Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: October 2019

19 - Long- and Short-Term Geomagnetic Prediction

from Part V - Magnetic Fields beyond the Earth and beyond Today

Summary

Prediction of geomagnetic variability depends on the accuracy of geomagnetic field modeling, dynamical modeling of source regions that contribute to geomagnetic signals, and advanced assimilation algorithms that combine effectively the results of geomagnetic field and dynamic models to make accurate estimates of the dynamic states of the sources and, therefore, accurate forecast of geomagnetic variations. Here, an overview of recent research efforts in these three research areas is provided, focusing primarily on geomagnetic variations from the dynamic outer core and from solar and lunar tidal effects, but also including a review of relevant research results and developments. Prediction of weak but periodic tidal phenomena, and of strong but chaotic secular variation showcases two very important new developments which will lead to new opportunities in geomagnetic research and application.

Related content

Powered by UNSILO
Aubert, J. 2014. Earth’s core internal dynamics 18402010 imaged by inverse geodynamo modelling. Geophys. J. Int., 197, 1321–34.
Aubert, J. and Fournier, A. 2011. Inferring internal properties of Earth’s core dynamics and their evolution from surface observations and a numerical geodynamo model. Nonlinear Process. Geophys., 18, 657‒74.
Aubert, J., Gastine, T. and Fournier, A. 2017. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid. Mech., 813, 558–93.
Barrois, O., Gillet, N. and Aubert, J. 2017. Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics. Geophys. J. Int., 211, 5068.
Beggan, C. D. and Whaler, K. A. 2009. Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering. Geophys. Res. Lett., doi: 10.1029/2009GL039927.
Bouligand, C., Gillet, N., Jault, D., Schaeffer, N. Fournier, A. and Aubert, J. 2016. Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations. Geophys. J. Int., 207, 1142‒57.
Canet, E., Fournier, A. and Jault, D. 2009. Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res., doi: 10.1029/2008JB006189.
Christensen, U. R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G. A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J. and Zhang, K. 2001. A numerical dynamo benchmark. Phys. Earth Planet. Inter., 128, 2534.
Christensen, U. R., Aubert, J. and Hulot, G. 2010. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett., 296, 487‒96.
Colosi, J. A. and Munk, W. 2006. Tales of the Venerable Honolulu Tide Gauge. J. Phys. Oceanogr., 36, 967‒96.
Donadini, F., Korte, M. and Constable, C. G. 2009. Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosys., 10, Q06007, doi: 10.1029/2008GC002295.
Egbert, G. P. and Ray, R. D. 2017. Tidal prediction. J. Mar. Res., 189237, 149.
Finlay, C. C., Lesur, V., Thébault, E., Vervelidou, F., Morschhauser, A. and Shore, R. 2017. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modeling. Space Sci. Rev., 206, 157–89, doi: 10.10007/s11214-016-0285-9.
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. and Toffner-Clausen, L. 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68, doi: 10.1186/s40623-016-0486-1.
Fournier, A., Eymin, C. and Alboussiere, T. 2007. A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system. Nonlin. Process. Geophys., 14, 163‒80.
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. and Lhuillier, F. 2010. An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev., 155, 247‒91.
Fournier, A., Aubert, J. and Thébault, E. 2011. Inference on core surface flow from observations and 3-D dynamo modelling. Geophys. J. Int., 186, 118‒36.
Fournier, A., Nerger, L. and Aubert, J. 2013. An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field. Geochem. Geophys. Geosyst., doi: 10.1002/ggge.20252.
Fournier, A., Aubert, J. and Thébaut, E. 2015. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modeling. Earth Planets Space, 67, doi: 10.1186/s40623-015-0245-8.
Gillet, N., Jault, D., Canet, E. and Fournier, A. 2010. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, doi: 10.1038/nature09010.
Gillet, N., Jault, D., Finlay, C. C. and Olsen, N. 2013. Stochastic modeling of the Earth’s magnetic field: Inversion for covariances over the observatory era. Geochem. Geophys. Geosyst., doi: 10.1002/ggge.20041.
