Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:37:52.475Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 January 2011

Louis P. Ronse De Craene
Affiliation:
Royal Botanic Garden Edinburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Floral Diagrams
An Aid to Understanding Flower Morphology and Evolution
, pp. 365 - 402
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. C. (1935). Studies in the phylogeny of the Betulaceae I. Floral and inflorescence anatomy and morphology. Bot. Gaz. 95, 1–67.CrossRefGoogle Scholar
Abbe, E. C. (1938). Studies in the phylogeny of the Betulaceae II. Extremes in the range of variation of floral and inflorescence morphology. Bot. Gaz. 99, 431–469.CrossRefGoogle Scholar
Abbe, E. C. (1974). Flowers and inflorescences of the ‘Amentiferae’. Bot. Rev. 40, 159–261.CrossRefGoogle Scholar
Albert, V. A., Gustafsson, M. H. G. and Di Laurenzio, L. (1998). Ontogenetic systematics, molecular developmental genetics, and the Angiosperm petal. In Molecular Systematics of Plants Ii: DNA Sequencing, ed. Soltis, D. E., Soltis, P. S. and Doyle, J. J., Boston, MA: Kluwer Academic Publishers, pp. 349–374.CrossRefGoogle Scholar
Albert, V. A. and Struwe, L. (2002). Gentianaceae in context. In Gentianaceae: Systematics and Natural History, ed. Struwe, L. and Albert, V. A., Cambridge, UK: Cambridge University Press, pp. 1–20.Google Scholar
Alverson, W. S., Karol, K. G., Baum, D. A., et al. (1998). Circumscription of the Malvales and relationships to other Rosidae, evidence from rbcL sequence data. Am. J. Bot. 85, 876–887.CrossRefGoogle ScholarPubMed
Alverson, W. S., Whitlock, B. A., Nyffeler, R., Bayer, C. and Baum, D. A. (1999). Phylogeny of the core Malvales, evidence from ndhF sequence data. Am. J. Bot. 86, 1474–1486.CrossRefGoogle Scholar
Amaral, M. C. E. (1991). Phylogenetische Systematik der Ochnaceae. Bot. Jahrb. Syst. 113, 105–196.Google Scholar
Ambrose, B. A., Espinosa-Matìas, S., Vásquez-Santana, S., et al. (2006). Comparative developmental series of the Mexican Triurids support a euanthial interpretation for the unusual reproductive axes of Lacandonia schismatica (Triuridaceae). Am. J. Bot. 93, 15–35.CrossRefGoogle Scholar
Anderberg, A. A., Rydin, C. and Källersjö, M. (2002). Phylogenetic relationships in the order Ericales s.l., analysis of molecular data from five genes from the plastid and mitochondrial genomes. Am. J. Bot. 89, 677–687.CrossRefGoogle ScholarPubMed
Anderberg, A. A. and Ståhl, B. (1995). Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscriptions. Can. J. Bot. 73, 1699–1730.CrossRefGoogle Scholar
,Angiosperm Phylogeny Group I (1998). An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85, 531–553.CrossRefGoogle Scholar
,Angiosperm Phylogeny Group II (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants, APG II. Bot. J. Linn. Soc. 141, 399–436.CrossRefGoogle Scholar
Appel, O. (1996). Morphology and systematics of the Scytopetalaceae. Bot. J. Linn. Soc. 121, 207–227.CrossRefGoogle Scholar
Arber, A. (1925). Monocotyledons: A Morphological Study. Cambridge, UK: Cambridge University Press.Google Scholar
Arber, A. (1934). The Gramineae. Cambridge, UK: Cambridge University Press.Google Scholar
Arber, E. A. N. and Parkin, J. (1907). The origin of Angiosperms. Bot. J. Linn. Soc. 38, 29–80.CrossRefGoogle Scholar
Armstrong, J. E. (1985). The delimitation of Bignoniaceae and Scrophulariaceae based on floral anatomy, and the placement of problem genera. Am. J. Bot. 72, 755–766.CrossRefGoogle Scholar
Armstrong, J. E. and Douglas, A. W. (1989). The ontogenetic basis for corolla aestivation in Scrophulariaceae. Bull. Torrey Bot. Club 116, 378–389.CrossRefGoogle Scholar
Armstrong, J. E. and Tucker, S. C. (1986). Floral development in Myristica (Myristicaceae). Am. J. Bot. 73, 1131–1143.CrossRefGoogle Scholar
Armstrong, J. E. and Wilson, T. K. (1978). Floral morphology of Horsfieldia (Myristicaceae). Am. J. Bot. 65, 441–449.CrossRefGoogle Scholar
Bachelier, J. B. and Endress, P. K. (2007). Development of inflorescences, cupules, and flowers in Amphipterygium and comparison with Pistacia (Anacardiaceae). Int. J. Plant Sci. 168, 1237–1253.CrossRefGoogle Scholar
Backlund, M., Oxelman, B. and Bremer, B. (2000). Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Am. J. Bot. 87, 1029–1043.CrossRefGoogle ScholarPubMed
Baillon, H. (1860). Observations organogéniques pour servir à l'histoire des Polygalées.Adansonia 1, 174–180.Google Scholar
Baillon, H. (1862). Organogénie florale des Cordiacées. Adansonia 3, 1–7.Google Scholar
Baillon, H. (1868a). Monographie des Dilléniacées. Histoire des plantes I, 2, 133–192. Paris: Hachette.Google Scholar
Baillon, H. (1868b). Monographie des Magnoliacées. Histoire des Plantes I, 3, 133–192. Paris: Hachette.Google Scholar
Baillon, H. (1868c). Monographie des Annonacées. Histoire des Plantes I, 4. Paris: Hachette, pp. 193–288.Google Scholar
Baillon, H. (1870). Monographie des Elaeagnacées. Histoire des Plantes II. Paris: Hachette, pp. 487–495.Google Scholar
Baillon, H. (1871a). Du genre Garcinia et de l'origine de la gomme-gutte. Adansonia 10, 283–298.Google Scholar
Baillon, H. (1871b). Observations sur les Rutacées. Adansonia 10, 299–333.Google Scholar
Baillon, H. (1874). Euphorbiacées. Histoire des Plantes V, 41. Paris: Hachette, pp. 105–176.Google Scholar
Baillon, H. (1876a). Traité du développement de la fleur et du fruit X. Castanéacées. Adansonia 12, 1–17Google Scholar
Baillon, H. (1876b). Traité du développement de la fleur et du fruit XVI. Stylidiées. Adansonia 12, 354–361.Google Scholar
Barabé, D. and Lacroix, C. (2000). Homeosis in Araceae flowers, the case of Philodendron melinonii. Ann. Bot. 86, 479–491.CrossRefGoogle Scholar
Bateman, R. M., Hilton, J. and Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J. Exper. Bot. 57, 3471–3503.CrossRefGoogle Scholar
Batenburg, L. H. and Moeliono, B. M. (1982). Oligomery and vasculature in the androecium of Mollugo nudicaulis Lam. (Molluginaceae). Acta Bot. Neerl. 31, 215–220.CrossRefGoogle Scholar
Bauer, R. (1922). Entwicklungsgeschichtliche Untersuchungen an Polygonaceenblüten. Flora 115, 273–292.Google Scholar
Bayer, C. (1999). The bicolor unit – homology and transformation of an inflorescence structure unique to core Malvales. Plant Syst. Evol. 214, 187–198.CrossRefGoogle Scholar
Bayer, C., Fay, M. F., Bruijn, A., Savolainen, V., et al. (1999). Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales, a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 129, 267–303.Google Scholar
Bayer, C. and Hoppe, J. R. (1990). Die Blütenentwicklung von Theobroma cacao L. (Sterculiaceae). Beitr. Biol. Pflanz. 65, 301–312.Google Scholar
Bayer, C. and Kubitzki, K. (2003). Malvaceae. In The Families and Genera of Vascular Plants, Vol. V, ed. Kubitzki, K., and Bayer, C.. Berlin: Springer Verlag, pp. 225–311.Google Scholar
Bechtel, A. R. (1921). The floral anatomy of the Urticales. Am. J. Bot. 8, 386–410.CrossRefGoogle Scholar
Behnke, H. D. (1999). P-type sieve-element plastids present in members of the tribes Triplareae and Coccolobeae (Polygonaceae) renew the links between the Polygonales and the Caryophyllales. Plant Syst. Evol. 214: 15–27.CrossRefGoogle Scholar
Bello, M. A., Hawkins, J. A. and Rudall, P. J. (2007). Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann. Bot. 100, 1491–1505.CrossRefGoogle Scholar
Bello, M. A., Rudall, P. J., González, F. and Fernández-Alonso, J. L. (2004). Floral morphology and development in Aragoa (Plantaginaceae) and related members of the order Lamiales. Int. J. Plant Sci. 165, 723–738.CrossRefGoogle Scholar
Belsham, S. R. and Orlovich, D. A. (2003). Development of the hypanthium and androecium in Acmena smithii and Syzygium australe (Acmena alliance, Myrtaceae). Aust. Syst. Bot. 16, 621–628.CrossRefGoogle Scholar
Bennek, C. (1958). Die morphologische Beurteilung der Staub- und Blumenblätter der Rhamnaceen. Bot. Jahrb. Syst. 77, 423–457.Google Scholar
Bensel, C. R. and Palser, B. F. (1975a). Floral anatomy in the Saxifragaceae sensu lato I. Introduction, Parnassioideae and Brexioideae. Am. J. Bot. 62, 176–185.CrossRefGoogle Scholar
Bensel, C. R. and Palser, B. F. (1975b). Floral anatomy in the Saxifragaceae sensu lato II. Saxifragoideae and Iteoideae. Am. J. Bot. 62, 661–675.CrossRefGoogle Scholar
Berger, A. (1930). Crassulaceae. In Die Natürlichen Pflanzenfamilien 18a, ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 352–483.Google Scholar
Bernardello, G. (2007). A systematic survey of floral nectaries. In Nectaries and Nectar, ed. Nicolson, S. W., Nepi, M. and Pacini, E., Dordrecht: Springer Verlag, pp. 19–128.CrossRefGoogle Scholar
Bernhard, A. (1999). Flower structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae). Int. J. Plant Sci. 160, 135–150.CrossRefGoogle Scholar
Bernhard, A. and Endress, P. K. (1999). Androecial development and systematics in Flacourtiaceae s.l. Plant Syst. Evol. 215, 141–155.CrossRefGoogle Scholar
Bittrich, V. (1993). Caryophyllaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 206–236.Google Scholar
Bittrich, V. and Amaral, M. C. E. (1996). Flower morphology and pollination biology of Clusia species from the Gran Sabana (Venezuela). Kew Bull. 51, 681–694.CrossRefGoogle Scholar
