Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T20:33:20.353Z Has data issue: false hasContentIssue false

11 - Cell-array biosensors

from Part II - Biosensors

Published online by Cambridge University Press:  05 September 2015

Michele Sessolo
Affiliation:
University of Valencia
Marc Ramuz
Affiliation:
Ecole Nationale Supérieure des Mines de Saint Etienne
George G. Malliaras
Affiliation:
Ecole Nationale Supérieure des Mines de Saint Etienne
Rόisín M. Owens
Affiliation:
Ecole Nationale Supérieure des Mines de Saint Etienne
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

The field of electrophysiology explores the mechanisms of electrical signal generation and propagation in living tissues. Contemporary electrophysiology has tended to focus on electrically excitable cells, for example observing action potentials propagating along a neuronal membrane. However, the birth of electrophysiology was concerned with a more global approach, looking at “bioelectricity” in the whole organism. Galvani, the father of “bioelectricity”, hooked up lightning rods to cut nerves in a frog’s leg and observed twitching of the leg muscles during a lightning storm. Matteucci, in 1831, was the first to measure the so-called “injury potentials” using a galvanometer in a cut nerve ending and demonstrated the existence of action potentials in nerves and muscles. His work was extended by Du Bois-Reymond, who in 1843 was able to directly measure the propagation of action potentials and also the injury potentials from cuts in his own finger. While rapid changes in membrane conductance of individual cells may be viewed as a somewhat “obvious” target that has been intensely studied, other, slower bioelectric phenomena such as those seen in wound healing have been somewhat neglected. The field of “bioelectricity” has seen a re-emergence in the past decade, thanks in part to new techniques in molecular physiology. In addition, the ensemble of electric phenomena in biology is rarely considered. Instead of solely focusing on action potentials in individual cells, it can be instructive to consider electrical characteristics in groups or arrays of cells. In this chapter we focus on the electrical measurement of arrays of cells or tissue layers. We attempt to widen the traditional definition of electrophysiology in a more general sense, as the electrical measurement of ion flow in biological systems. We review a subset of literature on methods for measuring ion flow in tissues in vitro in both electrically active and non-electrically active cells. We will particularly highlight dynamic methods for monitoring cell cultures, and the new trend of using transistors rather than simple electrodes with a special emphasis on the use of conducting polymers to do so.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 137 - 154
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McCaig, C. D., Rajnicek, A. M., Song, B. and Zhao, M., Physiol Rev, 2005, 85, 943–978.CrossRef
Levin, M. and Stevenson, C. G., Annu Rev Biomed Eng, 2012, 14, 295–323.CrossRef
Behrends, J. C., Chem Rev, 2012, 112, 6218–6226.CrossRef
Dubyak, G. R., Adv Physiol Ed, 2004, 28, 143–154.CrossRef
Bonazzi, M. and Cossart, P., J Cell Biol, 2011, 195, 349–358.CrossRef
Goodenough, D. A. and Paul, D. L., Cold Spring Harbor Persp Biol, 2009, 1.
Miyoshi, J. and Takai, Y., Adv Drug Deliv Rev, 2005, 57, 815–855.CrossRef
Guttman, J. A. and Finlay, B. B., Biochim Biophys Acta, 2009, 1788, 832–841.CrossRef
Alexander, F., Price, D. and Bhansali, S., IEEE Rev Biomed Eng, 2012, 6, 63–76.CrossRef
Abraham, W. T., Fisher, W. G., Smith, A. L., et al., New Engl J Med, 2002, 346, 1845–1853.CrossRef
Clark, G. M., Phil Trans Roy Soc B: Biol Sci, 2006, 361, 791–810.CrossRef
Pearce, T. M. and Williams, J. C., Lab Chip, 2007, 7, 30–40.CrossRef
Lebedev, M. A. and Nicolelis, M. A. L., Trends Neurosci, 2006, 29, 536–546.CrossRef
Buzsáki, G., Anastassiou, C. A. and Koch, C., Nat Rev Neurosci, 2012, 13, 407–420.CrossRef
Fertig, N., Blick, R. H. and Behrends, J. C., Biophys J, 2002, 82, 3056–3062.CrossRef
Milligan, C. J. and Moller, C., Methods Mol Biol, 2013, 998, 171–187.CrossRef
Haarmann, C., Haythornthwaite, A., Brueggemann, A. et al., Faseb Journal, 2009, 23.
