Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T03:32:17.611Z Has data issue: false hasContentIssue false

11 - Fungal activities in subaerial rock-inhabiting microbial communities

Published online by Cambridge University Press:  10 December 2009

Anna A. Gorbushina
Affiliation:
Geomicrobiology ICBM, Carl Von Ossietzky University, Oldenburg, POB 2503, D-26111 Oldenburg, Germany
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

There were times on our planet when the barren dryness of uninhabited continents sharply contrasted with the densely populated sea. The continental lithosphere was then essentially represented by rock surfaces of different types. Sedimentary rocks were rare, if not absent. As rock materials became exposed to the subaerial environment at the Earth's surface, they encountered a whole range of environmental challenges such as temperature fluctuations, water, unbuffered cosmic and solar irradiation and atmospheric gases and solids instead of dissolved species. These influences resulted in rocks undergoing alterations in material properties leading to erosion and breakdown into ever-smaller particles and constituent minerals, formation of sandy sediments, and mineral soils (Ehrlich, 1996). Primordial terrestrial environments can therefore be visualized as a freshly exposed and only slightly physically pre-weathered rock surface.

However, physical and chemical changes in rock-forming minerals even during the very first stages of the terrestrial evolution were accompanied by an initially slow but steady establishment and spread of living organisms. Life started to colonize rock surfaces during the Archean. The first settlers were undoubtedly biofilms and later mature microbial mats not unlike modern desert or intertidal stromatolithic systems (Costerton & Stoodley, 2003). Environmental and geochemical settings of these ancient subaerial habitats were probably very similar to the conditions of present-day deserts. Rock surface environments were then, and remain now, exceptionally hostile with respect to all conditions necessary for the maintenance of living systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. C. (1978). Desert varnish of the Sonoran Desert – optical and electron probe microanalysis. Journal of Geology, 86, 743–52.CrossRefGoogle Scholar
Avakian, Z. A., Karavaiko, G. I., Mel'nikova, E. O., Krutsko, V. S. & Ostroushko, I. I. (1981). Role of microscopic fungi in the process of weathering of pegmatite deposit rocks and minerals. Mikrobiologiya, 50, 156–62.Google ScholarPubMed
Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3403–11.CrossRefGoogle ScholarPubMed
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. Reviews in Mineralogy, 35, 391–428.Google Scholar
Bechinger, C., Giebel, K. F., Schnell, M.et al. (1999). Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science, 285, 1896–9.CrossRefGoogle ScholarPubMed
Braams, J. (1992). Ecological studies on the fungal microflora inhabiting historic sandstone monuments. In Geomicrobiology, Oldenburg: Oldenburg University, pp. 128.Google Scholar
Braissant, O. & Verrecchia, E. P. (2002). Microbial biscuits of vaterite in Lake Issyk-Kul (Republic of Kyrgyzstan) – Discussion. Journal of Sedimentary Research, 72, 944–6.CrossRefGoogle Scholar
Brehm, U., Gorbushina, A. A. & Mottershead, D. (2005). The role of micro-organisms and biofilms in the breakdown and dissolution of quartz and glass. Paleogeography, Paleoclimatology, Paleobiology, 219, 117–29. (Published online 6 January, 2005.)CrossRefGoogle Scholar
Broecker, W. S. & Liu, T. (2001). Rock varnish: recorder of desert wetness. GSA Today, 11, 4–10.2.0.CO;2>CrossRefGoogle Scholar
Burford, E. P., Fomina, M. & Gadd, G. M. (2003). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–55.CrossRefGoogle Scholar
Butler, M. J. & Day, A. W. (1998). Fungal melanins: a review. Canadian Journal of Botany, 44, 1115–36.Google Scholar
Butler, M. J., Day, A. W., Henson, J. M. & Money, N. P. (2001). Pathogenic properties of fungal melanins. Mycologia, 93, 1–8.CrossRefGoogle Scholar
Chertov, O., Gorbushina, A. & Deventer, B. (2004). A model for microcolonial fungi growth on rock surfaces. Ecological Modelling, 177, 415–26.CrossRefGoogle Scholar
Cockell, C. S. & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Reviews of the Cambridge Philosophical Society, 74, 311–45.CrossRefGoogle ScholarPubMed
Costerton, J. W. & Stoodley, P. (2003). Microbial biofilms: protective niches in ancient and modern microbiology. In Fossil and Recent Biofilms: A Natural History of Life on Earth, ed. Krumbein, W. E., Paterson, D. M. & Zavarzin, G. A., Dordrecht: Kluwer, pp. xv–xxi.CrossRefGoogle Scholar
de Leo, F., Criseo, G. & Urzi, C. (1996). Impact of surrounding vegetation and soil on the colonization of marble statues by dematiaceous fungi. In Proceedings of 8th International Congress on Deterioration and Conservation of Stone, ed. Riederer, J.. Berlin: Moeller pp. 625–30.Google Scholar