Bogle, A. L. (1989). The floral morphology, vascular anatomy, and ontogeny of the Rhodoleioideae (Hamamelidaceae) and their significance in relation to the ‘Lower’ hamamelids. In Evolution, Systematics and Fossil History of the Hamamelidae, Vol. I, Introduction and ‘Lower’ Hamamelidae, ed. Crane, P. R. and Blackmore, S.. Oxford, UK: Clarendon Press, pp. 201–220.Google Scholar
Boke, N. H. (1963). Anatomy and development of the flower and fruit of Pereskia pititache. Am. J. Bot. 50, 843–858.CrossRefGoogle Scholar
Boke, N. H. (1966). Ontogeny and structure of the flower and fruit of Pereskia aculeata. Am. J. Bot. 53, 534–542.CrossRefGoogle Scholar
Bowman, J. L. and Smyth, D. R. (1998). Patterns of petal and stamen reduction in Australian species of Lepidium L. (Brassicaceae). Int. J. Plant Sci. 159, 65–74.CrossRefGoogle Scholar
Box, M. S. and Rudall, P. J. (2006). Floral structure and ontogeny in Globba (Zingiberaceae). Plant Syst. Evol. 258, 107–122.CrossRefGoogle Scholar
Brandbyge, J. (1993). Polygonaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 531–544.Google Scholar
Bremer, K., Backlund, A., Sennblad, B., et al. (2001). A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Syst. Evol. 229, 137–169.CrossRefGoogle Scholar
Brett, J. F. and Posluszny, U. (1982). Floral development of Caulophyllum thalictroides (Berberidaceae). Can. J. Bot. 60, 2133–2141.CrossRefGoogle Scholar
Brockington, S. F., Alexandre, R., Ramdial, J., et al. (2009). Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int. J. Plant Sci., 170, 627–643.CrossRefGoogle Scholar
Brown, D. K. and Kaul, R. B. (1981). Floral structure and mechanism in Loasaceae. Am. J. Bot. 68, 361–372.CrossRefGoogle Scholar
Burtt, B. L. and Dickison, W. C. (1975). The morphology and relationships of Seemannaralia (Araliaceae). Notes Roy. Bot. Gard. Edinburgh 33, 449–466.Google Scholar
Busch, A. and Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc. Natl Acad. Sci. 104, 16 714–16 719.CrossRefGoogle ScholarPubMed
Buxbaum, F. (1961). Vorlaüfige Untersuchungen über Umfang, systematische Stellung und Gliederung der Caryophyllales (Centrospermae). Beitr. Biol. Pflanz. 36, 1–56.Google Scholar
Buzgo, M. (2001). Flower structure and development of Araceae compared with Alismatids and Acoraceae. Bot. J. Linn. Soc. 136, 393–425.CrossRefGoogle Scholar
Buzgo, M., Chanderbali, A. S., Kim, S., et al. (2007). Floral developmental morphology of Persea Americana (avocado, Lauraceae), the oddities of staminate organ identity. Int. J. Plant Sci. 168, 261–284.CrossRefGoogle Scholar
Buzgo, M. and Endress, P. K. (2000). Floral structure and development of Acoraceae and its systematic relationships with basal Angiosperms. Int. J. Plant Sci. 161, 23–41.CrossRefGoogle ScholarPubMed
Buzgo, M., Soltis, D. E., Soltis, P. S., et al. (2006). Perianth development in the basal monocot Triglochin maritima (Juncaginaceae). Aliso 22, 107–125.CrossRefGoogle Scholar
Buzgo, M., Soltis, P. S. and Soltis, D. E. (2004). Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165, 925–947.CrossRefGoogle Scholar
Caddick, L. R., Rudall, P. J. and Wilkin, P. (2000). Floral morphology and development in Dioscoreales. Feddes Repert. 111, 189–230.CrossRefGoogle Scholar
Cantino, P. D. (1992). Evidence for a polyphyletic origin of the Labiatae. Ann. Missouri Bot. Gard. 79, 361–379.CrossRefGoogle Scholar
Caris, P. (1998). Bloemontogenie en fylogenie van de Myrsinaceae en aanverwante taxa. Katholieke Universiteit Leuven, Belgium: unpubl. thesis.Google Scholar
Caris, P. L., Geuten, K. P., Janssens, S. B. and Smets, E. F. (2006a). Floral development in three species of Impatiens (Balsaminaceae). Am. J. Bot. 93, 1–14.CrossRefGoogle Scholar
Caris, P., Ronse De Craene, L. P., Smets, E. F. and Clinckemaillie, D. (2000). Floral development of three Maesa species, with special emphasis on the position of the genus within Primulales. Ann. Bot. 86, 87–97.CrossRefGoogle Scholar
Caris, P. and Smets, E. F. (2004). A floral ontogenetic study on the sister group relationship between the genus Samolus (Primulaceae) and the Theophrastaceae. Am. J. Bot. 91, 627–643.CrossRefGoogle Scholar
Caris, P., Smets, E. F., Coster, K. and Ronse De Craene, L. P. (2006b). Floral ontogeny of Cneorum tricoccon L. (Rutaceae). Plant Syst. Evol. 257, 223–232.CrossRefGoogle Scholar
Carlquist, S. (2003). Wood anatomy of Aextoxicaceae and Berberidopsidaceae is compatible with their inclusion in Berberidopsidales. Syst. Bot. 28, 317–325.Google Scholar
Carolin, R. C. (1960). Floral structure and anatomy in the family Stylidiaceae Swartz. Proc. Linn. Soc. New South Wales 85, 189–196.Google Scholar
Carolin, R. C. (1993). Portulacaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 544–555.Google Scholar
Carrucan, A. E. and Drinnan, A. N. (2000). The ontogenetic basis for floral diversity in the Baeckea sub-group. Kew Bull. 55, 593–613.CrossRefGoogle Scholar
Chakravarty, M. L. (1958). Morphology of the staminate flowers in the Cucurbitaceae with special reference to the evolution of the stamens. Lloydia 21, 49–87Google Scholar
Chandler, G. T. and Plunkett, G. M. (2004). Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot. J. Linn. Soc. 144, 123–147.CrossRefGoogle Scholar
Charlton, W. A. (1991). Studies in the Alismataceae IX. Development of the flower in Ranalisma humile. Can. J. Bot. 69, 2790–2796.CrossRefGoogle Scholar
Charlton, W. A. (1999a). Studies in the Alismataceae X. Floral organogenesis in Luronium natans (L.) Raf. Can. J. Bot. 77, 1560–1568.CrossRefGoogle Scholar
Charlton, W. A. (1999b). Studies in the Alismataceae XI. Development of the inflorescence and flowers of Wiesneria triandra (Dalzell) Micheli. Can. J. Bot. 77, 1569–1579.CrossRefGoogle Scholar
Charlton, W. A. (2004). Studies in the Alismataceae XII. Floral organogenesis in Damasonium alisma and Baldellia ranunculoides, and comparisons with Butomus umbellatus. Can. J. Bot. 82, 528–539.CrossRefGoogle Scholar
Chase, M. W., Fay, M. F., Devey, D. S., et al. (2006). Multigene analyses of monocot relationships, a summary. Aliso 22, 63–75.CrossRefGoogle Scholar
Chase, M. W., Zmarzty, S., Lledó, M. D., Wurdack, K. J.Swensen, S. M. and Fay, M. F. (2002). When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bull. 57, 141–181.CrossRefGoogle Scholar
Chen, L., Ren, Y., Endress, P. K., Tian, X. H. and Zhang, X. H. (2007). Floral organogenesis in Tetracentron sinense (Trochodendraceae) and its systematic significance. Plant Syst. Evol. 264, 183–193.CrossRefGoogle Scholar
Church, A. W. (1908). Types of Floral Mechanism: A Selection of Diagrams and Descriptions of Common Flowers, part I. Oxford, UK: Clarendon Press.Google Scholar
Citerne, H. L., Moeller, M. and Cronk, Q. C. B. (2000). Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Ann. Bot. 86, 167–176.CrossRefGoogle Scholar
Citerne, H. L., Pennington, R. T. and Cronk, Q. C. B. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc. Natl Acad. Sci. 103, 12 017–12 020.CrossRefGoogle Scholar
Classen-Bockhoff, R. (1990). Pattern analysis in pseudanthia. Plant Syst. Evol. 171, 57–88.CrossRefGoogle Scholar
Classen-Bockhoff, R. and Heller, A. (2006). Floral synorganization and secondary pollen presentation in four Marantaceae from Costa Rica. Int. J. Plant Sci. 169, 745–760.CrossRefGoogle Scholar
Classen-Bockhoff, R., Wester, P. and Tweraser, E. (2003). The staminal lever mechanism in Salvia L. (Lamiaceae): a review. Plant Biol. 5, 33–41.CrossRefGoogle Scholar
Clinckemaillie, D. and Smets, E. F. (1992). Floral similarities between Plumbaginaceae and Primulaceae, systematic significance. Belg. J. Bot. 125, 151–153.Google Scholar
Cocucci, A. E. and Anton, A. M. (1988). The grass flower, suggestions on its origin and evolution. Flora 181, 353–362.CrossRefGoogle Scholar
Coen, E. S. and Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37.CrossRefGoogle ScholarPubMed
Coen, E. S., Nugent, J. M., Luo, D., et al. (1995). Evolution of floral symmetry. Phil. Trans. Roy. Soc. London B 350, 35–38.CrossRefGoogle Scholar
Costello, A. and Motley, T. J. (2004). The development of the superior ovary in Tetraplasandra (Araliaceae). Am. J. Bot. 91, 644–655.CrossRefGoogle Scholar
Cox, C. D. K. (1998). Hydrocharitaceae. In The Families and Genera of Vascular Plants, Vol. IV, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 234–248.Google Scholar
Crane, P. R., Friis, E. M. and Pedersen, K. R. (1994). Paleobotanical evidence on the early radiation of magnoliid Angiosperms. Plant Syst. Evol., Suppl. 8, 51–72.Google Scholar
Crepet, W. L. (2008). The fossil record of Angiosperms, requiem or renaissance. Ann. Missouri Bot. Gard. 95, 3–33.CrossRefGoogle Scholar
Cronquist, A. (1981). An Integrated System of Classification of Flowering Plants. New York: Columbia University Press.Google Scholar
Cuénoud, P., Savolainen, V., Chatrou, L. W., Powell, M., Grayer, R. J. and Chase, M. W. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 89, 132–144.CrossRefGoogle ScholarPubMed
Dahlgren, R. (1975). A system of classification of the Angiosperms to be used to demonstrate the distribution of characters. Bot. Not. 128, 119–147.Google Scholar
Dahlgren, R. (1983). General aspects of Angiosperm evolution and macrosystematics. Nord. J. Bot. 3, 119–149.CrossRefGoogle Scholar