Stoelzle, S., Haythornthwaite, A. R., Farre, C. et al., J Physiol Sci, 2009, 59, 402–402.
Spira, M. E. and Hai, A., Nat Nano, 2013, 8, 83–94.CrossRef
Ordonez, J., Schuettler, M., Boehler, C., Boretius, T. and Stieglitz, T., MRS Bull, 2012, 37, 590–598.CrossRef
Thomas, C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y. and Okun, L. M., Exp Cell Res, 1972, 74, 61–66.CrossRef
Pine, J., J Neurosci Methods, 1980, 2, 19–31.CrossRef
Borkholder, D. A., Bao, J., Maluf, N. I., Perl, E. R. and Kovacs, G. T. A., J Neurosci Methods, 1997, 77, 61–66.CrossRef
Steidl, E.-M., Neveu, E., Bertrand, D. and Buisson, B., Brain Res, 2006, 1096, 70–84.CrossRef
Spira, M. E. and Hai, A., Nat Nanotechnol, 2013, 8, 83–94.CrossRef
Buzsaki, G., Nat Neurosci, 2004, 7, 446–451.CrossRef
Franks, W., Schenker, I., Schmutz, P. and Hierlemann, A., IEEE Trans Biomed Eng, 2005, 52, 1295–1302.CrossRef
Novak, J. L. and Wheeler, B. C., J Neurosci Methods, 1988, 23, 149–159.CrossRef
Cogan, S. F., Annu Rev Biomed Eng, 2008, 10, 275–309.CrossRef
Weiland, J. D., Anderson, D. J. and Humayun, M. S., IEEE Trans Biomed Eng, 2002, 49, 1574–1579.CrossRef
Janders, M., Egert, U., Stelzle, M. and Nisch, W., 1996, Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proc 18th Ann Int Conf IEEE245–247.
Sandison, M. E., Anicet, N., Glidle, A. and Cooper, J. M., Anal Chem, 2002, 74, 5717–5725.CrossRef
Kotov, N. A., Winter, J. O., Clements, I. P. et al., Adv Mater, 2009, 21, 3970–4004.CrossRef
Heim, M., Yvert, B. and Kuhn, A., J Physiol Paris, 2012, 106, 137–145.CrossRef
Seker, E., Berdichevsky, Y., Begley, M. R. et al., Nanotechnology, 2010, 21.CrossRef
Park, S., Song, Y. J., Boo, H. and Chung, T. D., J Phys Chem C, 2010, 114, 8721–8726.CrossRef
Ju-Hyun, K., Gyumin, K., Yoonkey, N. and Yang-Kyu, C., Nanotechnology, 2010, 21, 085303.
Brüggemann, D., Wolfrum, B., Maybeck, V. et al., Nanotechnology, 2011, 22, 265104.CrossRef
Gabay, T., Ben-David, M., Kalifa, I. et al., Nanotechnology, 2007, 18.CrossRef
Hanein, Y. and Bareket-Keren, L., Frontiers Neur Circuits, 2013, 6.
Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. and Gross, G. W., Nat Nanotechnol, 2008, 3, 434–439.CrossRef
Christopher, M. V. and Jan, P. S., J Neur Eng, 2011, 8, 011001.
