRefGoogle ScholarPubMed
Gabriel, S., Lau, R.W. and Gabriel, C. (1996b). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 41, 2251–2269.CrossRefGoogle ScholarPubMed
Gabriel, S., Lau, R. W. and Gabriel, C. (1996c). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum tissues. Phys. Med. Biol., 41, 2271–2293.CrossRefGoogle ScholarPubMed
Geddes, L.A. (1997). Historical evolution of circuit models for the electrode–electrolyte interface. Ann. Biomed. Eng., 25, 1–14.CrossRefGoogle ScholarPubMed
Hille, B. (2001). Ion Channels and the Excitable Membranes (3rd edition). Sunderland, MA: Sinauer.Google Scholar
Hines, M. L. and Carnevale, N. T. (2000). The NEURON simulation environment. Neural Comput., 9, 1179–1209.Google Scholar
Hooge, F. N. (1962). 1/f noise is no surface effect. Phys. Lett., 29A, 139–140.Google Scholar
Hooge, F. N. and Bobbert, P. A. (1997). On the correlation function of 1/f noise. Physica B, 239, 223–230.CrossRefGoogle Scholar
Jensen, H. J. (1998). Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Johnston, D. and Wu, S.M.-S. (1999). Foundation of Cellular Neurophysiology. Cambridge, MA: MIT Press.Google Scholar
Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L. and Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron., 61, 35–41.CrossRefGoogle ScholarPubMed
Klee, M. and Rall, W. (1977). Computed potentials of cortically arranged populations of neurons. J. Neurophysiol., 40, 647–666.CrossRefGoogle ScholarPubMed
Klee, M. R., Offenloch, K. and Tigges, J. (1965). Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science, 147, 519–521.CrossRefGoogle ScholarPubMed
Koch, C. (1999). Biophysics of Computation. Oxford: Oxford University Press.Google Scholar
Koch, C. and Segev, I. (editors) (1998). Methods in Neuronal Modeling (2nd edition). Cambridge, MA: MIT Press.
Kronig, R. D. L. (1926). On the theory of dispersion of X-rays. J. Opt. Soc. Am., 12, 547.CrossRefGoogle Scholar
Logothetis, N. K., Kayser, C. and Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.CrossRefGoogle ScholarPubMed
Landau, L. D. and Lifshitz, E.M. (1984). Electrodynamics of Continuous Media. Oxford: Pergamon Press.Google Scholar
Marre, O., El Boustani, S., Baudot, P., Levy, M., Monier, C., Huguet, N., Pananceau, M., Fournier, J., Destexhe, A. and Frégnac, Y. (2007). Stimulus-dependency of spectral scaling laws in V1 synaptic activity as a read-out of the effective network topology. Soc. Neurosci. Abstr., 33, 790.6.Google Scholar
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism, Chapter 10, pp. 374–375. Oxford: Clarendon Press.Google Scholar
McAdams, E. T. and Jossinet, J. (1992). A physical interpretation of Schwan's limit current of linearity. Ann. Biomed. Eng., 20, 307–319.CrossRefGoogle ScholarPubMed
Nicholson, C. (2005). Factors governing diffusing molecular signals in brain extracellular space. J. Neural Transm., 112, 29–44.CrossRefGoogle ScholarPubMed
Nicholson, C. and Sykova, E. (1998). Extracellular space structure revealed by diffusion analysis. Trends Neurosci., 21, 207–215.CrossRefGoogle ScholarPubMed
Niedermeyer, E. and Lopes da Silva, F. (editors) (1998). Electroencephalography (4th edition). Baltimore, MD: Williams and Wilkins.
Novikov, E., Novikov, A., Shannahoff-Khalsa, D., Schwartz, B. and Wright, J. (1997). Scale-similar activity in the brain. Phys. Rev. E, 56, R2387–R2389.CrossRefGoogle Scholar
Nunez, P. L. (1981). Electric Fields of the Brain. The Neurophysics of EEG. Oxford: Oxford University Press.Google Scholar
Nunez, P. L. and Srinivasan, R. (2005). Electric Fields of the Brain (2nd edition). Oxford: Oxford University Press.Google Scholar
Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110–113.CrossRefGoogle Scholar
Peters, A., Palay, S. L. and Webster, H. F. (1991). The Fine Structure of the Nervous System. Oxford: Oxford University Press.Google Scholar
Pethig, R. (1979). Dielectric and Electronic Properties of Biological Materials. NewYork: John Wiley & Sons.Google Scholar
Pettersen, K. H. and Einevoll, G. T. (2008). Amplitude variability and extracellular lowpass filtering of neuronal spikes. Biophys. J., 94, 784–802.CrossRefGoogle Scholar
Pritchard, W. S. (1992). The brain in fractal time: 1/f -like power spectrum scaling of the human electroencephalogram. Int. J. Neurosci., 66, 119–129.CrossRefGoogle ScholarPubMed
Protopapas, A. D., Vanier, M. and Bower, J. (1998). Simulating large-scale networks of neurons. In: C., Koch and I., Segev (editors), Methods in Neuronal Modeling (2nd edition), Cambridge, MA: MIT Press, pp. 461–498.Google Scholar
Purcell, E. M. (1984). Electricity and Magnetism. New York: McGraw Hill.Google Scholar
Raju, G. G. (2003). Dielectrics in Electric Fields. New York: CRC Press.CrossRefGoogle Scholar
Rall, W. and Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol., 31, 884–915.CrossRefGoogle ScholarPubMed
Ranck, J. B. (1963). Specific impedance of rabbit cerebral cortex. Exp. Neurol., 7, 144–152.Google ScholarPubMed
Rusakov, D. A. and Kullmann, D. M. (1998). Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl. Acad. Sci. USA, 95, 8975–8980.CrossRefGoogle Scholar
Steriade, M. (2003). Neuronal Substrates of Sleep and Epilepsy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Taylor, S.R. and Gileadi, E. (1995). The physical interpretation of the Warburg impedance. Corrosion, 51, 664–671.CrossRefGoogle Scholar
Vasilyev, A. M. (1983). An Introduction to Statistical Physics. Moscow: MIR Editions.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Local field potentials
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Local field potentials
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Local field potentials
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.005
Available formats
×