Dahlgren, R., Clifford, T. H. and Yeo, P. (1985). The Families of the Monocotyledons: Structure, Evolution and Taxonomy. Berlin: Springer Verlag.CrossRefGoogle Scholar
Dahlgren, R. and Thorne, R. F. (1984). The order Myrtales: circumscription, variation and relationships. Ann. Missouri Bot. Gard. 71, 633–699.CrossRefGoogle Scholar
Laet, J., Clinckemaillie, D., Jansen, S. and Smets, E. F. (1995). Floral ontogeny in the Plumbaginaceae. J. Plant Res. 108, 289–304.CrossRefGoogle Scholar
Maggio, A. E. and Wilson, C. L. (1986). Floral structure and organogenesis in Podophyllum peltatum (Berberidaceae). Am. J. Bot. 73, 21–32.Google Scholar
Menezes, N. L. (1980). Evolution in Velloziaceae, with special reference to androecial characters. In Petaloid Monocotyledons, ed. Brickell, C. D., Cutler, D. F. and Gregory, M.. Hortic. and Botan. Research. Linnean Soc. Symposium Series 8. London: Academic Press, pp. 117–138.Google Scholar
Deroin, T. (1985). Contribution à la morphologie comparée du gynécée des Annonaceae – Monodoroideae. Bull. Mus. Hist. Nat. (Paris) Sér. IV, 7, 167–176.Google Scholar
Deroin, T. (1997). Confirmation and origin of the paracarpy in Annonaceae, with comments on some methodological aspects. Candollea 52, 45–58.Google Scholar
Deroin, T. (2000). Floral anatomy of Toussaintia hallei Le Thomas, a case of convergence of Annonaceae with Magnoliaceae. In Proceedings of the International Symposium on the Family Magnoliaceae, ed. Liu, Y.-H., Fan, H.-M., Chen, Z.-Y., Wu, Q.-G. and Zeng, Q.-W.. Beijing: Science Press, pp. 168–176.Google Scholar
Deroin, T. (2007). Floral vascular pattern of the endemic Malagasy genus Fenerivia Diels (Annonaceae). Adansonia Sér. 3, 29, 7–12.Google Scholar
Deroin, T. and Thomas, A. (1989). Sur la systématique et les potentialités évolutives des Annonacées: cas d'Ambavia gerrardii (Baill.) Le Thomas, espèce endémique de Madagascar. C. R. Acad. Sci. Paris 309, Sér. III, 647–652.Google Scholar
Derstine, K. S. and Tucker, S. C. (1991). Organ initiation and development of inflorescences and flowers of Acacia baileyana. Am. J. Bot. 78, 816–832.CrossRefGoogle Scholar
Wilde, W. J. J. O. (1974). The genera of tribe Passifloreae (Passifloraceae) with special reference to flower morphology. Blumea 22, 37–50.Google Scholar
Dickison, W. C. (1970). Comparative morphological studies in Dilleniaceae VI. Stamens and young stem. J. Arnold Arbor. 51, 403–418.Google Scholar
Dickison, W. C. (1975). Studies on the floral anatomy of the Cunoniaceae. Am. J. Bot. 62, 433–447.CrossRefGoogle Scholar
Dickison, W. C. (1978). Comparative anatomy of Eucryphiaceae. Am. J. Bot. 65, 722–735.CrossRefGoogle Scholar
Dickison, W. C. (1993). Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes. Bot. J. Linn. Soc. 112, 223–255.CrossRefGoogle Scholar
Dilcher, D. L. (2000). Toward a new synthesis, major evolutionary trends in the Angiosperm fossil record. Proc. Natl Acad. Sci. 97, 7030–7036.CrossRefGoogle Scholar
Donoghue, M. J., Bell, C. D. and Winkworth, R. C. (2003). The evolution of reproductive characters in Dipsacales. Int. J. Plant Sci. 164 (5 Suppl.), S453–S464.CrossRefGoogle Scholar
Donoghue, M. J., Ree, R. H. and Baum, D. A. (1998). Phylogeny and the evolution of flower symmetry in the Asteridae. Tr. Plant Sci. 3, 311–317.CrossRefGoogle Scholar
Douglas, A. W. and Tucker, S. C. (1996a). Comparative floral ontogenies among Persoonioideae including Bellendena (Proteaceae). Am. J. Bot. 83, 1528–1555.CrossRefGoogle Scholar
Douglas, A. W. and Tucker, S. C. (1996b). Inflorescence ontogeny and floral organogenesis in Grevilleoideae (Proteaceae), with emphasis on the nature of the flower pairs. Int. J. Plant Sci. 157, 341–372.CrossRefGoogle Scholar
Douglas, A. W. and Tucker, S. C. (1996c). The developmental basis of diverse carpel orientations in Grevilleoideae (Proteaceae). Int. J. Plant Sci. 157, 373–397.CrossRefGoogle Scholar
Douglas, A. W. and Tucker, S. C. (1997). The developmental basis of morphological diversification and synorganization in flowers of Conospermeae (Stirlingia and Conosperminae, Proteaceae). Int. J. Plant Sci. 158, S13–S48.CrossRefGoogle Scholar
Doyle, J. A. (2008). Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Plant Sci. 169, 816–843.CrossRefGoogle Scholar
Doyle, J. A. and Endress, P. K. (2000). Morphological phylogenetic analysis of basal Angiosperms, comparison and combination with molecular data. Int. J. Plant Sci. 161 (6 Suppl.), S121–S153.CrossRefGoogle Scholar
Drinnan, A. N. and Ladiges, P. Y. (1989). Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae). Plant Syst. Evol. 165, 239–254.CrossRefGoogle Scholar
Eames, A. J. (1961). Morphology of the Angiosperms. New York: McGraw-Hill.CrossRefGoogle Scholar
Eckardt, T. (1937). Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeciums. Nova Acta Leopold. N. F. 5, 1–112.Google Scholar
Ecklund, H. (2000). Lauraceous flowers from the Late Cretaceous of North Carolina, U.S.A. Bot. J. Linn. Soc. 132, 397–428.CrossRefGoogle Scholar
Edgell, T. (2004). Floral studies of Brexia madagascariensis Thouars (Celastraceae). Edinburgh, UK: Royal Botanic Garden Edinburgh: unpubl. MSc thesis.Google Scholar
Eichler, A. W. (1875). Blüthendiagramme vol. I. Leipzig: Wilhelm Engelmann.Google Scholar
Eichler, A. W. (1878). Blüthendiagramme vol. II. Leipzig: Wilhelm Engelmann.Google Scholar
Eliasson, U. H. 1988. Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. Bot. J. Linn. Soc. 96, 235–283.CrossRefGoogle Scholar
Endress, M. E. and Bittrich, V. (1993). Molluginaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 419–426.Google Scholar
Endress, M. E., Sennblad, B., Nilsson, S., et al. (1996). A phylogenetic analysis of Apocynaceae s.str. and some related taxa in Gentianales, a multidisciplinary approach. Opera Bot. Belg. 7, 59–102.Google Scholar
Endress, P. K. (1967). Systematische Studien über die verwandschaftlichen Beziehungen zwischen den Hamamelidaceen und Betulaceen. Bot. Jahrb. Syst. 87, 431–525.Google Scholar
Endress, P. K. (1976). Die Androeciumanlage bei polyandrischen Hamamelidaceen und ihre systematische Bedeutung. Bot. Jahrb. Syst. 97, 436–457.Google Scholar
Endress, P. K. (1977). Evolutionary trends in the Hamamelidales–Fagales-group. Plant Syst. Evol. Suppl. 1, 321–347.Google Scholar
Endress, P. K. (1978). Blütenontogenese, Blütenabgrenzung und Systematische Stellung der perianthlosen Hamamelidoideae. Bot. Jahrb. Syst. 100, 249–317.Google Scholar
Endress, P. K. (1980a). Floral structure and relationships of Hortonia (Monimiaceae). Plant Syst. Evol. 133, 199–221.CrossRefGoogle Scholar
Endress, P. K. (1980b). Ontogeny, function and evolution of extreme floral construction in Monimiaceae. Plant Syst. Evol. 134, 79–120.CrossRefGoogle Scholar
Endress, P. K. (1980c). The reproductive structures and systematic position of the Austrobaileyaceae. Bot. Jahrb. Syst. 101, 393–433.Google Scholar
Endress, P. K. (1984). The role of inner staminodes in the floral display of some relic Magnoliales. Plant Syst. Evol. 146, 269–282.CrossRefGoogle Scholar
Endress, P. K. (1986). Floral structure, systematics, and phylogeny in Trochodendrales. Ann. Missouri Bot. Gard. 73, 297–324.CrossRefGoogle Scholar
Endress, P. K. (1987). Floral phyllotaxis and floral evolution. Bot. Jahrb. Syst. 108, 417–438.Google Scholar
Endress, P. K. (1989). Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Bot. Acta 102, 159–163.CrossRefGoogle Scholar
Endress, P. K. (1990). Patterns of floral construction in ontogeny and phylogeny. Biol. J. Linn. Soc. 39, 153–175.CrossRefGoogle Scholar
Endress, P. K. (1992). Evolution and floral diversity, the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int. J. Plant Sci. 153, S106–S122.CrossRefGoogle Scholar
Endress, P. K. (1994). Diversity and Evolutionary Biology of Tropical Flowers. Cambridge, UK: Cambridge University Press.Google Scholar
Endress, P. K. (1995a). Major evolutionary traits of monocot flowers. In Monocotyledons: Systematics and Evolution, ed. Rudall, P. J., Cribb, D. F. and Humphries, C. J.. Kew, UK: Royal Botanic Gardens, pp. 43–79.Google Scholar
Endress, P. K. (1995b). Floral structure and evolution in Ranunculanae. Plant Syst. Evol. Suppl. 9, 47–61.Google Scholar
Endress, P. K. (1997). Relationships between floral organization, architecture, and pollination mode in Dillenia (Dilleniaceae). Plant Syst. Evol. 206, 99–118.CrossRefGoogle Scholar
Endress, P. K. (1998). Antirrhinum and Asteridae: evolutionary changes of floral symmetry. Society for Experimental Biology Symposium Series 51, 133–140Google Scholar
Endress, P. K. (1999). Symmetry in flowers: diversity and evolution. Int. J. Plant Sci. 160 (6 Suppl.), S3–S23.CrossRefGoogle ScholarPubMed
Endress, P. K. (2001). The flower in extant basal Angiosperms and inferences on ancestral flowers. Int. J. Plant Sci 162, 1111–1140.CrossRefGoogle Scholar
Endress, P. K. (2003a). Morphology and Angiosperm systematics in the molecular era. Bot. Rev. 68, 545–570.CrossRefGoogle Scholar
Endress, P. K. (2003b). Early floral development and nature of the calyptra in Eupomatiaceae (Magnoliales). Int. J. Plant Sci. 164, 489–503.CrossRefGoogle Scholar
Endress, P. K. (2006). Angiosperm floral evolution, morphological developmental framework. Adv. Bot. Res. 44, 1–61.CrossRefGoogle Scholar
Endress, P. K. (2008a). My favourite flowering image. J. Exper. Bot. FNL 2008, 1–3.
