Skip to main content Accessibility help
×
Home
  • Cited by 1
  • Print publication year: 2014
  • Online publication date: October 2014

6 - Integrating tiny RFID- and NFC-based sensors with the Internet

Summary

Introduction

In the upcoming era of ubiquitous cognition, the capability of gathering, processing, and presenting vast amounts of data captured by spatially distributed sensors in an efficient and low-cost way is as essential as ever. Although a plethora of ultra-low cost but yet powerful and physically small sensors have been demonstrated, only a few of these research efforts have managed to integrate these sensing modules with massive wireless sensor network (WSN) platforms: a sine-qua-non step.

The necessity of deploying WSN capabilities in sensing systems is highlighted by: (i) the increased physical range and the ability to overcome non-line-of-sight and path loss effects through multi-hopping; (ii) the enhanced reliability due to multipath communication even if some intermediate WSN nodes on the path toward the destination or a gateway fail; and (iii) the decreased power consumption of the radio transmission with multi-hopping, since it is more power efficient to relay packets over lower-strength shorter links than transmitting high strength signals over fewer long single-hop wireless links [1].

Toward that goal, demonstration of the prototypes presented in this chapter that realize real-time and distributed remote sensing within the scope of different applications serves as a proof of concept; it is possible to deploy WSN nodes in-between sensors and internet gateways. As a result of this approach, the primary task of the WSN nodes is not as data generators, as this is almost exclusively carried out by the sensors. Instead, the WSN nodes here serve simply as data routers that relay the sensed information through wireless multi-hop links to one or multiple gateways. It is important to note that the aforementioned prototyped wireless sensors cover the “last mile,” or more precisely the last wireless hop the length of which can range from a couple of meters to a few hundreds of meters.

