Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T05:15:20.710Z Has data issue: false hasContentIssue false

7 - Left prefrontal function and semantic organization during encoding and retrieval in healthy and psychiatric populations

Published online by Cambridge University Press:  11 September 2009

Jarl Risberg
Affiliation:
Lunds Universitet, Sweden
Jordan Grafman
Affiliation:
National Institute of Health, Bethesda, MD, USA
Get access

Summary

Introduction

Memory makes learning and cognition possible as it bridges temporal gaps between behavior and outcome. Given the fundamental importance of this function it is not surprising that it is subject to prefrontal control. To facilitate its study, memory has been subdivided into different categories and stages of processing. The chapter will begin with a review of this taxonomy to illustrate how lesion models evolved from a primary focus on the hippocampus to a growing appreciation of the prefrontal cortex. Presentation of more recent neuropsychological and imaging data will describe the role of the left and right prefrontal cortex in word encoding and retrieval. These data will show how the left inferior prefrontal cortex mediates semantic organizational processing and contributes to efficient encoding and retrieval. A discussion of schizophrenia will illustrate how psychiatric disorders that disrupt prefrontal function also compromise strategic memory processes and impair episodic memory performance. The chapter will close with preliminary data demonstrating how providing patients with organizational strategies may help to reengage their prefrontal cortex and improve task performance. A discussion of cognitive remediation implications will end the chapter.

Memory systems and effects of focal lesions

As the “father” of psychology, William James was probably the first to realize the importance of developing operational definitions of different memory functions to facilitate scientific study. He made an initial distinction between short-term memory and long-term memory that remains relevant today.

