Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T07:11:50.062Z Has data issue: false hasContentIssue false

1 - Targeted Genome Editing Techniques in C. elegans and Other Nematode Species

from Part I - Biology of Endonucleases (Zinc-Finger Nuclease, TALENs and CRISPRs) and Regulatory Networks

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 3 - 21
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, C, Niewoehner, O, Duerst, A, Jinek, M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569573.CrossRefGoogle ScholarPubMed
Arribere, JA, Bell, RT, Fu, BXH, et al. 2014. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198: 837846.CrossRefGoogle ScholarPubMed
Bell, RT, Fu, BXH, Fire, AZ. 2016. Cas9 variants expand the target repertoire in Caenorhabditis elegans. Genetics 202: 381388.CrossRefGoogle ScholarPubMed
Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 15091512.CrossRefGoogle ScholarPubMed
Bogdanove, AJ, Schornack, S, Lahaye, T. 2010. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13: 394401.CrossRefGoogle ScholarPubMed
Boulin, T, Bessereau, J-L. 2007. Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc 2: 12761287.CrossRefGoogle ScholarPubMed
Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 7194.CrossRefGoogle ScholarPubMed
Carroll, D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409439.CrossRefGoogle ScholarPubMed
Cencic, R, Miura, H, Malina, A, et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9: e109213.CrossRefGoogle ScholarPubMed
Chen, B, Gilbert, LA, Cimini, BA, et al. 2013a. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 14791491.CrossRefGoogle ScholarPubMed
Chen, C, Fenk, LA, de Bono, M. 2013b. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 41: e193.CrossRefGoogle ScholarPubMed
Chen, X, Li, M, Feng, X, Guang, S. 2015. Targeted chromosomal translocations and essential gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Genetics 201: 12951306.CrossRefGoogle ScholarPubMed
Cheng, AW, Wang, H, Yang, H, et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23: 11631171.CrossRefGoogle ScholarPubMed
Chiu, H, Schwartz, HT, Antoshechkin, I, Sternberg, PW. 2013. Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics 195: 11671171.CrossRefGoogle ScholarPubMed
Cho, SW, Lee, J, Carroll, D, Kim, J-S, Lee, J. 2013. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics 195: 11771180.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Conradt, B, Xue, D. 2005. Programmed cell death. Wormbook www.wormbook.org/chapters/www_programcelldeath/programcelldeath.html 113. (Accessed September 30, 2016).CrossRefGoogle Scholar
C. elegans Sequencing Consortium 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 20122018.CrossRefGoogle Scholar
Dickinson, DJ, Pani, AM, Heppert, JK, Higgins, CD, Goldstein, B. 2015. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200: 10351049.CrossRefGoogle ScholarPubMed
Dickinson, DJ, Ward, JD, Reiner, DJ, Goldstein, B. 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10: 10281034.CrossRefGoogle ScholarPubMed
Doench, JG, Fusi, N, Sullender, M, et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184191.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32: 12621267.CrossRefGoogle ScholarPubMed
Dorman, JB, Albinder, B, Shroyer, T, Kenyon, C. 1995. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141: 13991406.CrossRefGoogle Scholar
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Edgley, M, D’Souza, A, Moulder, G, et al. 2002. Improved detection of small deletions in complex pools of DNA. Nucleic Acids Res 30: e52e52.CrossRefGoogle ScholarPubMed
Ellis, HM, Horvitz, HR. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817829.CrossRefGoogle ScholarPubMed
Ellis, RE, Jacobson, DM, Horvitz, HR. 1991. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129: 7994.CrossRefGoogle ScholarPubMed
Farboud, B, Meyer, BJ. 2015. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199: 959971.CrossRefGoogle ScholarPubMed
Félix, M-A, Braendle, C, Cutter, AD. 2014. A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS One 9: e94723.CrossRefGoogle ScholarPubMed
Fire, A, Xu, S, Montgomery, MK, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806811.CrossRefGoogle ScholarPubMed
