Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T16:10:44.712Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 August 2011

Gary W. Beall
Affiliation:
Texas State University, San Marcos
Clois E. Powell
Affiliation:
Texas State University, San Marcos
Get access

Summary

Can one imagine the utility of a dispersed-phase reinforcement for polymers that has a thickness of 1 nm, a platelike morphology with minimal dimensions of 150 to 200 nm, robust with a modulus of 180 GPa, nontoxic (FDA classification of GRAS; generally regarded as safe for a majority of applications), a surface area in excess of 750 m2/g, a charge suitable for altering its hydrophobic–hydrophilic balance at will, and a refractive index similar to polymer so that the nanoparticles will appear transparent in the polymer composite? How difficult would it be to prepare such a particle?

This particle is naturally occurring and found around the world. It is easily mined and purified. The reactor for the particle was a volcano. The ash from many volcanoes was spread around the earth during an intense period of activity many millions of years ago. This ash was transformed into clay (montmorillonoids or smectites) by natural processes, into uncharged species (talc and pyrophyllite) and charged species through isomorphic substitution of the crystal structure (hectorite, montmorillonite, saponite, suconite, volchonskoite, vermiculite, and nontronite).

Montmorillonite serves as the principle mineral for the development of polymer–clay nanocomposites discussed in this book. A misunderstanding of the terms bentonite (the ore or rock) and montmorillonite (the mineral) are pervasive in the literature. We will focus on utilizing the mineral name. The composition of montmorillonite can be described by imagining a sandwich structure with the top and bottom layers composed of silica dioxide tetrahedral structures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Gary W. Beall, Texas State University, San Marcos, Clois E. Powell, Texas State University, San Marcos
  • Book: Fundamentals of Polymer-Clay Nanocomposites
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977312.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Gary W. Beall, Texas State University, San Marcos, Clois E. Powell, Texas State University, San Marcos
  • Book: Fundamentals of Polymer-Clay Nanocomposites
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977312.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Gary W. Beall, Texas State University, San Marcos, Clois E. Powell, Texas State University, San Marcos
  • Book: Fundamentals of Polymer-Clay Nanocomposites
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977312.001
Available formats
×