Type
Chapter
Information
The Frontal Lobes
Development, Function and Pathology
, pp. 178 - 198
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleman, A., Hijman, R., Haan, E. H. F. & Kahn, R. S. (1999). Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry, 156, 1358–66.Google ScholarPubMed
Andreasen, N. C., O'Leary, D. S., Arndt, S., et al. (1995a). Short-term and long-term verbal memory: A positron emission tomography study. Proceedings of the National Academy of Sciences, 92, 5111–15.CrossRefGoogle Scholar
Andreasen, N. C., O'Leary, D. S., Arndt, S., et al. (1995b). PET studies of memory: I. Novel and practiced free recall of complex narratives, NeuroImage, 2, 284–95.CrossRefGoogle Scholar
Andreasen, N. C., O'Leary, D. S., Cizadlo, T., et al. (1996). Schizophrenia and cognitive dysmetria: A positron emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proceedings of the National Academy of Sciences, 93, 9985–90.CrossRefGoogle ScholarPubMed
Andreasen, N. C., O'Leary, D. S., Flaum, M., et al. (1997). Hypofrontality in schizophrenia: Distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet, 349, 1730–4.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1992). Working memory. Science, 255, 556–9.CrossRefGoogle ScholarPubMed
Baddeley, A. D. & Hitch, G. J. (1974). Working memory. In The Psychology of Learning and Motivation, Vol. 8, ed. Bower, G. A.. New York: Academic Press, pp. 47–89.Google Scholar
Bellack, A. S., Gold, J. M. & Buchanan, R. W. (1999). Cognitive rehabilitation for schizophrenia: problems, prospects, and strategies. Schizophrenia Bulletin, 25, 257–74.CrossRefGoogle ScholarPubMed
Brébion, G., Amador, X., Smith, M. J. & Gorman, J. M. (1997). Mechanisms underlying memory impairment in schizophrenia. Psychological Medicine, 27, 383–93.CrossRefGoogle Scholar
Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval. Psychonomic Bulletin and Review, 3, 149–58.CrossRefGoogle ScholarPubMed
Buckner, R. L., Koutstaal, W., Schacter, D. L., et al. (1998a). Functional-anatomic study of episodic retrieval using fMRI II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. NeuroImage, 7, 163–75.CrossRefGoogle Scholar
Buckner, R. L., Koutstaal, W., Schacter, D. L., Wagner, A. D. & Rosen, B. F. (1998b). Functional-anatomic study of episodic retrieval using fMRI I. Retrieval effort versus retrieval success. NeuroImage, 7, 151–62.CrossRefGoogle Scholar
Buckner, R. L. & Petersen, S. E. (1996). What does neuroimaging tell us about the role of prefrontal cortex in memory retrieval?Seminars in Neuroscience, 8, 47–55.CrossRefGoogle Scholar
Censits, D. M., Ragland, J. D., Gur, R. C. & Gur, R. E. (1997). Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: A longitudinal study. Schizophrenia Research, 24, 289–98.CrossRefGoogle ScholarPubMed
Craik, F. & Lockhart, R. (1972). Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–84.CrossRefGoogle Scholar
Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., et al. (1999). Recalling word lists reveals “cognitive dysmetria” in schizophrenia: A positron emission tomography study. American Journal of Psychiatry, 156, 386–92.Google ScholarPubMed
Danion, J. M., Rizzo, L. & Bruant, A. (1999). Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Archives of General Psychiatry, 56, 639–44.CrossRefGoogle ScholarPubMed
Demb, J. B., Desmond, J. E., Wagner, A. D., et al. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. Journal of Neuroscience, 15, 5870–8.CrossRefGoogle ScholarPubMed
Desgranges, B., Baron, J. C. & Eustache, F. (1998). The functional neuroanatomy of episodic memory: the role of the frontal lobes, the hippocampal formation, and other areas. NeuroImage, 8, 198–213.CrossRefGoogle ScholarPubMed
Drachman, D. A. & Arbit, J. (1966). Memory and the hippocampal complex. II. Is memory a multiple process?Archives of Neurology, 15, 52–61.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1985). The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology, 4, 169–79.Google ScholarPubMed
Ganguli, R., Carter, C., Mintun, M., et al. (1997). PET brain mapping study of auditory verbal supraspan memory versus visual fixation in schizophrenia. Biological Psychiatry, 41, 33–42.CrossRefGoogle Scholar