Gillet, N., Barrois, O. and Finlay, C. C. 2015. Stochastic forecasting of the geomagnetic field from the COV-Obs.x1 geomagnetic field model, and candidate models for IGRF-12. Earth Planets Space, doi: 10.1186/s40623-015-0225-z.
Grayver, A. V., Schnepf, N. R., Kuvshinov, A. V., Sabaka, T. J., Manoj, C. and Olsen, N. 2016 Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary. Sci. Adv., doi: 10.1126/sciadv.1600798.
Grayver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., Sabaka, T. J. and Tøffner-Clausen, L. 2017. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. Geophys. Res. Lett., doi: 10.1002/2017GL073446.
Hammill, T. M., Snyder, C. 2000. A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme. Mon. Weather Rev., 128, 2905–15.
Holme, R. and Whaler, K. A. 2001. Steady core flow in an azimuthally drifting reference frame. Geophys. J. Int., 145, 560‒69.
Hulot, G., Lhuillier, F. and Aubert, J. 2010. Earth’s dynamo limit of predictability. Geophys. Res. Lett., 37, doi: 10.1029/2009GL041869.
Jackson, A., Jonkers, A. R. T. and Walker, M. R. 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London, A358, 957‒90.
Jault, D., Gire, C. and LeMouël, J.-L. 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353‒6.
Jault, D. 2008. Axial invariance of rapidly varying diffusionless motions in the Earth?s core interior. Phys. Earth Planet. Inter., 166, 6776.
Jiang, W. and Kuang, W. 2008. An MPI-based MoSST core dynamics model. Phys. Earth Planet. Inter., 170, 4651.
Jones, C. A., Boronski, P., Brun, A. S. Glatzmaier, G. A., Gastine, T., Miesch, M. S. and Wicht, J. 2011. Anelastic convection-driven dynamo benchmarks. Icarus, 216, 120‒35.
Kalnay, E. 2011. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge.
Korte, M. and Constable, C. G. 2011. Improving geomagnetic field reconstructions for 0‒3 ka. Phys. Earth Planet. Inter., 188, 247‒59.
Kuang, W. and Bloxham, J. 1997. An Earth like numerical dynamo model. Nature, 389, 371‒4.
Kuang, W. and Bloxham, J. 1999. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong dynamo action. J. Comput. Phys., 153, 5181.
Kuang, W. and Chao, B. F. 2003. Geodynamo modeling and core-mantle interactions, in Earth’s Core: Dynamics, Structure, Rotation, Geodynamics Series 31, ed. Dehant, V., Kreager, K. C., Karato, S. and Zatman, S. American Geophysical Union, Washington, DC.
Kuang, W. and Tangborn, A. 2015. Dynamic responses of the Earth’s outer core to assimilation of observed geomagnetic secular variation. Prog. Earth Planet. Sci., doi: 10.1186/s40645-015-0071-4.
Kuang, W., Tangborn, A., Jiang, W., Liu, D., Sun, Z., Bloxham, J. and Wei, Z. 2008. MoSSTDAS: The first generation geomagnetic data assimilation framework. Commun. Comput. Phys., 3, 85108.
Kuang, W., Wei, Z., Holme, R. and Tangborn, A. 2010. Constraining a numerical geodynamo model with 100 years of surface observations. Geophys. J. Int., doi: 10.1111/j.1365-246X.2009.04376.x.
Kuang, W., Tangborn, A., Wei, Z. and Sabaka, T. 2009. Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11. Earth Planets Space, 62, 775‒85.
Kuang, W., Chao, B. F. and Chen, J. 2017. Decadal polar motion of the Earth excited by the convective outer core from geodynamo simulations. J. Geophys. Res., in press.
Langel, R. A. 1987. The main geomagnetic field, in Geomagnetism, vol. 1, ed. Jacobs, J. A., Academic Press, London.
Lesur, V., Wardinski, I., Rother, M. and Mandea, M. 2008. GRIMM: The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int., 173, 382‒94.
Lesur, V., Rother, M., Wardinski, I., Schachtschneider, R., Hamoudi, M. and Chambodut, A. 2015a. Parent magnetic field models for the IGRF-12: GFZ-candidates. Earth Planets Space, doi: 10.1186/s40623-015-0239-6.
Lesur, V., Whaler, K. and Wardinski, I. 2015b. Are geomagnetic data consistent with stably stratified flow at the core–mantle boundary? Geophys. J. Int., DOI: 10.1093/gji/ggv031.
Li, K., Jackson, A. and Livermore, P. W. 2011. Variational data assimilation for the initial-value dynamo problem. Phys. Rev. E, 84, doi: 10.1103/PhysRevE.84.056321.
Li, K., Jackson, A. and Livermore, P. W. 2014. Variational data assimilation for a forced, inertia-free magnetohydrodynamic dynamo model. Geophys. J. Int., 199, 1662–76.
Licht, A., Hulot, G., Gallet, Y. and Thébault, E. 2013. Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Inter., 224, 3867.
Liu, D., Tangborn, A. and Kuang, W. 2007. Observing system simulation experiments in geomagnetic data assimilation. J. Geophys. Res., 112, doi: 10.1029/2006JB004691.