Endress, P. K. (2008b). The whole and the parts, relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Ann. Missouri Bot. Gard. 95, 101–120.CrossRefGoogle Scholar
Endress, P. K. (2008c). Perianth biology in the basal grade of extant angiosperms. Int. J. Plant Sci. 169, 844–862.CrossRefGoogle Scholar
Endress, P. K. and Doyle, J. A. (2007). Floral phyllotaxis in basal Angiosperms, development and evolution. Curr. Opin. Plant Biol. 10, 52–57.CrossRefGoogle ScholarPubMed
Endress, P. K. and Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. Am. J. Bot. 96, 22–66.CrossRefGoogle ScholarPubMed
Endress, P. K. and Hufford, L. D. (1989). The diversity of stamen structures and dehiscence patterns among Magnoliidae. Bot. J. Linn. Soc. 100, 45–85.CrossRefGoogle Scholar
Endress, P. K. and Igersheim, A. (1997). Gynoecium diversity and systematics of the Laurales. Bot. J. Linn. Soc. 125, 93–168.CrossRefGoogle Scholar
Endress, P. K. and Igersheim, A. (2000a). Gynoecium structure and evolution in basal Angiosperms. Int. J. Plant Sci. 161 (6 Suppl.), S211–S223.CrossRefGoogle Scholar
Endress, P. K. and Igersheim, A. (2000b). The reproductive structures of the basal Angiosperm Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 161 (6 Suppl.), S237–S248.CrossRefGoogle Scholar
Endress, P. K., Jenny, M. and Fallen, M. (1983). Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons. Nord. J. Bot. 3, 293–300.CrossRefGoogle Scholar
Endress, P. K. and Lorence, D. H. (2004). Heterodichogamy of a novel type in Hernandia (Hernandiaceae) and its structural basis. Int. J. Plant Sci. 165, 753–763.CrossRefGoogle Scholar
Endress, P. K. and Matthews, M. L. (2006a). First steps towards a floral structural characterization of the major rosid subclades. Plant Syst. Evol. 260, 223–251.Google Scholar
Endress, P. K. and Matthews, M. L. (2006b). Elaborate petals and staminodes in eudicots, diversity, function, and evolution. Org. Div. Evol. 6, 257–293.CrossRefGoogle Scholar
Engler, A. and Krause, K. (1935). Loranthaceae. In Die Natürlichen Pflanzenfamilien 16b, ed. Engler, A., and Prantl, K., 2nd edn. Leipzig: W. Engelmann, pp. 98–203.Google Scholar
Engler, A. and Prantl, K., eds. (1887–1909). Die Natürlichen Pflanzenfamilien I–IV. Leipzig: W. Engelmann.
Erbar, C. (1986). Untersuchungen zur Entwicklung der spiraligen Blüte von Stewartia pseudocamellia (Theaceae). Bot. Jahrb. Syst. 106, 391–407.Google Scholar
Erbar, C. (1991). Sympetaly: a systematic character? Bot. Jahrb. Syst. 112, 417–451.Google Scholar
Erbar, C. (1992). Floral development of two species of Stylidium (Stylidiaceae) and some remarks on the systematic position of the family Stylidiaceae. Can. J. Bot. 70, 258–271.CrossRefGoogle Scholar
Erbar, C. (1993). Studies on the floral development and pollen presentation in Acicarpha tribuloides with a discussion of the systematic position of the family Calyceraceae. Bot. Jahrb. Syst. 115, 325–350.Google Scholar
Erbar, C. (1994). Contributions to the affinities of Adoxa from the viewpoint of floral development. Bot. Jahrb. Syst. 116, 259–282.Google Scholar
Erbar, C. (1998). Coenokarpie ohne und mit Compitum, ein Vergleich der Gynoeceen von Nigella (Ranunculaceae) and Geranium (Geraniaceae). Beitr. Biol. Pflanz. 71, 13–39.Google Scholar
Erbar, C., Kusma, S. and Leins, P. (1998). Development and interpretation of nectary organs in Ranunculaceae. Flora 194, 317–332.CrossRefGoogle Scholar
Erbar, C. and Leins, P. (1981). Zur Spirale in Magnolienblüten. Beitr. Biol. Pflanz. 56, 225–241.Google Scholar
Erbar, C. and Leins, P. (1983). Zur Sequenz von Blütenorganen bei einigen Magnoliiden. Bot. Jahrb. Syst. 103, 433–449.Google Scholar
Erbar, C. and Leins, P. (1985). Studien zur Organsequenz in Apiaceen-Blüten. Bot. Jahrb. Syst. 105, 379–400.Google Scholar
Erbar, C. and Leins, P. (1988a). Blütenentwicklungsgeschichtliche Studien an Aralia und Hedera (Araliaceae). Flora 180, 391–406.CrossRefGoogle Scholar
Erbar, C. and Leins, P. (1988b). Studien zur Blütenentwicklung und Pollenpräsentation bei Brunonia australis Smith (Brunoniaceae). Bot. Jahrb. Syst. 110, 263–282Google Scholar
Erbar, C. and Leins, P. (1989). On the early floral development and the mechanisms of secondary pollen presentation in Campanula, Jasione and Lobelia. Bot. Jarhb. Syst. 111, 29–55.Google Scholar
Erbar, C. and Leins, P. (1994). Flowers in Magnoliidae and the origin of flowers in other subclasses of the Angiosperms I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst. Evol. Suppl. 8, 193–208.Google Scholar
Erbar, C. and Leins, P. (1995a). An analysis of the early floral development of Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Feddes Repert. 106, 463–473.CrossRefGoogle Scholar
Erbar, C. and Leins, P. (1995b). Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales–Asterales complex. Flora 190, 323–338.CrossRefGoogle Scholar
Erbar, C. and Leins, P. (1997). Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. Int. J. Plant Sci. 158 (6 Suppl.), S49–S64.CrossRefGoogle Scholar
Ernst, W. R. (1967). Floral morphology and systematics of Platystemon and its allies Hesperomecon and Meconella (Papaveraceae, Platystemonoideae). Univ. Kansas Sci. Bull. 47, 25–70.Google Scholar
Evans, R. C. and Dickinson, T. A. (1996). North American black-fruited hawthorns II. Floral development of 10- and 20-stamen morphotypes in Crateaegus section douglasii (Rosaceae, Maloideae). Am. J. Bot. 83, 961–978.CrossRefGoogle Scholar
Evans, R. C. and Dickinson, T. A. (2005). Floral ontogeny and morphology in Gillenia (‘Spiraeoideae’) and subfamily Maloideae C. Weber (Rosaceae). Int. J. Plant Sci. 166, 427–447.CrossRefGoogle Scholar
Eyde, R. H. (1977). Reproductive structures and evolution in Ludwigia (Onagraceae) I. androecium, placentation, merism. Ann. Missouri Bot. Gard. 64, 644–655.CrossRefGoogle Scholar
Eyde, R. H. and Morgan, J. T. (1973). Floral structure and evolution in Lopezieae (Onagraceae). Am. J. Bot. 60, 771–787.CrossRefGoogle Scholar
Faden, R. B. (2000). Floral biology of Commelinaceae. In Monocots: Systematics and Evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 309–317.Google Scholar
Fay, M. M., Swensen, S. M. and Chase, M. W. (1997). Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bull. 52, 111–120.CrossRefGoogle Scholar
Fey, B. S. and Endress, P. K. (1983). Development and morphological interpretation of the cupule in Fagaceae. Flora 173, 451–468.CrossRefGoogle Scholar
Fiedler, H. (1910). Beiträge zur Kenntnis der Nyctaginaceen. Engl. Bot. Jahrb. 44, 572–605.Google Scholar
Franz, E. (1908). Beiträge zur Kenntnis der Portulacaceen und Basellaceen. Bot. Jahrb. Syst. 42, Beibl. 97, 1–28Google Scholar
Freitas, L., Bernardello, G., Galetto, L. and Paoli, A. A. S. (2001). Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae). Bot. J. Linn. Soc. 136, 267–277.CrossRefGoogle Scholar
Friedman, J. and Barrett, S. C. (2008). A phylogenetic analysis of the evolution of wind pollination in the Angiosperms. Int. J. Plant Sci. 169, 49–58.CrossRefGoogle Scholar
Friedrich, H.-C. (1956). Studien über die natürliche Verwandtschaft der Plumbaginales und Centrospermae. Phyton (Austria) 6, 220–263.Google Scholar
Friis, E. M. (1984). Preliminary Report of Upper Cretaceous Angiosperm reproductive organs from Sweden and their level of organisation. Ann. Missouri Bot. Gard. 71, 403–418.CrossRefGoogle Scholar
Friis, E. M., Pedersen, K. L. and Crane, P. R. (2006). Cretaceous Angiosperm flowers, innovation and evolution in plant reproduction. Paleogeogr. Palaeoclimat. Palaeoecol. 232, 251–293.CrossRefGoogle Scholar
Friis, E. M., Pedersen, K. L. and Schönenberger, J. (2006). Normapolles plants, a prominent component of the Cretaceous rosid diversification. Plant Syst. Evol. 260, 107–140.Google Scholar
Froebe, H.-A. and Magin, N. (1993). Pattern analysis in the inflorescence of Dalechampsia L. (Euphorbiaceae). Bot. Jahrb. Syst. 115, 27–44.Google Scholar
Fukuoka, N., Ito, M. and Iwatsuki, K. (1986). Floral anatomy of the mangrove genus Lumnizera (Combretaceae). Acta Phytotax. Geobot. 37, 69–81.Google Scholar
Gallant, J. B., Kemp, J. R. and Lacroix, C. R. (1998). Floral development of dioecious staghorn sumac, Rhus hirta (Anacardiaceae). Int. J. Plant Sci. 159, 539–549.CrossRefGoogle Scholar