Green, R. A., Lovell, N. H., Wallace, G. G. and Poole-Warren, L. A., Biomaterials, 2008, 29, 3393–3399.CrossRef
Abidian, M. R., Corey, J. M., Kipke, D. R. and Martin, D. C., Small, 2010, 6, 421–429.CrossRef
Cui, X., Lee, V. A., Raphael, Y. et al., J Biomed Mater Res, 2001, 56, 261–272.3.0.CO;2-I>CrossRef
Ludwig, K. A., Langhals, N. B., Joseph, M. D. et al., J Neur Eng, 2011, 8, 014001.CrossRef
Moulton, S. E., Higgins, M. J., Kapsa, R. M. I. and Wallace, G. G., Adv. Funct. Mater, 2012, 22, 2003–2014.CrossRef
Poole-Warren, L., Lovell, N., Baek, S. and Green, R., Expert Rev Med Devices, 2010, 7, 35–49.CrossRef
Guimard, N. K., Gomez, N. and Schmidt, C. E., Progress Polym Sci, 2007, 32, 876–921.CrossRef
Yamato, H., Ohwa, M. and Wernet, W., J Electroanal Chem, 1995, 397, 163–170.CrossRef
Cui, X. and Martin, D. C., Sensors Actuators B: Chem, 2003, 89, 92–102.CrossRef
Fabretto, M. V., Evans, D. R., Mueller, M. et al., Chem Mater, 2012, 24, 3998–4003.CrossRef
Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. and Kipke, D. R., J Neur Eng, 2006, 3, 59.CrossRef
Nyberg, T., Shimada, A. and Torimitsu, K., J Neurosci Methods, 2007, 160, 16–25.CrossRef
Shimada, A., Kasai, N., Furukawa, Y., Nyberg, T. and Torimitsu, K., Electrical Eng Japan, 2011, 177, 37–42.CrossRef
Blau, A., Murr, A., Wolff, S. et al., Biomaterials, 2011, 32, 1778–1786.CrossRef
Sessolo, M., Khodagholy, D., Rivnay, J. et al., Adv Mater, 2013, 25, 2135–2139.CrossRef
Fromherz, P., Solid State Electron, 2008, 52, 1364–1373.CrossRef
Hutzler, M. and Fromherz, P., Eur J Neurosci, 2004, 19, 2231–2238.CrossRef
Tian, B., Cohen-Karni, T., Qing, Q. et al., Science, 2010, 329, 830–834.CrossRef
Khodagholy, D., Doublet, T., Quilichini, P. et al., Nat Commun, 2013, 4, 1575.CrossRef
Scott, C. W. and Peters, M. F., Drug Discovery Today, 2010, 15, 704–716.CrossRef
Owens, R. M., Wang, C., You, J. A. et al., J Recept Signal Transduct Res, 2009, 29, 195–201.CrossRef
Clarke, L. L., Am J Physiol Gastrointest Liver Physiol, 2009, 296, G1151-G1166.CrossRef
Rotunno, C. A., Vilallonga, F. A., Fernandez, M. and Cereijido, M., J General Physiol, 1970, 55, 716–735.CrossRef
Misfeldt, D. S., Hamamoto, S. T. and Pitelka, D. R., Proc Natl Acad Sci USA, 1976, 73, 1212–1216.CrossRef
Cereijido, M., Robbins, E., Dolan, W., Rotunno, C. and Sabatini, D., J Cell Biology, 1978, 77, 853–880.CrossRef
Giaever, I. and Keese, C. R., Proc Natl Acad Sci USA, 1984, 81, 3761–3764.CrossRef
Giaever, I. and Keese, C. R., Nature, 1993, 366, 591–592.CrossRef
Giaever, I. and Keese, C. R., Proc Natl Acad Sci USA, 1991, 88, 7896–7900.CrossRef
Benson, K., Cramer, S. and Galla, H.-J., Fluids Barriers CNS, 2013, 10, 5.CrossRef
Ehret, R., Baumann, W., Brischwein, M. et al. Biosens. Bioelectron., 1997, 12, 29–41.CrossRef
Curtis, T. M., Widder, M. W., Brennan, L. M. et al. Lab Chip, 2009, 9, 2176–2183.CrossRef
Wegener, J., Keese, C. R. and Giaever, I., Exp Cell Res, 2000, 259, 158–166.CrossRef
Stolwijk, J. A., Hartmann, C., Balani, P. et al. Biosensors Bioelectron, 2011, 26, 4720–4727.CrossRef
Keese, C. R., Bhawe, K., Wegener, J. and Giaever, I., BioTechniques, 2002, 33, 842–844, 846, 848–850.