Gold, J. M., Randolf, C., Carpenter, C. J., Goldberg, T. E. & Weinberger, D. R. (1992). Forms of memory failure in schizophrenia. Journal of Abnormal Psychology, 101, 487–94.CrossRefGoogle Scholar
Grady, C. L., McIntosh, A. R., Horwitz, B., et al. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218–21.CrossRefGoogle ScholarPubMed
Grasby, P. M., Frith, C. D., Friston, K., et al. (1993). Functional mapping of brain areas implicated in auditory-verbal memory function. Brain, 116, 1–20.CrossRefGoogle ScholarPubMed
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia?American Journal of Psychiatry, 153, 321–30.Google Scholar
Gur, R. C., Moelter, S. T. & Ragland, J. D. (1999). Learning and memory in schizophrenia. In Cognition in Schizophrenia, ed. Sharma, T. and Harvey, P.. Oxford: Oxford University Press, pp. 73–91.Google Scholar
Gur, R. C., Ragland, J. D., Resnic, S. M., et al. (1994). Lateralized increases in cerebral blood flow during performance of verbal and spatial tasks: Relationship with performance level. Brain and Cognition, 24, 244–58.CrossRefGoogle ScholarPubMed
Haxby, J. V. (1996). Medial temporal lobe imaging. Nature, 380, 669–70.CrossRefGoogle ScholarPubMed
Hazlet, E. A., Buchsbaum, M. S., Jeu, L. A., et al. (2000). Hypofrontality in unmedicated schizophrenia patients studied with PET during performance of a serial verbal learning task. Schizophrenia Research, 43, 33–46.CrossRefGoogle Scholar
Heaton, R., Paulsen, J. S., McAdams, L. A., et al. (1994). Neuropsychological deficits in schizophrenics: relationship to age, chronicity and dementia. Archives of General Psychiatry, 51, 469–76.CrossRefGoogle ScholarPubMed
Heckers, S., Rauch, S. L., Goff, D., et al. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1, 318–23.CrossRefGoogle Scholar
Heinrichs, R. W. & Awad, A. G. (1993). Neurocognitive subtypes of chronic schizophrenia. Schizophrenia Research, 9, 49–58.CrossRefGoogle ScholarPubMed
Heinrichs, R. W. & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12, 426–45.CrossRefGoogle Scholar
Heiss, W. D., Pawlik, G., Holthoff, V., Kessler, J. & Szelies, B. (1992). PET correlates of normal and impaired memory functions. Cerebrovascular Brain Metabolism Reviews, 4, 1–27.Google ScholarPubMed
Iddon, J. L., McKenna, P. J., Sahakian, B. J. & Robbins, T. W. (1998). Impaired generation and use of strategy in schizophrenia: evidence from visuospatial and verbal tasks. Psychological Medicine, 28, 1049–62.CrossRefGoogle ScholarPubMed
James, W. (1890/1918). The Principles of Psychology. New York: Henry Holt & Co.Google Scholar
Janowsky, J. S., Shimamura, A. P. & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–56.CrossRefGoogle ScholarPubMed
Kapur, S., Craik, F. I. M., Jones, C., et al. (1995). Functional role of the prefrontal cortex in retrieval of memories: A PET study. NeuroReport, 6, 1880–4.CrossRefGoogle ScholarPubMed
Kapur, S., Craik, F. I. M., Tulving, E., et al. (1994). Neuroanatomical correlates of encoding in episodic memory: Levels of processing effect. Proceedings of the National Academy of Sciences, 91, 2008–11.CrossRefGoogle ScholarPubMed
Kapur, S., Tulving, E., Cabeza, R., et al. (1996). The neural correlates of intentional learning of verbal materials: A PET study in humans. Cognitive Brain Research, 4, 243–9.CrossRefGoogle ScholarPubMed
Kintsch, W. (1968). Recognition and free recall of organized lists. Journal of Experimental Psychology General, 78, 481–7.CrossRefGoogle Scholar
Koh, S., Kayton, L. & Berry, R. (1973). Mnemonic organization in young nonpsychotic schizophrenics. Journal of Abnormal Psychology, 81, 299–310.CrossRefGoogle ScholarPubMed
Koh, S. & Peterson, R. (1978). Encoding orientation and the remembering of schizophrenic young adults. Journal of Abnormal Psychology, 87, 303–13.CrossRefGoogle ScholarPubMed
Kubicki, M., McCarley, R. W., Nestor, P. G., et al. (2003). An fMRI study of semantic processing in men with schizophrenia. NeuroImage, 20, 1923–33.CrossRefGoogle ScholarPubMed
