Skip to main content Accessibility help
×
  • Cited by 25
Publisher:
Cambridge University Press
Online publication date:
January 2019
Print publication year:
2019
Online ISBN:
9781316831762

Book description

Reflecting a sea change in how empirical research has been conducted over the past three decades, Foundations of Agnostic Statistics presents an innovative treatment of modern statistical theory for the social and health sciences. This book develops the fundamentals of what the authors call agnostic statistics, which considers what can be learned about the world without assuming that there exists a simple generative model that can be known to be true. Aronow and Miller provide the foundations for statistical inference for researchers unwilling to make assumptions beyond what they or their audience would find credible. Building from first principles, the book covers topics including estimation theory, regression, maximum likelihood, missing data, and causal inference. Using these principles, readers will be able to formally articulate their targets of inquiry, distinguish substantive assumptions from statistical assumptions, and ultimately engage in cutting-edge quantitative empirical research that contributes to human knowledge.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.