Hidalgo, I. J., Raub, T. J. and Borchardt, R. T., Gastroenterology, 1989, 96, 736–749.CrossRef
Bernards, D. A., Malliaras, G. G., Toombes, G. E. S. and Gruner, S. M., Appl Phys Lett, 2006, 89, 05305.CrossRef
Hurst, R. D. and Fritz, I. B., J Cell Physiol, 1996, 167, 81–88.3.0.CO;2-8>CrossRef
Gunzel, D., Krug, S. M., Rosenthal, R. and Fromm, M., Curr Top Membr, 2010, 65, 39–78.CrossRef
Prozialeck, W. C., Edwards, J. R., Lamar, P. C. and Smith, C. S., Toxicology in Vitro, 2006, 20, 942–953.CrossRef
Ma, T. Y., Nguyen, D., Bui, V., Nguyen, H. and Hoa, N., Am J Physiol, 1999, 276, G965–974.
McLaughlin, J., Padfield, P. J., Burt, J. P. H. and O’Neill, C. A., Am J Physiol Cell Physiol, 2004, 287, C1412-C1417.CrossRef
Van Itallie, C. M., Fanning, A. S., Holmes, J. and Anderson, J. M., J Cell Sci, 2010, 123, 2844–2852.CrossRef
Boyle, E. C., Brown, N. F. and Finlay, B. B., Cell Microbiol, 2006, 8, 1946–1957.CrossRef
Wegener, J., Abrams, D., Willenbrink, W., Galla, H. J. and Janshoff, A., BioTechniques, 2004, 37, 590, 592–594, 596–597.
Tria, S. A., Jimison, L. H., Hama, A., Bongo, M. and Owens, R. M., Biochim Biophys Acta, 2013, 1830, 4381–4390.CrossRef
Kottra, G., Haase, W. and Fromter, E., Pflug Arch Eur J Phy, 1993, 425, 528–534.CrossRef
Sun, T., Swindle, E. J., Collins, J. E. et al. Lab Chip, 2010, 10, 1611–1617.CrossRef
Krug, S. M., Fromm, M. and Gunzel, D., Biophys J, 2009, 97, 2202–2211.CrossRef
Frömter, E. and Diamond, J., Nat New Biol, 1972, 235, 9–13.CrossRef
Mankertz, J., Amasheh, M., Krug, S. M. et al. Cell Tissue Res, 2009, 336, 67–77.CrossRef
Fromm, M., Krug, S. M., Zeissig, S., et al. in Molecular Structure and Function of the Tight Junction: From Basic Mechanisms to Clinical Manifestations, Ann. NY Acad Sci, 2009, 1165, 74–81.CrossRef
Troeger, H., Richter, J. F., Beutin, L. et al., Cell Microbiol, 2007, 9, 2530–2540.CrossRef
Gitter, A. H., Bendfeldt, K., Schulzke, J. D. and Fromm, M., Faseb Journal, 2000, 14, 1749–1753.CrossRef
Gitter, A. H., Victor, L., Bertog, M., et al. Intestinal Plasticity in Health and Disease, 1998, 859, 285–289.
Lin, P., Yan, F., Yu, J. J., Chan, H. L. W. and Yang, M., Adv Mater, 2010, 22, 3655.CrossRef
Khodagholy, D., Doublet, T., Gurfinkel, M. et al., Adv Mater, 2011, 23, H268.CrossRef
Shim, N. Y., Bernards, D. A., Macaya, D. J., et al. Sensors Basel, 2009, 9, 9896–9902.CrossRef
Bernards, D. A. and Malliaras, G. G., Adv Funct Mater, 2007, 17, 3538–3544.CrossRef
Tria, S., Jimison, L., Hama, A., Bongo, M. and Owens, R., Biosensors, 2013, 3, 44–57.CrossRef
Artursson, P., J Pharm Sci, 1990, 79, 476–482.CrossRef
Boulenc, X., Marti, E., Joyeux, H. et al. Biochem Pharmacol, 1993, 46, 1591–1600.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×