Love, J. J. and Rigler, E. J. 2014. The magnetic tides of Honolulu. Geophys. J. Int., 197, 1335‒53.
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J., Featherstone, N., Gastine, T., Glatzmaier, G. A., Gubbins, D., Guermond, J.-L., Hayashi, Y., Hollerbach, R., Hwang, L. J., Jackson, A., Jones, C. A., Jiang, W., Kellogg, L. H., Kuang, W., Landeau, M., Marti, P., Olson, P., Ribeiro, A., Sasaki, Y., Schaeffer, N., Simitev, R. D., Sheyko, A., Silva, L., Stanley, S., Takahashi, F., Takehiro, S., Wicht, J. and Willis, A. P. 2016. Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst., doi: 10.1002/2015GC006159
Maus, S. 2017. POMME-9 magnetic model of the Earth. http://geomag.colorado.edu/pomme-9-magnetic-model-of-the-earth.html.
Maus, S., Macmillan, S., Lowes, F. and Bondar, T. 2005. Evaluation of candidate geomagnetic field models for the 10th generation of IGRF. Earth Planets Space, 57, 1173‒81.
Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D. and Roth, C. 2006. Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophy. Geosyst., doi: 10.1029/2006GC001269.
Maus, S., Silva, L. and Hulot, G. 2008. Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field? J. Geophys. Res., doi: 10.1029/2007JB005199.
Morzfeld, M., Fournier, A. and Hulot, G. 2017. Coarse predictions of dipole reversals by low-dimensional modeling and data assimilation. Phys. Earth Planet. Inter., 262, 827.
Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M. 2014. Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys. J. Int., doi: 10.1093/gji/ggu120.
Olsen, N. and Stolle, C. 2017. Magnetic signatures of ionospheric and magnetospheric current systems during geomagnetic quiet conditions ‒ an overview. Space Sci. Rev., 206, 525, doi: 10.1007/s11214-016-0279-7.
Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J. and Tøffner-Clausen, L. 2014. The CHAOS-4 geomagnetic field model. Geophys. J. Int., 197, 815‒27.
Sabaka, T. J. and Olsen, N. 2006. Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space, 58, 371‒95.
Sabaka, T. J., Olsen, N. and Langel, R. A. 2002. A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophys. J. Int., 151, 3268.
Sabaka, T. J., Olsen, N. and Purucker, M. E. 2004. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int., 159, 521‒47.
Sabaka, T. J., Tøffner-Clausen, L. and Olsen, N. 2013. Use of the comprehensive inversion method for Swarm satellite data analysis. Earth Planets Space, 65, 1201‒22.
Sabaka, T. J., Olsen, N., Tyler, R. H. and Kushinov, A. 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int., 200, 15961626.
Sabaka, T. J., Tyler, R. H. and Olsen, N. 2016. Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry. Geophys. Res. Lett., doi: 10.1002/2016GL068180.
Sakuraba, A. and Roberts, P. H. 2009. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci., doi: 10.1038/NGEO643.
Sanchez, S., Fournier, A., Aubert, J. and Gallrt, Y. 2016. Modelling the archaeomagnetic field under spatial constraints from dynamo simulations: A resolution analysis. Geophy. J. Int., 207, 9831002.
Schnepf, N. R., Kuvshinov, A. and Sabaka, T. J. 2015. Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals? Geophys. Res. Lett., doi: 10.1002/2015GL063540.
Sun, Z., Tangborn, A. and Kuang, W. 2007. Data assimilation in a sparsely observed one-dimensional modeled MHD system. Nonlinear Process. Geophys., 14, 181‒92.
Sun, Z. and Kuang, W. 2015. An ensemble algorithm based component for geomagnetic data assimilation. Terr. Atmos. Ocean. Sci., 26, 5361.
Tangborn, A. and Kuang, W. 2015. Geodynamo model and error parameter estimation using geomagnetic data assimilation. Geophys. J. Int., 200, 664‒75.
Tangborn, A. and Kuang, W. 2018. Impact of archeomagnetic field model data on modern era geomagnetic forecasts. Phys. Earth Planet. Inter., 276, 29.
Tyler, R. H. 2013. Magnetic remote sensing of ocean flow variability, presented at IAGA 12th Scientific Assembly, Living on a Magnetic Planet, Merida, 26–31 August.
Tyler, R. H., Maus, S. and Lühr, H. 2003. Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239‒41.
Tyler, R. H., Boyer, T. P., Minami, T., Zweng, M. M. and Reagan, J. R. 2017. Electrical conductivity of the global ocean. Earth Planets Space, doi: 10.1186/s40623-017-0739-7
Whaler, K. A. and Beggan, C. D. 2015. Derivation and use of core surface flows for forecasting secular variation. J. Geophys. Res., doi: 10.1002/2014JB011697.