References
Lakafosis, V. and Tentzeris, M. M., “Implementation of multi-hop routing protocols for the dramatic range enhancement of wireless sensor networks,” Antennas and Propagation Society International Symposium, AP-S 2008, IEEE, pp. 1–4, 2008.
EPCglobal Inc., EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.2.0, 2008.
ISO 18092 (ECMA-340) Information Technology – Telecommunications and Information Exchange Between Systems – Near Field Communication – Interface and Protocol (NFCIP-1), 2004.
Alliance, ZigBee, “ZigBee specification,” ZigBee document 053474r06, version, vol. 1, p. 378, 2006.
Shelby, Z. and Bormann, C., “Introduction,” in 6LoWPAN, pp. 1–25, John Wiley & Sons Ltd, 2009.
Crossbow Technology, XMesh User’s Manual, 2007.
Specification of the Bluetooth System, Version 1.1, , 2001.
Atzori, L., Iera, A., and Morabito, G., “The Internet of Things: A survey,” Computer Networks, 54, (15), 2787–2805, 2010.
Vyas, R., Lakafosis, V., and Tentzeris, M., “Enabling localization in WSNs with solar-powered end devices,” in Proc-Conf. on Sensor networks, ubiquitous and trustworthy computing, IEEE, Newport Beach, CA, pp. 155–160, Jun. 2010.
Lakafosis, V., Vyas, R., and Tentzeris, M. M., “A localization and position tracking solution utilizing solar-powered RFID tags,” Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–4, 2010.
Crossbow Technology, MICA2 Wireless Measurement System, 2007.
Zimmermann, H., “OSI reference model–The ISO model of architecture for open systems interconnection,” IEEE Transactions on Communications, 28, (4), 425–432, 1980.
Stallings, W., Data and Computer Communications, 9th Edn., Prentice Hall, 2011.
Vyas, R., Lakafosis, V., and Tentzeris, M., “Wireless remote localization system utilizing ambient RF/solar power scavenging RFID tags,” in Microwave Symposium Digest (MTT), IEEE MTT-S International, pp. 1764–1767, 2010.
Konstas, Z., Rida, A., Vyas, R., et al., “A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications,” in 3rd European Conference on Antennas and Propagation, EuCAP 2009, pp. 2340–2343, 2009.
Vyas, R., Lakafosis, V., Rida, A., et al., “Paper-based RFID-enabled wireless platforms for sensing applications,” IEEE Transactions on Microwave Theory and Techniques, 57, (5), 1370–1382, 2009.
Sample, A. P., Yeager, D. J., Powledge, P. S., et al., “Design of an RFID-based battery-free programmable sensing platform,” IEEE Transactions on Instrumentation and Measurement, 57, (11), 2608–2615, 2008.
Marroncelli, M., Trinchero, D., Lakafosis, V., et al., “Concealable, low-cost paper-printed antennas for WISP-based RFIDs,” in IEEE International Conference on RFID, pp. 6–10, 2011.
Kimionis, J., Bletsas, A., Dimitriou, A. G., et al., “Inventory time reduction in Gen2 with single-antenna separation of FM0 RFID signals,” in IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 494–501, 2011.
Angerer, C., Langwieser, R., and Rupp, M., “RFID reader receivers for physical layer collision recovery,” IEEE Transactions on Communications, 58, (12), 3526–3537, 2010.
De Donno, D., Lakafosis, V., Tarricone, L., et al., “Increasing performance of SDR-based collision-free RFID systems,” Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pp. 1–3, 2012.
Taoran, L., Lakafosis, V., Ziyin, L., et al., “Inkjet-printed graphene-based wireless gas sensor modules,” in 62nd Electronic Components and Technology Conference (ECTC), IEEE, pp. 1003–1008, 2012.
Lakafosis, V., Xiaohua, Y., Taoran, L., et al., “Wireless sensing with smart skins,” in Sensors, IEEE, pp. 623–626, 2011.
Xiaohua, Y., Chunhee, C., Chia-Hung, F., et al., “Wireless strain and crack sensing using a folded patch antenna,” in 6th European Conference on Antennas and Propagation (EUCAP), pp. 1678–1681, 2012.
Mariotti, C., Lakafosis, V., Tentzeris, M., et al., “An IPv6-enabled wireless shoe-mounted platform for health-monitoring,” in IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 46–48, 20–23 Jan. 2013.
Mariotti, C., Orecchini, G., Virili, M., et al., “RFID tag antenna embedded in concrete structures for construction industry,” in 6th European Conference on Antennas and Propagation (EUCAP), pp. 3469–3472, 26–30 March 2012.
Kymissis, J., Kendall, C., Paradiso, J., et al., “Parasitic power harvesting in shoes,” in Digest of Papers, Second International Symposium on Wearable Computers, pp. 132–139, 1998.
Gay, D., Levis, P., von Behren, R., et al., “The nesC language: A holistic approach to networked embedded systems,” in Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation, New York, NY, USA, pp. 1–11, 2003.
Barclay, L. W. and Institution of Electrical Engineers, Propagation of Radiowaves, Institution of Electrical Engineers, 2003.
Li, Y., Rida, A., Vyas, R., et al., “RFID tag and RF structures on a paper substrate using inkjet-printing technology,” IEEE Transactions on Microwave Theory and Techniques, 55, (12), 2894–2901, 2007.
Lakafosis, V., Rida, A., Vyas, R., et al., “Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags,” Proceedings of the IEEE, 98, (9), 1601–1609, 2010.
Rida, A., Lakafosis, V., Vyas, R., et al., “Review of technologies for low-cost integrated sensors,” in IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 513–520, 2011.
Palacios, S., Rida, A., Sangkil, K., et al., “Towards a smart wireless integrated module (SWIM) on flexible organic substrates using inkjet printing technology for wireless sensor networks,” in IEEE International Workshop on Antenna Technology (iWAT), pp. 20–23, 2012.
“System-on-Chip for 2.4 GHz ZigBee / IEEE 802.15.4 with Location Engine,” Texas Instruments, 2009.
Lakafosis, V., Traille, A., Hoseon, L., et al., “RF fingerprinting physical objects for anticounterfeiting applications,” IEEE Transactions on Microwave Theory and Techniques, 59, (2), 504–514, 2011.
“MSP430F543x, MSP430F541x Mixed Signal Microcontroller (Rev. C) – SLAS612C,” Texas Instruments, Mar. 2010.
“CC2530 A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications – SWRS081B,” Texas Instruments, Feb. 2011.
Doraswamy, N. and Harkins, D., IPSec: the New Security Standard for the Internet, Intranets, and Virtual Private Networks, Prentice Hall, 2003.
Shi, C., Lakafosis, V., Ammar, M. H., et al., Serendipity: A Distributed Computing Platform for Disruption Tolerant Networks, Georgia Institute of Technology, 2011.
Lakafosis, V., Addagatla, S., Belady, C., et al., “Prometheus: A wirelessly interconnected, pico-datacenter framework for the developing world,” in 10th International Conference on Wired / Wireless Internet Communications (WWIC 2012), Island of Santorini, Greece, 2012.
Greenberg, A., Hamilton, J., Maltz, D. A., et al., “The cost of a cloud: research problems in data center networks,” SIGCOMM Comput. Commun. Rev., 39, (1), 68–73, 2008.