Friedland, AE, Tzur, YB, Esvelt, KM, et al. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10: 741743.CrossRefGoogle Scholar
Frøkjær-Jensen, C, Davis, MW, Ailion, M, Jorgensen, EM. 2012. Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9: 117118.CrossRefGoogle ScholarPubMed
Frøkjær-Jensen, C, Davis, MW, Hollopeter, G, et al. 2010. Targeted gene deletions in C. elegans using transposon excision. Nat Methods 7: 451453.CrossRefGoogle Scholar
Frøkjær-Jensen, C, Davis, WM, Hopkins, CE, et al. 2008. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 13751383.CrossRefGoogle ScholarPubMed
Frøkjaer-Jensen, C, Davis, MW, Sarov, M, et al. 2014. Random and targeted transgene insertion in C. elegans using a modified Mosl transposon. Nat Methods 11: 529534.CrossRefGoogle Scholar
Fruscoloni, P, Zamboni, M, Panetta, G, De Paolis, A, Tocchini-Valentini, GP. 1995. Mutational analysis of the transcription start site of the yeast tRNA(Leu3) gene. Nucleic Acids Res 23: 29142918.CrossRefGoogle ScholarPubMed
Fu, BXH, Hansen, LL, Artiles, KL, Nonet, ML, Fire, AZ. 2014. Landscape of target: guide homology effects on Cas9-mediated cleavage. Nucleic Acids Res 42: 1377813787.CrossRefGoogle ScholarPubMed
Gagnon, JA, Valen, E, Thyme, SB, et al. 2014. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9: e98186.CrossRefGoogle ScholarPubMed
Garneau, JE, Dupuis, M-È, Villion, M, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 6771.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Gilbert, LA, Larson, MH, Morsut, L, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442451.CrossRefGoogle ScholarPubMed
Hengartner, MO, Ellis, R, Horvitz, R. 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494499.CrossRefGoogle ScholarPubMed
Hinz, JM, Laughery, MF, Wyrick, JJ. 2015. Nucleosomes inhibit cas9 endonuclease activity in vitro. Biochemistry (Mosc) 54: 70637066.CrossRefGoogle ScholarPubMed
Horlbeck, MA, Witkowsky, LB, Guglielmi, B, et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle Scholar
Hwang, WY, Fu, Y, Reyon, D, et al. 2013a. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8: e68708.CrossRefGoogle ScholarPubMed
Hwang, WY, Fu, Y, Reyon, D, et al. 2013b. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227229.CrossRefGoogle ScholarPubMed
Isaac, RS, Jiang, F, Doudna, JA, et al. 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5.CrossRefGoogle ScholarPubMed
Iwata, S, Yoshina, S, Suehiro, Y, Hori, S, Mitani, S. 2016. Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9. Sci Rep 6: 33840.CrossRefGoogle Scholar
Jansen, G, Hazendonk, E, Thijssen, KL, Plasterk, RHA. 1997. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17: 119121.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Katic, I, Großhans, H. 2013. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans. Genetics 195: 11731176.CrossRefGoogle ScholarPubMed
Katic, I, Xu, L, Ciosk, R. 2015. CRISPR/Cas9 genome editing in Caenorhabditis elegans: evaluation of templates for homology-mediated repair and knock-ins by homology-independent DNA repair. G3 Genes, Genomes, Genetics 5: 16491656.CrossRefGoogle ScholarPubMed
Kent, T, Mateos-Gomez, PA, Sfeir, A, Pomerantz, RT. 2016. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining. eLife 5.CrossRefGoogle ScholarPubMed
Kenyon, C, Chang, J, Gensch, E, Rudner, A, Tabtiang, R. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366: 461464.CrossRefGoogle Scholar
Kim, H, Ishidate, T, Ghanta, KS, Seth, M, et al. 2014. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197: 10691080.CrossRefGoogle ScholarPubMed
Kimura, KD, Tissenbaum, HA, Liu, Y, Ruvkun, G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942946.CrossRefGoogle ScholarPubMed
Kiontke, KC, Félix, M-A, Ailion, M, et al. 2011. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11: 339.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Prew, MS, Tsai, SQ, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481485.CrossRefGoogle ScholarPubMed
Komor, AC, Kim, YB, Packer, MS, Zuris, JA, Liu, DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533: 420424.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500: 472476.CrossRefGoogle ScholarPubMed