Galle, P. (1977). Untersuchungen zur Blütenentwicklung der Polygonaceen. Bot. Jahrb. Syst. 98, 449–489.Google Scholar
Gandhi, K. N. and Dale Thomas, R. (1983). A note on the androecium of the genus Croton and flowers in general of the family Euphorbiaceae. Phytologia 54, 6–8.Google Scholar
Gandolfo, M. A., Nixon, K. C. and Crepet, W. L. (1998). Tylerianthus crossmanensis gen. et sp. nov. (Aff. Hydrageaceae) from the Upper Cretaceous of New Jersey. Am. J. Bot. 85, 376–386.CrossRefGoogle ScholarPubMed
Gauthier, R. and Arros, J. (1963). L'anatomie de la fleur staminée de l'Hillebrandia sandwicensis Oliver et la vascularisation de l'étamine. Phytomorphology 13, 115–127.Google Scholar
Ge, L.-P., Lu, A.-M. and Gong, C.-R. (2007). Ontogeny of the fertile flower in Platycrater arguta (Hydrangeaceae). Int. J. Plant Sci. 168, 835–844.CrossRefGoogle Scholar
Geitler, L. (1929). Zur Morphologie der Blüten von Polygonum. Österr. Bot. Zeit. 78, 229–241.CrossRefGoogle Scholar
Gelius, L. (1967). Studien zur Entwicklungsgeschichte an Blüten der Saxifragales sensu lato mit besonderer Berücksichtigung des Androeceum. Bot. Jahrb. Syst. 87, 253–303.Google Scholar
Gemmeke, V. (1982). Entwicklungsgeschichtliche Untersuchungen an Mimosaceen-Blüten. Bot. Jahrb. Syst. 103, 185–210.Google Scholar
Geuten, K., Becker, A., Kaufmann, K., et al. (2006). Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. The Plant Journal 47, 501–518.CrossRefGoogle ScholarPubMed
Glover, B. J. (2007). Understanding Flowers and Flowering: An Integrated Approach. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
González, F. and Bello, M. A. (2009). Intraindividual variation of flowers in Gunnera subgenus Panke (Gunneraceae) and proposed apomorphies for Gunnerales. Bot. J. Linn. Soc., 160, 262–283.CrossRefGoogle Scholar
González, F. and Stevenson, D. W. (2000a). Perianth development and systematics of Aristolochia. Flora 195, 370–391.CrossRefGoogle Scholar
González, F. and Stevenson, D. W. (2000b). Gynostemium development in Aristolochia (Aristolochiaceae). Bot. Jahrb. Syst. 122, 249–291Google Scholar
Gottschling, M. (2004). Floral ontogeny in Bourreria (Ehretiaceae, Boraginales). Flora 199, 409–423.CrossRefGoogle Scholar
Graf, J. (1975). Tafelwerk zur Pflanzensystematik mit Euartiger Bildmethode. Munich: J. F. Lehmanns Verlag.CrossRefGoogle Scholar
Grey-Wilson, C. (1980). Some observations on the floral vascular antomy of Impatiens (Studies in Balsaminaceae VI). Kew Bull. 35, 221–227.CrossRefGoogle Scholar
Groeninckx, I., Vrijdaghs, A., Huysmans, S., Smets, E. and Dessein, S. (2007). Floral ontogeny of the Afro-Madagascan genus Mitrasacmopsis with comments on the development of superior ovaries in Rubiaceae. Ann. Bot. 100, 41–49.CrossRefGoogle ScholarPubMed
Guédès, M. (1979). Morphology of Seed-Plants. Vaduz, Liechtenstein: J. Cramer.Google Scholar
Gustafsson, M. H. G. (1995). Petal venation in Asterales and related orders. Bot. J. Linn. Soc. 118, 1–18.CrossRefGoogle Scholar
Gustafsson, M. H. G. (2000). Floral morphology and relationships of Clusia gundlachii with a discussion of floral organ identity and diversity in the genus Clusia. Int. J. Plant Sci. 161, 43–53.CrossRefGoogle ScholarPubMed
Gustafsson, M. H. G. and Albert, V. A. (1999). Inferior ovaries and Angiosperm diversification. In Molecular Systematics and Plant Evolution, ed. Hollingsworth, P. M., Bateman, R. M. and Gornall, R. J.. London: Taylor and Francis, pp. 403–431.CrossRefGoogle Scholar
Gustafsson, M. H. G. and Bittrich, V. (2002). Evolution of morphological diversity and resin secretion in flowers of Clusia (Clusiaceae), insights from ITS sequence variation. Nord. J. Bot. 22, 183–203.CrossRefGoogle Scholar
Gustafsson, M. H. G., Bittrich, V. and Stevens, P. F. (2002). Phylogeny of Clusiaceae based on rbcL sequences. Int. J. Plant Sci. 163, 1045–1054.CrossRefGoogle Scholar
Haas, P. (1976). Morphologische, anatomische und entwicklungsgeschichtliche Untersuchungen an Blüten und Früchten hochsukkulenter Mesembryanthemaceen-Gattungen – ein Beitrag zu ihrer Systematik. Diss. Bot. 33, 1–256.Google Scholar
Haber, J. M. (1966). The comparative anatomy and morphology of the flowers and inflorescences of the Proteaceae III. Some African taxa. Phytomorphology 16, 490–527.Google Scholar
Hall, J. C., Sytsma, K. J. and Iltis, H. H. (2002). Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 89, 1826–1842.CrossRefGoogle ScholarPubMed
Hardy, C. R., Davis, J. R. and Stevenson, D. W. (2004). Floral organogenesis in Plowmanianthus (Commelinaceae). Int. J. Plant Sci. 165, 511–519.CrossRefGoogle Scholar
Hardy, C. R. and Stevenson, D. W. (2000a). Development of the gametophytes, flower, and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Bot. J. Linn. Soc. 134, 131–157.Google Scholar
Hardy, C. R. and Stevenson, D. W. (2000b). Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae). Int. J. Plant Sci. 161, 551–562.CrossRefGoogle Scholar
Harris, E. M. (1995). Inflorescence and floral ontogeny in Asteraceae, a synthesis of historical and current concepts. Bot. Rev. 61, 94–278.CrossRefGoogle Scholar
Hayes, V., Schneider, E. L. and Carlquist, S. (2000). Floral development of Nelumbo nucifera Nelumbonaceae). Int. J. Plant Sci. 161 (6 Suppl.), S183–S191.CrossRefGoogle Scholar
Hiepko, P. (1964). Das zentrifugale Androeceum der Paeoniaceae. Ber. Dtsch. Bot. Ges. 77, 427–435.Google Scholar
Hiepko, P. (1965). Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot. Jahrb. Syst. 84, 359–508Google Scholar
Hiepko, P. (1966). Zur Morphologie, Anatomie und Funktion des Diskus der Paeoniaceae. Ber. Dtsch. Bot. Ges. 79, 233–245.Google Scholar
Hileman, L. C., Kramer, E. M. and Baum, D. A. (2003). Differential regulation of symmetry genes and the evolution of floral morphologies. Proc. Natl Acad. Sci. 100, 12 814–12 819.CrossRefGoogle ScholarPubMed
Hilger, H. H. (1984). Wachstum und Ausbildungsformen des Gynoeceums von Rochelia (Boraginaceae). Plant Syst. Evol. 146, 123–139.CrossRefGoogle Scholar
Hofmann, U. (1973). Centrospermen-Studien 6, Morphologische Untersuchungen zur Umgrenzung und Gliederung der Aizoaceen. Bot. Jahrb. Syst. 93, 247–324.Google Scholar
Hofmann, U. (1993). Flower morphology and ontogeny. In Caryophyllales: Evolution and Systematics, ed. Behnke, H.-D. and Mabry, T. J.. Berlin: Springer Verlag, pp. 123–166.Google Scholar
Hofmann, U. and Göttmann, J. (1990). Morina L. und Triplostegia Wall. ex DC. im Vergleich mit Valerianaceae und Dipsacaceae. Bot. Jahrb. Syst. 111, 499–553.Google Scholar
Horn, J. W. (2007). Dilleniaceae. In The Families and Genera of Vascular Plants, Vol. IX, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 132–154.Google Scholar
Howarth, D. G. and Donoghue, M. J. (2005). Duplications in cyc-like genes from Dipsacales correlate with floral form. Int. J. Plant Sci. 166, 357–370.CrossRefGoogle Scholar
Hufford, L. D. (1989a). Structure of the inflorescence and flower of Petalonix linearis (Loasaceae). Plant Syst. Evol. 163, 211–226.CrossRefGoogle Scholar
Hufford, L. D. (1989b). The structure and potential loasaceous affinities of Schismocarpus. Nord. J. Bot. 9, 217–227.CrossRefGoogle Scholar
Hufford, L. D. (1990). Androecial development and the problem of monophyly of Loasaceae. Can. J. Bot. 68, 402–419.CrossRefGoogle Scholar
Hufford, L. D. (1992a). Rosidae and their relationships to other non-magnoliid Dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann. Missouri Bot. Gard. 79, 218–248.CrossRefGoogle Scholar
Hufford, L. D. (1992b). Floral structure of Besseya and Synthyris (Scrophulariaceae). Int. J. Plant Sci. 153, 217–229.CrossRefGoogle Scholar
Hufford, L. D. (1995). Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am. J. Bot. 82, 655–680.CrossRefGoogle Scholar
Hufford, L. D. (1998). Early development of androecia in polystemonous Hydrangeaceae. Am. J. Bot. 85, 1057–1067.CrossRefGoogle ScholarPubMed
Hufford, L. D. (2001). Ontogeny and morphology of the fertile flowers of Hydrangea and allied genera of tribe Hydrangeeae (Hydrangeaceae). Bot. J. Linn. Soc. 137, 139–187.CrossRefGoogle Scholar
Hufford, L. D. (2003). Homology and developmental transformation, models for the origins of the staminodes of Loasaceae subfamily Loasoideae. Int. J. Plant Sci. 164 (5 Suppl.), S409–S439.CrossRefGoogle Scholar