Diakumaku, E., Gorbushina, A. A., Krumbein, W. E., Panina, L. & Soukharjevski, S. (1995). Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Science of the Total Environment, 167, 295–304.CrossRefGoogle Scholar
Dorn, R. I. (1984). Cause and implications of rock varnish microchemical laminations. Nature, 310, 767–70.CrossRefGoogle Scholar
Dornieden, T., Gorbushina, A. & Krumbein, W. E. (1997). Änderungen der physikalischen Eigenschaften von Marmor durch Pilzbewuchs. International Journal for Restoration of Buildings and Monuments, 3, 441–56.Google Scholar
Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. (2004). Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745–65.CrossRefGoogle Scholar
Ehrlich, H. L. (1996). Geomicrobiology. New York: Marcel Dekker.Google Scholar
Elvidge, C. D. (1982). Reexamination of the rate of desert varnish formation reported south of Barston, California. Earth Surface Processes and Landforms, 7, 345–8.CrossRefGoogle Scholar
Fomina, M., Alexander, I. J., Hillier, S. & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21, 351–66.CrossRefGoogle Scholar
Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.CrossRefGoogle ScholarPubMed
Friedmann, E. I. (1993). Antarctic Microbiology. New York: Wiley.Google Scholar
Friedmann, E. I. & Ocampo-Friedmann, R. (1984). Endolithic microorganisms in extremely dry environments: analysis of a lithobiontic microbial habitat. In Current Perspectives in Microbial Ecology, ed. Klug, M. J. & Reddy, C. A.. Washington, DC: American Society for Microbiology, pp. 177–85.Google Scholar
Friedmann, E. I., McKay, C. P. & Nienow, J. A. (1987). The cryptoendolithic microbial environment in the Ross desert of Antarctica – satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biology, 7, 273–87.CrossRefGoogle ScholarPubMed
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.CrossRefGoogle ScholarPubMed
Gadd, G. M. & Mowll, J. L. (1985). Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 9, 230–40.CrossRefGoogle Scholar
Gadd, G. M. & Rome, L. (1988). Biosorption of copper by fungal melanins. Applied Microbiology and Biotechnology, 29, 610–17.CrossRefGoogle Scholar
Gorbushina, A. A. (1998) Biodiversity of rock dwelling poikilotroph fungal communities with decreasing nutrient content of the habitat. In Proceedings of VIth International Mycological Congress, p. 140. Jerusalem.Google Scholar
Gorbushina, A. A. & Krumbein, W. E. (1999). Poikilotrophic response of micro-organisms to shifting alkalinity, salinity, temperature and water potential. In Microbiology and Biogeochemistry of Hypersaline Environments, ed. Oren, A.. London: CRC Press, pp. 75–86.Google Scholar
Gorbushina, A. A. & Krumbein, W. E. (2000). Subaerial microbial mats and their effects on soil and rock. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 161–70.CrossRefGoogle Scholar
Gorbushina, A. A. & Krumbein, W. E. (2005). Role of microorgansims in wear down of rocks and minerals. In Soil Biology, Vol. 3. Microorganisms in Soils: Role in Genesis and Functions, ed. Buscot, F. & Varma, A.. Berlin: Springer-Verlag, pp. 59–84.Google Scholar
Gorbushina, A. A., Krumbein, W. E., Hamann, C. H.et al. (1993). Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiology Journal, 11, 205–21.CrossRefGoogle Scholar
Gorbushina, A. A., Krumbein, W. E. & Volkmann, M. (2002). Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology, 2, 203–13.CrossRefGoogle ScholarPubMed
Gorbushina, A. A., Whitehead, K., Dornieden, Th.et al. (2003). Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Canadian Journal of Botany, 81 (2), 131–8.CrossRefGoogle Scholar
Gorbushina, A. A., Beck, A. & Schulte, A. (2005). Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycological Research, 109 (in press).CrossRefGoogle ScholarPubMed
Gromov, B. V. (1957). Microflora of rock substrates and primitive soils from northern areas of the USSR. Mikrobiologiya, 26, 52–9.Google Scholar
Grote, G. & Krumbein, W. E. (1992). Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiology Journal, 10, 49–57.CrossRefGoogle Scholar
Heckmann, D. S., Geiser, D. M., Eidell, B. R.et al. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–33.CrossRefGoogle Scholar
Hill, D. R., Peat, A. & Potts, M. (1994). Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria). Protoplasma, 182, 126–48.CrossRefGoogle Scholar
Hirsch, P., Eckhardt, F. E. W. & Palmer, R. J. J. (1995). Fungi active in weathering of rock and stone monuments. Canadian Journal of Botany, 73, 1384–90.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Lundstrom, U.et al. (1997). Rock-eating fungi. Nature, 389, 682–3.CrossRefGoogle Scholar
Kjoller, A. & Struwe, S. (1982). Microfungi in ecosystems – fungal occurrence and activity in litter and soil. Oikos, 39, 391–422.CrossRefGoogle Scholar