Lee, RC, Feinbaum, RL, Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843854.CrossRefGoogle Scholar
Li, W, Yi, P, Ou, G. 2015. Somatic CRISPR-Cas9-induced mutations reveal roles of embryonically essential dynein chains in Caenorhabditis elegans cilia. J Cell Biol 208: 683692.CrossRefGoogle ScholarPubMed
Lin, K, Dorman, JB, Rodan, A, Kenyon, C. 1997. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 13191322.CrossRefGoogle ScholarPubMed
Liu, H, Wei, Z, Dominguez, A, et al. 2015. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinforma Oxf Engl 31: 36763678.CrossRefGoogle ScholarPubMed
Lo, T-W, Pickle, CS, Lin, S, et al. 2013. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics 195: 331348.CrossRefGoogle ScholarPubMed
Maeder, ML, Linder, SJ, Cascio, VM, et al. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10: 977979.CrossRefGoogle ScholarPubMed
Mali, P, Aach, J, Stranges, PB, et al. 2013a. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31: 833838.CrossRefGoogle ScholarPubMed
Mali, P, Esvelt, KM, Church, GM. 2013b. Cas9 as a versatile tool for engineering biology. Nat Methods 10: 957963.CrossRefGoogle ScholarPubMed
Markov, GV, Meyer, JM, Panda, O, et al. 2016. Functional conservation and divergence of daf-22 paralogs in Pristionchus pacificus dauer development. Mol Biol Evol 33: 25062514.CrossRefGoogle ScholarPubMed
McKenna, A, Findlay, GM, Gagnon, JA, et al. 2016. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353: aaf7907.CrossRefGoogle ScholarPubMed
Mello, CC, Kramer, JM, Stinchcomb, D, Ambros, V. 1991. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 39593970.CrossRefGoogle Scholar
Mitani, S. 1995. Genetic regulation of mec-3 gene expression implicated in the specification of the mechanosensory neuron cell types in Caenorhabditis elegans. Dev Growth Differ 37: 551557.CrossRefGoogle ScholarPubMed
Mojica, FJM, Díez-Villaseñor, C, García-Martínez, J, Almendros, C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiol Read Engl 155: 733740.CrossRefGoogle ScholarPubMed
Montague, TG, Cruz, JM, Gagnon, JA, Church, GM, Valen, E. 2014. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42: W401W407.CrossRefGoogle ScholarPubMed
Moreno-Mateos, MA, Vejnar, CE, Beaudoin, J-D, et al. 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nat Methods 12: 982988.CrossRefGoogle ScholarPubMed
Morris, JZ, Tissenbaum, HA, Ruvkun, G. 1996. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536539.CrossRefGoogle ScholarPubMed
Morton, J, Davis, MW, Jorgensen, EM, Carroll, D. 2006. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 103: 1637016375.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.CrossRefGoogle ScholarPubMed
Nelles, DA, Fang, MY, O’Connell, MR, et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165: 488496.CrossRefGoogle ScholarPubMed
Nishida, K, Arazoe, T, Yachie, N, et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353: aaf8729.CrossRefGoogle ScholarPubMed
O’Connell, MR, Oakes, BL, Sternberg, SH, et al. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516: 263266.CrossRefGoogle ScholarPubMed
Ogg, S, Paradis, S, Gottlieb, S, et al. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994999.CrossRefGoogle ScholarPubMed
Pabo, CO, Peisach, E, Grant, RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70: 313340.CrossRefGoogle ScholarPubMed
Paix, A, Folkmann, A, Rasoloson, D, Seydoux, G. 2015. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201: 4754.CrossRefGoogle ScholarPubMed
Paix, A, Wang, Y, Smith, HE, et al. 2014. Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans. Genetics 198: 13471356.CrossRefGoogle ScholarPubMed
Pattanayak, V, Lin, S, Guilinger, JP, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31: 839843.CrossRefGoogle ScholarPubMed
Pavletich, NP, Pabo, CO. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252: 809817.CrossRefGoogle Scholar
Perez-Pinera, P, Kocak, DD, Vockley, CM, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10: 973976.CrossRefGoogle ScholarPubMed
Praitis, V, Casey, E, Collar, D, Austin, J. 2001. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157: 12171226.CrossRefGoogle ScholarPubMed