Igersheim, A., Puff, C., Leins, P. and Erbar, C. (1994). Gynoecial development of Gaertnera Lam. and of presumably allied taxa of the Psychotrieae (Rubiaceae), secondarily ‘superior’ vs. inferior ovaries. Bot. Jahrb. Syst. 116, 401–414.Google Scholar
Ihlenfeldt, H. D. (1960). Entwicklungsgeschichtliche, morphologische und systematische Untersuchungen an Mesembryanthemen. Feddes Repert. 63, 1–104.Google Scholar
Innes, R. L., Remphrey, W. R. and Lenz, L. M. (1989). An analysis of the development of single and double flowers in Potentilla fruticosa. Can. J. Bot. 67, 1071–1079.CrossRefGoogle Scholar
Ito, M. (1986a). Studies in the floral morphology and anatomy of Nymphaeales III. Floral anatomy of Brasenia schreberi Gmel. and Cabomba caroliniana A. Gray. Bot. Mag. Tokyo 99, 169–184.CrossRefGoogle Scholar
Ito, M. (1986b). Studies in the floral morphology and antomy of Nymphaeales IV. Floral anatomy of Nelumbo nucifera. Acta Phytotax. Geobot. 37, 82–96.Google Scholar
Jabour, F., Damerval, C. and Nadot, S. (2008). Evolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy?Ann. Bot. 102, 153–165.CrossRefGoogle Scholar
Jäger-Zürn, I. (1966). Infloreszenz- und blütenmorphologische, sowie embryologische Untersuchungen an Myothamnus Welw. Beitr. Biol. Plflanz. 42, 241–271.Google Scholar
Janka, H., Balthazar, M., Alverson, W. S., Baum, D. A., Semir, J. and Bayer, C. (2008). Structure, development and evolution of the androecium in Adansonieae (core Bombacoideae, Malvaceae s.l.). Plant Syst. Evol. 275, 69–91.CrossRefGoogle Scholar
Jansen, R. K., Cai, Z., Raubeson, L. A., et al. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl Acad. Sci. 104, 19 369–19 374.CrossRefGoogle ScholarPubMed
Jaramillo, M. A. and Kramer, E. M. (2004). APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol. Devel. 6, 449–458.CrossRefGoogle Scholar
Jaramillo, M. A. and Manos, P. S. (2001). Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am. J. Bot. 88, 706–716.CrossRefGoogle Scholar
Jaramillo, M. A., Manos, P. and Zimmer, E. A. (2004). Phylogenetic relationships of the perianthless Piperales, reconstructing the evolution of floral development. Int. J. Plant Sci. 165, 403–416.CrossRefGoogle Scholar
Jenny, M. (1988). Different gynoecium types in Sterculiaceae: ontogeny and functional aspects. In Aspects of Floral Development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer, pp. 225–236.Google Scholar
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F. and Donoghue, M. J. (2002). Plant Systematics: A Phylogenetic Approach, 2nd edn. Sunderland, MA: Sinauer.Google Scholar
Judd, W. S. and Olmstead, R. G. (2004). A survey of tricolpate (eudicot) phylogenetic relationships. Am. J. Bot. 91, 1627–1644.CrossRefGoogle ScholarPubMed
Judd, W. S., Sanders, R. W. and Donoghue, M. J. (1994). Angiosperm family pairs, preliminary phylogenetic analyses. Harvard Pap. Bot. 5, 1–51.Google Scholar
Källersjö, M., Bergqvist, G. and Anderberg, A. A. (2000). Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am. J. Bot. 87, 1325–1341.CrossRefGoogle ScholarPubMed
Kania, W. (1973). Entwicklungsgeschichtliche Untersuchungen an Rosaceenblüten. Bot. Jahrb. Syst. 93, 175–246.Google Scholar
Karrer, A. B. (1991). Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. University of Zürich, Switzerland: unpubl. thesis.Google Scholar
Kaul, R. B. (1968). Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology 18, 13–35.Google Scholar
Kelly, L. M. (2001). Taxonomy of Asarum section Asarum (Aristolochiaceae). Syst. Bot. 26, 17–53.Google Scholar
Kelly, L. M. and González, F. (2003). Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–249.Google Scholar
Kessler, P. J. A. (1993). Menispermaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 402–418.Google Scholar
Kim, S., Yoo, M.-J., Kong, H., et al. (2005). Expression of floral MADS-box genes in basal Angiosperms: implications for the evolution of floral regulators. The Plant Journal 43, 724–744.CrossRefGoogle ScholarPubMed
Kirchoff, B. K. (1983). Floral organogenesis in five genera of the Marataceae and in Canna (Cannaceae). Am. J. Bot. 70, 508–523.CrossRefGoogle Scholar
Kirchoff, B. K. (1988). Inflorescence and flower development in Costus scaber (Costaceae). Can. J. Bot. 62, 339–345.CrossRefGoogle Scholar
Kirchoff, B. K. (1992). Ovary structure and anatomy in the Heliconiaceae and Musaceae (Zingiberales). Can. J. Bot. 70, 2490–2508.CrossRefGoogle Scholar
Kirchoff, B. K. (1997). Inflorescence and flower development in the Hedychieae (Zingiberaceae), Hedychium. Can. J. Bot. 75, 581–594.CrossRefGoogle Scholar
Kirchoff, B. K. (2000). Hofmeister's rule and primordium shape, influences on organ position in Hedychium coronarium (Zingiberaceae). In Monocots: Systematics and Evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 75–83.Google Scholar
Klopfer, K. (1973). Florale Morphogenese und Taxonomie der Saxifragaceae sensu lato. Feddes Repert. 84, 475–516.CrossRefGoogle Scholar
Knapp, S. (2002). Floral diversity and evolution in the Solanaceae. In Developmental Genetics and Plant Evolution, ed. Cronk, Q. C. B., Bateman, R. M. and Hawkins, J. A.. London: Taylor and Francis, pp. 267–297.CrossRefGoogle Scholar
Kocyan, A. and Endress, P. K. (2001a). Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Syst. Evol. 229, 187–216.CrossRefGoogle Scholar
Kocyan, A. and Endress, P. K. (2001b). Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Int. J. Plant Sci. 162, 847–867.CrossRefGoogle Scholar
Köhler, E. (2003). Simmondsiaceae. In The Families and Genera of Vascular Plants, Vol. II, eds. Kubitzki, K. and Bayer, C.. Berlin: Springer Verlag, pp. 355–358.Google Scholar
Kosuge, K. (1994). Petal evolution in Ranunculaceae. Plant Syst. Evol. Suppl. 8, 185–191.Google Scholar
Kramer, E. M., Di Stilio, V. S. and Schlüter, P. M. (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 1–11.CrossRefGoogle Scholar
Kramer, E. M., Su, H.-J.Wu, C.-C. and Hu, J.-M. (2006). A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol. Biol. 6, 30.CrossRefGoogle ScholarPubMed
Kress, W. J. (1990). Phylogeny and classification of Zingiberales. Ann. Missouri Bot. Gard. 77, 698–721.CrossRefGoogle Scholar
Kron, K. A., Judd, W. S., Stevens, P. F., et al. (2002). A phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335–423.CrossRefGoogle Scholar
Krosnick, S. E., Harris, E. M. and Freudenstein, J. V. (2006). Patterns of anomalous floral development in the Asian Passiflora (subgenus Decaloba, supersection Disemma). Am. J. Bot. 93, 620–636.CrossRefGoogle Scholar
Krüger, H. and Robbertse, P. J. (1988). Floral ontogeny of Securidaca longepedunculata Fresen (Polygalaceae) including inflorescence morphology. In Aspects of Floral Development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer., pp. 159–167.Google Scholar
Kubitzki, K. (1969). Monographie der Hernandiaceen. Bot. Jahrb. Syst. 89, 78–148.Google Scholar
Kubitzki, K. (1987). Origin and significance of trimerous flowers. Taxon 36, 21–28CrossRefGoogle Scholar
Kubitzki, K. (1993). Hernandiaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 334–338.Google Scholar
Kubitzki, K. (2004). Introduction. In The Families and Genera of Vascular Plants, Vol. VI, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 1–11.Google Scholar
Kubitzki, K. (2007a). Berberidopsidaceae. In The Families and Genera of Vascular Plants, Vol. IX, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 33–35.Google Scholar
Kubitzki, K. (2007b). Haloragaceae. In The Families and Genera of Vascular Plants, Vol. IX, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 184–190.Google Scholar
Kuzoff, R. K., Hufford, L. and Soltis, D. E. (2001). Structural homology and developmental transformations associated with ovary diversification in Lithophragma (Saxifragaceae). Am. J. Bot. 88, 196–205.CrossRefGoogle Scholar
Lamb-Frye, A. S. and Kron, K. A. (2003). Phylogeny and character evolution in Polygonaceae. Syst. Bot. 21, 17–29.Google Scholar
Laubengayer, R. A. (1937). Studies in the anatomy and morphology of the Polygonaceous flower. Am. J. Bot. 24, 329–343.CrossRefGoogle Scholar