Kurtz, M. M., Moberg, P. J., Gur, R. C. & Gur, R. E. (2001). Approaches to cognitive remediation of neuropsychological deficits in schizophrenia: a review and meta-analysis. Neuropsychology Review, 11, 197–210.CrossRefGoogle ScholarPubMed
Lysaker, P., Bell, M. & Beam-Goulet, J. (1995). Wisconsin Card Sorting Test and work performance in schizophrenia. Schizophrenia Research, 56, 45–51.Google Scholar
McClain, L. (1983). Encoding and retrieval in schizophrenia free recall. Journal of Nervous and Mental Disease, 171, 471–9.CrossRefGoogle Scholar
McDermott, K. B., Ojemann, J. G., Petersen, S. E., et al. (1999). Direct comparison of episodic encoding and retrieval of words: and event-related fMRI study. Memory, 7, 661–78.CrossRefGoogle ScholarPubMed
McKenna, P. J., Tamlyn, D., Lund, C. E., et al. (1990). Amnesic syndrome in schizophrenia. Psychological Medicine, 20, 967–72.CrossRefGoogle Scholar
Mishkin, M. & Appenzeller, T. (1987). The anatomy of memory. Scientific American, 256, 80–9.CrossRefGoogle Scholar
Moscovitch, M. (1982). Multiple dissociations of function in amnesia. In Human Memory and Amnesia, ed. Cermak, L.. Hillsdale, NJ: Erlbaum, pp. 337–370.Google Scholar
Nohara, S., Suzuki, M., Kurach, M., et al. (2000). Neural correlates of memory organization deficits in schizophrenia: a single photon emission computed tomography study with 99mTc-ethyl-cysteinate dimer during a verbal learning task. Schizophrenia Research, 42, 209–22.CrossRefGoogle ScholarPubMed
Nyberg, L. (1998). Mapping episodic memory. Behavioral Brain Research, 90, 107–14.CrossRefGoogle ScholarPubMed
Paulsen, J. S., Heaton, R. K., Sadek, J. R., et al. (1995). The nature of learning and memory impairments in schizophrenia. Journal of the International Neuropsychological Society, 1, 88–99.CrossRefGoogle Scholar
Perani, D., Gilardi, M. C., Cappa, S. F. & Fazio, F. (1992). PET studies of cognitive functions: A review. Journal of Nuclear and Biological Medicine, 36, 324–36.Google ScholarPubMed
Petrides, M. (2000). Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. Journal of Neuroscience, 20, 7496–503.CrossRefGoogle ScholarPubMed
Petrides, M., Alivisatos, B. & Evans, A. C. (1995). Functional activation of the human ventrolateral frontal cortex during the mnemonic retrieval of verbal information. Proceedings of the National Academy of Sciences, 92, 5803–7.CrossRefGoogle ScholarPubMed
Ragland, J. D., Gur, R. C., Glahn, D. C., et al. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: a positron emission tomography study. Neuropsychology, 12, 399–413.CrossRefGoogle ScholarPubMed
Ragland, J. D., Gur, R. C., Lazarev, M. G., et al. (2000). Hemispheric activation of anterior inferior prefrontal cortex during verbal encoding and recognition. NeuroImage, 11, 624–33.CrossRefGoogle ScholarPubMed
Ragland, J. D., Gur, R. C., Raz, J., et al. (2001). Effect of schizophrenia on frontotemporal activity during word encoding and recognition: A PET cerebral blood flow study. American Journal of Psychiatry, 158, 1114–25.CrossRefGoogle ScholarPubMed
Ragland, J. D., Gur, R. C., Valdez, J. N., et al. (2005). Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition. American Journal of Psychiatry, 162, 1783–4.CrossRefGoogle ScholarPubMed
Ragland, J. D., Gur, R. C., Valdez, J., et al. (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. American Journal of Psychiatry, 161, 1004–15.CrossRefGoogle Scholar
Ragland, J. D., McCarthy, E., Valdez, J., et al. (2006). Levels-of-processing effect on internal source monitoring in schizophrenia. Psychological Medicine, 36, 1–8.Google Scholar
Ragland, J. D., Moelter, S. T., McGrath, C., et al. (2003). Levels-of-processing effect on word recognition in schizophrenia. Biological Psychiatry, 54, 1154–61.CrossRefGoogle Scholar
Roland, P. E. & Gulyas, B. (1995). Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: Functional anatomy by positron emission tomography. Cerebral Cortex, 1, 79–93.CrossRefGoogle Scholar
Roskies, A. L. (1994). Mapping memory with positron emission tomography. Proceedings of the National Academy of Sciences, 91, 1980–91.CrossRefGoogle ScholarPubMed
Rugg, M. D., Fletcher, P. C., Frith, C. D., Frackowiak, R. S. J. & Dolan, R. J. (1996). Differential response of the prefrontal cortex in successful and unsuccessful memory retrieval. Brain, 119, 2073–83.CrossRefGoogle Scholar