Krumbein, W. E. (1969). Über den Einfluss der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geologische Rundschau, 58, 333–63.CrossRefGoogle Scholar
Krumbein, W. E. (2003). Patina and cultural heritage – a geomicrobiologist's perspective. In Proceedings of the Vth EC Conference Cultural Heritage Research: a Pan-European Challenge, ed. Kozlowski, R.. Cracow: EC and ISC, pp. 39–47.Google Scholar
Krumbein, W. E. & Jens, K. (1981) Biogenic rock varnish of the Negev desert (Israel): an ecological study of iron and manganese transfer by cyanobacteria and fungi. Oecologia, 50, 25–38.CrossRefGoogle Scholar
Krumbein, W. E., Brehm, U., Gerdes, G. et al. (2003). Biofilm, biodictyon, biomat, microbialites, ooolites, stromatolites, geophysiology, global mechanisms, parahistology. In Fossil and Recent Biofilms: A Natural History of Life on Earth, ed. Krumbein, W. E., Paterson, D. M. & Zavarzin, G. A.. Kluwer Academic Publishers, Dordrecht, pp. 1–27.CrossRefGoogle Scholar
Leppard, G. G. (1986). The fibrillar matrix component of lacustrine biofilms. Water Research, 20, 697–702.CrossRefGoogle Scholar
McMenamin, M. A. S. & McMenamin, D. L. S. (1994). Hypersea:Life on Land. New York: Columbia University Press.Google Scholar
Margulis, L. (1970). Origin of the Eukaryotic Cells. New Haven: Yale University Press.Google Scholar
Margulis, L. (1982). Early Life. Boston: Science Books International, Inc.Google Scholar
May, E., Lewis, F. J., Pereira, S.et al. (1993). Microbial deterioration of building stone – a review. Biodeterioration Abstracts, 7, 109–23.Google Scholar
Nienow, J. A. & Friedmann, E. I. (1993). Terrestrial lithophytic (rock) communities. In Antarctic Microbiology, ed. Friedmann, E. I.. New York: Wiley, pp. 342–412.Google Scholar
Palmer, F. E., Emery, J. & Staley, J. T. (1987). Survival and growth of microcolonial fungi as affected by temperature and humidity. New Phytologist, 107, 155–62.CrossRefGoogle Scholar
Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology, 34, 319–28.CrossRefGoogle Scholar
Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T. & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21 (3), 159–67.CrossRefGoogle Scholar
Reysenbach, A. L. & Cady, S. L. (2001). Microbiology of ancient and modern hydrothermal systems. Trends in Microbiology, 9, 79–86.CrossRefGoogle ScholarPubMed
Rivera, M. C. & Lake, J. A. (2004). The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature, 431, 152–5.CrossRefGoogle ScholarPubMed
Schopf, J. W. (1999). Cradle of Life. Princeton, New Jersey: Princeton University Press.Google Scholar
Staley, J. T., Palmer, F. & Adams, J. B. (1982). Microcolonial fungi: common inhabitants on desert rocks?Science, 215, 1093–5.CrossRefGoogle ScholarPubMed
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Sterflinger, K. & Krumbein, W. E. (1995). Multiple stress factors affecting growth of rock-inhabiting black fungi. Botanica Acta, 108, 490–6.CrossRefGoogle Scholar
Sterflinger, K. & Krumbein, W. E. (1997). Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiology Journal, 14, 219–22.CrossRefGoogle Scholar
Sterflinger, K., Krumbein, W. E., Lellau, T. & Rullkötter, J. (1999). Microbially mediated orange patination of rock surfaces. Ancient Biomolecules, 3, 51–65.Google Scholar
Stoodley, P., Sauer, D. G., Davies, D. G. & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187–209.CrossRefGoogle ScholarPubMed
Taylor, T. N., Remy, W., Hass, H. & Kerp, H. (1995). Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia, 87, 560–73.CrossRefGoogle Scholar
Viles, H. A. (1984). Biokarst – review and prospect. Progress in Physical Geography, 8 (4), 523–42.CrossRefGoogle Scholar
Viles, H. A. & Naylor, L. A. (2002). Biogeomorphology – Editorial. Geomorphology, 47 (1), 1–2.CrossRefGoogle Scholar
Volkmann, M., Whitehead, K., Rütters, H., Rullkötter, J. & Gorbushina, A. A. (2003). Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Communications in Mass Spectrometry, 17, 897–902.CrossRefGoogle ScholarPubMed
Warscheid, T. & Krumbein, W. E. (1996). Biodeterioration of inorganic non-metallic materials – general aspects and selected cases. In Microbially Induced Corrosion of Materials, ed. Heintz, H., Sand, W. & Flemming, H. C.. Berlin: Springer-Verlag, pp. 273–95.CrossRefGoogle Scholar
Welch, S. A. & Ullman, W. J. (1993). The effect of organic-acids on plagioclase dissolution rates and stochiometry. Geochimica et Cosmochimica Acta, 57, 2725–36.CrossRefGoogle Scholar
Welch, S. A. & Vandevivere, P. (1994). Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiology Journal, 12, 227–38.CrossRefGoogle Scholar
Wollenzien, U., Hoog, G. S., Krumbein, W. E. & Urzi, C. (1995). On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Science of the Total Environment, 167, 287–94.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×