Lehmann, N. L. and Sattler, R. (1992). Irregular floral development in Calla palustris (Araceae) and the concept of homeosis. Am. J. Bot. 79, 1145–1157.CrossRefGoogle Scholar
Lehmann, N. L. and Sattler, R. (1993). Homeosis in floral development of Sanguinaria canadensis and S. canadensis ‘Multiplex’ (Papaveraceae). Am. J. Bot. 80, 1323–1335.CrossRefGoogle Scholar
Lehmann, N. L. and Sattler, R. (1994). Floral development and homeosis in Actaea rubra (Ranunculaceae). Int. J. Plant Sci. 155, 658–671.CrossRefGoogle Scholar
Lei, L.-G. and Liang, H.-X. (1998. Floral development of dioecious species and trends of floral evolution in Piper sensu lato. Bot. J. Linn. Soc. 127, 225–237Google Scholar
Leins, P. (1964a). Entwicklungsgeschichtliche Studien an Ericales-Blüten. Bot. Jahrb. Syst. 83, 57–88.Google Scholar
Leins, P. (1964b). Die frühe Blütenentwicklung von Hypericum hookerianum Wight et Arn. und H. aegypticum L. Ber. Dtsch. Bot. Ges. 77, 112–123.Google Scholar
Leins, P. (1965). Die Infloreszenz und Frühe Blütenentwicklung von Melaleuca nesophila F. Muell. (Myrtaceae). Planta 65, 195–204.CrossRefGoogle Scholar
Leins, P. (1967). Die frühe Blütenentwicklung von Aegle marmelos (Rutaceae). Ber. Dtsch. Bot. Ges. 80, 320–325Google Scholar
Leins, P. (1988). Das zentripetale Androeceum von Punica. Bot. Jahrb. Syst. 109, 555–561Google Scholar
Leins, P. and Erbar, C. (1985). Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. Bot. Jahrb. Syst. 107, 343–368.Google Scholar
Leins, P. and Erbar, C. (1987). Studien zur Blütenentwicklung an Compositen. Bot. Jahrb. Syst. 108, 381–401.Google Scholar
Leins, P and Erbar, C. (1988). Einige Bemerkungen zur Blütenentwicklung und systematische Stellung der Wasserpflanzen Callitriche, Hippuris und Hydrostachys. Beitr. Biol. Pflanz. 63, 157–178.Google Scholar
Leins, P. and Erbar, C. (1989). Zur Blütenentwicklung und sekundären Pollenpräsentation bei Selliera radicans. Cav. (Goodeniaceae). Flora 182, 43–56.CrossRefGoogle Scholar
Leins, P. and Erbar, C. (1991). Fascicled androecia in Dilleniidae and some remarks on the Garcinia androecium. Bot. Acta 104, 336–344.CrossRefGoogle Scholar
Leins, P. and Erbar, C. (1995). Das frühe Differenzierungsmuster in den Blüten von Saruma henryi Oliv. (Aristolochiaceae). Bot. Jahrb. Syst. 117, 365–376.Google Scholar
Leins, P. and Erbar, C. (1996). Early floral developmental studies in Annonaceae. In Reproductive Morphology in Annonaceae, ed. Morawetz, W. and Winkler, H.. Vienna: Akademie der Wissenschaften, Biosystematics and Ecology Series 10, pp. 1–27.Google Scholar
Leins, P. and Erbar, C. (2000). Die frühesten Entwicklungsstadien der Blüten bei den Asteraceae. Bot. Jahrb. Syst. 122, 503–515.Google Scholar
Leins, P. and Erbar, C. (2007). Blüte und Frucht, 2nd edn. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Leins, P., Erbar, C. and Heel, W. A. (1988). Note on the floral development of Thottea (Aristolochiaceae). Blumea 33, 357–370.Google Scholar
Leins, P. and Galle, P. (1971). Entwicklungsgeschichtliche Untersuchungen an Cucurbitaceen-Blüten. Österr. Bot. Zeit. 119, 531–548.CrossRefGoogle Scholar
Leins, P. and Schwitalla, S. (1985). Studien an Cactaceen-Blüten I. Einige Bermerkungen zur Blütenentwicklung von Pereskia. Beitr. Biol. Pflanz. 60, 313–323.Google Scholar
Leins, P. and Stadler, P. (1973). Entwicklungsgeschichtliche Untersuchungen am Androecium der Alismatales. Österr. Bot. Zeit. 122, 145–165.CrossRefGoogle Scholar
Leins, P. and Winhard, W. (1973). Entwicklungsgeschichtliche Studien an Loasaceenblüten. Österr. Bot. Zeit. 122, 145–165.CrossRefGoogle Scholar
Leredde, C. (1955). Sur la position des étamines chez quelques Echium. Bull. Soc. Hist. Nat. Toulouse 90, 369–372.Google Scholar
Roux, L. G. and Kellogg, E. A. (1999). Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Am. J. Bot. 86, 354–366.CrossRefGoogle Scholar
Levyns, M. R. (1949). The floral morphology of some South African members of Polygalaceae. J. S. Afr. Bot. 15, 79–92.Google Scholar
Leyser, O. and Day, S. (2003). Mechanisms in Plant Development. Oxford, UK: Blackwell.Google Scholar
Li, P. and Johnston, M. O. (2000). Heterochrony in plant evolutionary studies through the twentieth century. Bot. Rev. 66, 57–88.CrossRefGoogle Scholar
Liang, H.-X. and Tucker, S. C. (1989). Floral development in Gymnotheca chinensis. Am. J. Bot. 76, 806–819.Google Scholar
Lindenhofer, A. and Weber, A. (1999a). Polyandry in Rosaceae: evidence for a spiral origin of the androecium in Spiraeoideae. Bot. Jahrb. Syst. 121, 553–582.Google Scholar
Lindenhofer, A. and Weber, A. (1999b). The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot. Jahrb. Syst. 121, 583–605.Google Scholar
Lindenhofer, A. and Weber, A. (2000). Structural and developmental diversity of the androecium of Rosoideae (Rosaceae). Bot. Jahrb. Syst. 122, 63–91.Google Scholar
Linder, H. P. (1991). A review of the southern African Restionaceae. Contr. Bolus Herb. 13, 209–264.Google Scholar
Linder, H. P. (1992a). The gynoecia of Australian Restionaceae, morphology, anatomy and systematic implications. Aust. Syst. Bot. 5, 227–245.CrossRefGoogle Scholar
Linder, H. P. (1992b). The structure and evolution of the pistillate flower of the African Restionaceae. Bot. J. Linn. Soc. 109, 401–425.CrossRefGoogle Scholar
Linder, H. P. (1998). Morphology and the evolution of wind pollination. In Reproductive Biology in Systematics, Conservation and Economic Botany, ed. Owens, S. J. and Rudall, P. J.. Kew, UK: Royal Botanic Gardens, pp. 123–135.Google Scholar
Linder, H. P. and Rudall, P. J. (2005). Evolutionary history of Poales. Annu. Rev. Evol. Syst. 36, 107–124.CrossRefGoogle Scholar
Lindsey, A. A. (1940). Floral anatomy in the Gentianaceae. Am. J. Bot. 27, 640–652.CrossRefGoogle Scholar
Litt, A. and Stevenson, D. W. (2003a). Floral development and morphology of Vochysiaceae I. The structure of the gynoecium. Am. J. Bot. 90, 1533–1547.CrossRefGoogle ScholarPubMed
Litt, A. and Stevenson, D. W. (2003b). Floral development and morphology of Vochysiaceae II. The position of the single fertile stamen. Am. J. Bot. 90, 1548–1559.CrossRefGoogle ScholarPubMed
Lorence, D. H. (1985). A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann. Missouri Bot. Gard. 72, 1–165.CrossRefGoogle Scholar
Lüders, H. (1907). Systematische Untersuchungen über die Caryophyllaceen mit einfachem Diagramm. Bot. Jahrb. Syst. 40, Beibl. 91, 1–37.Google Scholar
Luo, D., Carpenter, R., Vincent, C., Copsey, L. and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799.CrossRefGoogle ScholarPubMed
Ma, O. S. W. and Saunders, R. M. K. (2003). Comparative floral ontogeny of Maesa (Maesaceae), Aegiceras (Myrsinaceae) and Embelia (Myrsinaceae), taxonomic and phylogenetic implications. Plant Syst. Evol. 243, 39–58.CrossRefGoogle Scholar
Maas, P. J. M. and Rübsamen, T. (1986). Triuridaceae, Flora neotropica no. 40. New York: Hafner.Google Scholar
Mabberley, D. (2000). Arthur Harry Church: The Anatomy of Flowers. London: The Natural History Museum.Google Scholar
Mabry, T. J. (1977). The order Centrospermae. Ann. Missouri Bot. Gard. 64, 210–220.CrossRefGoogle Scholar
Macfarlane, J. M. (1908). Nepenthaceae. In Das Pflanzenreich IV, 3, ed. Engler, A.. Leipzig: W. Engelmann, pp. 1–92.Google Scholar
Magallón, S. (2007). From fossils to molecules, phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Syst. Bot. 32, 317–347.CrossRefGoogle Scholar
Malécot, V. and Nickrent, D. L. (2008). Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst. Bot. 33, 97–106.CrossRefGoogle Scholar
Marazzi, B. and Endress, P. K. (2008). Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae). Am. J. Bot. 95, 22–40.CrossRefGoogle Scholar
Marazzi, B., Endress, P. K., Paganucci de Quieroz, L. and Conti, E. (2006). Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. Am. J. Bot. 93, 288–303.CrossRefGoogle ScholarPubMed
Matthews, M. L. and Endress, P. K. (2002). Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Bot. J. Linn. Soc. 140, 321–381.CrossRefGoogle Scholar
Matthews, M. L. and Endress, P. K. (2004). Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Tetramelaceae, Datiscaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae). Bot. J. Linn. Soc. 145, 129–185.CrossRefGoogle Scholar