Rund, B. R. (1989). Distractibility and recall capability in schizophrenics: A four year longitudinal study of stability in cognitive performance. Schizophrenia Research, 2, 265–75.CrossRefGoogle Scholar
Saykin, A. J, Gur, R. C., Gur, R. E., et al. (1991). Neuropsychological function in schizophrenia: Selective impairment in memory and learning. Archives of General Psychiatry, 48, 618–24.CrossRefGoogle ScholarPubMed
Saykin, A. J., Shtasel, D. L., Gur, R. E., et al. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51, 124–31.CrossRefGoogle ScholarPubMed
Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L. & Albert, M. S. (1996). Conscious recollection and the human hippocampal formation: Evidence from positron emission tomography. Proceedings of the National Academy of Sciences, 93, 321–5.CrossRefGoogle ScholarPubMed
Seidman, L. J., Stone, W. S., Jones, R., Harrison, R. H. & Mirsky, A. F. (1998). Comparative effects of schizophrenia and temporal lobe epilepsy on memory. Journal of the International Neuropsychological Society, 4, 342–52.Google ScholarPubMed
Shallice, T., Fletcher, P., Frith, C. D., et al. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368, 633–5.CrossRefGoogle ScholarPubMed
Shimamura, A. P. (1990). Memory and amnesia. Western Journal of Medicine, 152, 177–8.Google ScholarPubMed
Squire, L. R. (1987). Memory and Brain. New York: Oxford University Press.Google Scholar
Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.CrossRefGoogle ScholarPubMed
Stone, M., Gabrieli, J. D. E., Stebbins, G. T. & Sullivan, E. V. (1998). Working and strategic memory deficits in schizophrenia. Neuropsychology, 12, 278–88.CrossRefGoogle Scholar
Tamlyn, D., McKenna, P. J., Mortimer, A. M., et al. (1992). Memory impairment in schizophrenia: Its extent, affiliations, and neuropsychological character. Psychological Medicine, 22, 101–15.CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In Organization of Memory, ed. Tulving, E. and Donaldson, W.. New York: Academic Press, pp. 381–403.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1–25.CrossRefGoogle Scholar
Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M. & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, 91, 2016–20.CrossRefGoogle ScholarPubMed
Velligan, D. I., Bow-Thomas, C. C., Mahurin, R. K., Miller, A. L. & Halgunseth, B. A. (2000). Do specific neurocognitive deficits predict specific domains of community function in schizophrenia?Journal of Nervous and Mental Disease, 188, 518–24.CrossRefGoogle Scholar
Victor, M., Adams, R. D. & Collins, G. H. (1989). The Wernicke-Korsakoff Syndrome and Related Neurological Disorders due to Alcoholism and Malnutrition, 2nd ed. Philadelphia: F. A. Davis.Google Scholar
Wagner, A. D., Schacter, D. L., Rotte, M., et al. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–91.CrossRefGoogle ScholarPubMed
Warrington, E. K. & Weiskrantz, L. (1970). The amnesic syndrome: Consolidation or retrieval?Nature, 228, 628–30.CrossRefGoogle ScholarPubMed
Weiss, A. P., Schacter, D. L., Goff, D. C., et al. (2003). Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biological Psychiatry, 53, 48–55.CrossRefGoogle Scholar
Wheeler, M. A., Stuss, D. T. & Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. Journal of the International Neuropsychological Society, 1, 525–36.CrossRefGoogle ScholarPubMed
Winocur, G., McDonald, R. M. & Moscovitch, M. (2001). Anterograde and retrograde amnesia in rats with large hippocampal lesions. Hippocampus, 11, 18–26.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wood, F. B. & Flowers, D. L. (1990). Hypofrontal vs. hypo-sylvian blood flow in schizophrenia. Schizophrenia Bulletin, 16, 413–24.CrossRefGoogle Scholar
Zola-Morgan, S. & Squire, L. R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behavioral Neuroscience, 99, 22–34.CrossRefGoogle ScholarPubMed
Zola-Morgan, S. & Squire, L. R. (1986). Memory impairment in monkeys following lesions of the hippocampus. Behavioral Neuroscience, 100, 155–60.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×