Qi, LS, Larson, MH, Gilbert, LA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 11731183.CrossRefGoogle ScholarPubMed
Reinhart, BJ, Slack, FJ, Basson, M, et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901906.CrossRefGoogle ScholarPubMed
Ren, X, Yang, Z, Xu, J, et al. 2014. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9: 11511162.CrossRefGoogle ScholarPubMed
Richardson, CD, Ray, GJ, DeWitt, MA, Curie, GL, Corn, JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34: 339344.CrossRefGoogle ScholarPubMed
Sapranauskas, R, Gasiunas, G, Fremaux, C, et al. 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39: 92759282.CrossRefGoogle ScholarPubMed
Shen, Z, Zhang, X, Chai, Y, et al. 2014. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell 30: 625636.CrossRefGoogle Scholar
Shmakov, S, Abudayyeh, OO, Makarova, KS, et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60: 385397.CrossRefGoogle ScholarPubMed
Sternberg, SH, Redding, S, Jinek, M, Greene, EC, Doudna, JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507: 6267.CrossRefGoogle ScholarPubMed
Sulston, JE, Schierenberg, E, White, JG, Thomson, JN. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64119.CrossRefGoogle ScholarPubMed
Tanenbaum, ME, Gilbert, LA, Qi, LS, Weissman, JS, Vale, RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159: 635646.CrossRefGoogle ScholarPubMed
Thompson, O, Edgley, M, Strasbourger, P, et al. 2013. The Million Mutation Project: a new approach to genetics in Caenorhabditis elegans. Genome Res 23: 17491762.CrossRefGoogle Scholar
Thyme, SB, Schier, AF. 2016. Polq-mediated end joining is essential for surviving DNA double-strand breaks during early zebrafish development. Cell Rep 15: 16111613.CrossRefGoogle ScholarPubMed
Tian, D, Diao, M, Jiang, Y, et al. 2015. Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton. Curr Biol 25: 11351145.CrossRefGoogle ScholarPubMed
Tsai, SQ, Zheng, Z, Nguyen, NT, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33: 187197.CrossRefGoogle ScholarPubMed
Urnov, FD, Rebar, EJ, Holmes, MC, Zhang, HS, Gregory, PD. 2010. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11: 636646.CrossRefGoogle ScholarPubMed
van Schendel, R, Roerink, SF, Portegijs, V, van den Heuvel, S, Tijsterman, M. 2015. Polymerase Θ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis. Nat Commun 6: 7394.CrossRefGoogle ScholarPubMed
Waaijers, S, Portegijs, V, Kerver, J, et al. 2013. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 195: 11871191.CrossRefGoogle ScholarPubMed
Wang, S, Su, J-H, Zhang, F, Zhuang, X. 2016. An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6: 26857.CrossRefGoogle ScholarPubMed
Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343: 8084.CrossRefGoogle ScholarPubMed
Ward, JD. 2015. Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics 199: 363377.CrossRefGoogle ScholarPubMed
Wei, Q, Shen, Y, Chen, X, Shifman, Y, Ellis, RE. 2014. Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Mol Biol Evol 31: 468473.CrossRefGoogle ScholarPubMed
Witte, H, Moreno, E, Rödelsperger, C, et al. 2015. Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Dev Genes Evol 225: 5562.CrossRefGoogle ScholarPubMed
Wood, AJ, Lo, T-W, Zeitler, B, et al. 2011. Targeted genome editing across species using ZFNs and TALENs. Science 333: 307.CrossRefGoogle ScholarPubMed
Wu, X, Scott, DA, Kriz, AJ, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32: 670676.CrossRefGoogle ScholarPubMed
Zalatan, JG, Lee, ME, Almeida, R, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339350.CrossRefGoogle ScholarPubMed
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759771.CrossRefGoogle ScholarPubMed
Zhang, L, Ward, JD, Cheng, Z, Dernburg, AF. 2015. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Dev Camb Engl 142: 43744384.Google ScholarPubMed
Zhao, P, Zhang, Z, Ke, H, Yue, Y, Xue, D. 2014. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 24: 247250.CrossRefGoogle Scholar
Zhao, P, Zhang, Z, Lv, X, et al. 2016. One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Cell Res 26: 633636.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×