Matthews, M. L. and Endress, P. K. (2005). Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot. J. Linn. Soc. 149, 129–194.CrossRefGoogle Scholar
Matthews, M. L. and Endress, P. K. (2008). Comparative floral struture and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, Trigoniaceae; Malpighiales). Bot. J. Linn. Soc. 157, 249–309.CrossRefGoogle Scholar
Mayr, B. (1969). Ontogenetische Studien an Myrtales-Blüten. Bot. Jahrb. Syst. 89, 210–271.Google Scholar
Mayr, E. M. and Weber, A. (2006). Calceolariaceae: floral development and systematic implications. Am. J. Bot. 93, 327–343.CrossRefGoogle ScholarPubMed
Medan, D. and Hilger, H. H. 1992. Comparative flower and fruit morphogenesis in Colubrina (Rhamnaceae) with special reference to C. asiatica. Am. J. Bot. 79, 809–819.CrossRefGoogle Scholar
Melchior, H. (1925). Violaceae. In Die natürlichen Pflanzenfamilien XXI, 2nd edn, ed. Engler, A. and Prantl, K.. Leipzig: Wilhelm Engelmann, pp. 329–377.Google Scholar
Melchior, H. (1964). Engler's Syllabus der Pflanzenfamilien. Berlin: Gebr. Borntraeger.Google Scholar
Melville, R. (1984). The affinity of Paeonia and a second genus of Paeoniaceae. Kew Bull. 38, 87–105.CrossRefGoogle Scholar
Merckx, V., Schols, V., Maas-van de Kamer, H., Maas, P., Huysmans, S. and Smets, E. (2006). Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am. J. Bot. 93, 1684–1698.CrossRefGoogle ScholarPubMed
Merino Sutter, D., Foster, P. I. and Endress, P. K. (2006). Female flowers and systematic position of Picodendraceae (Euphorbiaceae s.l., Malpighiales). Plant Syst. Evol. 261, 187–215.CrossRefGoogle Scholar
Michaelis, P. (1924). Blütenmorphologische Untersuchungen an den Euphorbiaceen, unter besonderer Berücksichtigung der Phylogenie der Angiospermenblüte. Goebel Bot. Abhandl. 3, 1–150.Google Scholar
Milby, T. H. (1980). Studies in the floral anatomy of Claytonia. Am. J. Bot. 67, 1046–1050.CrossRefGoogle Scholar
Mione, T. and Bogle, A. L. (1990). Comparative ontogeny of the inflorescence and flower of Hamamelis virginiana and Loropetalum chinense (Hamamelidaceae). Am. J. Bot. 77, 77–91.CrossRefGoogle Scholar
Mitchell, C. H. and Diggle, P. K. (2005). The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. Am. J. Bot. 92, 1068–1076.CrossRefGoogle ScholarPubMed
Moncur, M. W. (1988). Floral Development of Tropical and Subtropical Fruit and Nut Species: An Atlas of Scanning Electron Micrographs. Melbourne: CSIRO.Google Scholar
Mondragón-Palomino, M. and Theissen, G. (2008). MADS about the evolution of orchid flowers. Tr. Plant Sci. 13, 51–59.CrossRefGoogle ScholarPubMed
Moody, M. and Hufford, L. (2000a). Floral development and structure of Davidsonia (Cunoniaceae). Can. J. Bot. 78, 1034–1043.Google Scholar
Moody, M. and Hufford, L. (2000b). Floral ontogeny and morphology of Cevallia, Fuertesia, and Gronovia (Loasaceae subfamily Gronovioideae). Int. J. Plant Sci. 161, 869–883.CrossRefGoogle Scholar
Moore, H. E. (1973). The major groups of palms and their distribution. Gentes Herb. 11, 27–141.Google Scholar
Moore, H. E. and Uhl, N. W. (1982). Major trends of evolution in palms. Bot. Rev. 48, 1–69.CrossRefGoogle Scholar
Moore, M. J., Bell, C. D., Soltis, P. S. and Soltis, D. E. (1997). Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl Acad. Sci. 104, 19 363–19 368.CrossRefGoogle Scholar
Morgan, D. R. and Soltis, D. E. (1993). Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann. Missouri Bot. Gard. 80, 631–660.CrossRefGoogle Scholar
Mort, M. E., Soltis, D. E., Soltis, P. S., Francisco-ortega, J. and Santos-Guerra, A. (2001). Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. Am. J. Bot. 88, 76–91.CrossRefGoogle Scholar
Moylan, E. C., Rudall, P. J. and Scotland, R. W. (2004). Comparative floral anatomy of Strobilanthinae (Acanthaceae), with particular reference to internal partitioning of the flower. Plant Syst. Evol. 249, 77–98.CrossRefGoogle Scholar
Murbeck, S. (1912). Üntersuchungen über den Blütenbau der Papaveraceen. Kungl. Sv. Vet. Akad. Handl. 50, 1–168.Google Scholar
Nair, N. C. and Abraham, V. (1962). Floral morphology of a few species of Euphorbiaceae. Proc. Indian Acad. Sci. B,56, 1–12.Google Scholar
Nandi, O. I. (1998). Floral development and systematics of Cistaceae. Plant Syst. Evol. 212, 107–134.CrossRefGoogle Scholar
Narayana, L. L. and Rao, D. (1966). Floral morphology of Linaceae. J. Jap. Bot. 41, 1–10.Google Scholar
Narayana, L. L. and Rao, D. (1969). Contributions to the floral anatomy of Linaceae 1. J. Jap. Bot. 44, 289–294.Google Scholar
Narayana, L. L. and Rao, D. (1973). Contributions to the floral anatomy of Linaceae 5. J. Jap. Bot. 48, 205–208.Google Scholar
Narayana, L. L. and Rao, D. (1976). Contributions to the floral anatomy of Linaceae 6. J. Jap. Bot. 51, 92–96.Google Scholar
Narayana, L. L. and Rao, D. (1978). Contributions to the floral anatomy of Linaceae 11. J. Jap. Bot. 53, 12–14.Google Scholar
Narayana, R. (1958a). Morphological and embryological studies in the family Loranthaceae II. Lysiana exocarpi (Behr.) van Tieghem. Phytomorphology 8, 147–168.Google Scholar
Narayana, R. (1958b). Morphological and embryological studies in the family Loranthaceae III. Nuytsia floribunda (Labill.) R. Br. Phytomorphology 8, 306–323.Google Scholar
Narita, M. and Takahashi, H. (2008). A comparative study of shoot and floral development in Paris tetraphylla and P. verticillata (Trilliaceae). Plant Syst. Evol. 272, 67–78.CrossRefGoogle Scholar
Ng, F. (1991). The relationship of the Sapotaceae within the Ebenales. In The Genera of Sapotaceae, ed. Pennington, T. D.. Kew, UK: Royal Botanic Garden and Bronx, NY: New York Botanic Garden, pp. 1–14.Google Scholar
Nicholas, A. and Baijnath, H. (1994). A consensus classification for the order Gentianales with additional details on the suborder Apocynineae. Bot. Rev. 60, 440–482.CrossRefGoogle Scholar
Nickrent, D. L. and Malécot, V. (2001). A molecular phylogeny of Santalales. In Proceedings of the 7th International Parasitic Weed Symposium, ed. Fer, A., Thalouarn, P., Joel, D. M., Musselman, L. J., Parker, C. and Verkleij, J. A. C.. Nantes: Faculté des Sciences, Université de Nantes, pp. 69–74.Google Scholar
Niedenzu, F. (1897). Malpighiaceae. In Die natürlichen Pflanzenfamilien III, 4, 1st edn., ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 41–74.Google Scholar
Niedenzu, F. (1925). Frankeniaceae. In Die Natürlichen Pflanzenfamilien II, 1, 2nd edn., ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 276–281.Google Scholar
Nishino, E. (1983a). Corolla tube formation in the Tubiflorae and Gentianales. Bot. Mag. Tokyo 96: 223–243.CrossRefGoogle Scholar
Nishino, E. (1983b). Corolla tube formation in the Primulales and Ericales. Bot. Mag. Tokyo 96: 319–342.CrossRefGoogle Scholar
Nishino, E. (1988). Early floral organogenesis in Tripetaleia (Ericaceae). In Aspects of Floral Development, ed. Leins, P., Tucker, S. C. and Endress, P. K.. Berlin: J. Cramer, pp. 181–190.Google Scholar
Nooteboom, H. P. (1993). Magnoliaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 391–401.Google Scholar
Oh, S.-H. and Manos, P. S. (2008). Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57, 434–451.Google Scholar
Okamoto, M. (1983). Floral development of Castanopsis cuspidata var. sieboldii. Acta Phytotax. Geobot. 34, 10–17.Google Scholar
Okamoto, M., Kosuge, K. and Fukuoka, N. (1992). Pistil development and parietal placentation in the pseudomomerous ovary of Zelkova serrata (Ulmaceae). Am. J. Bot. 79, 921–927.CrossRefGoogle Scholar
Olmstead, R. G., DePamphilis, C. W., Wolfe, A. D., Young, N. D., Elisons, W. J. and Reeves, P. A. (2001). Disintegration of the Scrophulariaceae. Am. J. Bot. 88, 348–361.CrossRefGoogle ScholarPubMed
Olson, M. E. (2003). Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). Am. J. Bot. 90, 49–71.CrossRefGoogle Scholar
Orlovich, D. A., Drinnan, A. N. and Ladiges, P. Y. (1996). Floral development in the Metrosideros group (Myrtaceae) with special emphasis on the androecium. Telopea 6, 689–719.CrossRefGoogle Scholar
Orlovich, D. A., Drinnan, A. N. and Ladiges, P. Y. (1999). Floral development in Melaleuca and Callistemon (Myrtaceae). Aust. Syst. Bot. 11, 689–710.CrossRefGoogle Scholar
Pabón-Mora, N. and González, F. (2008). Floral ontogeny of Telipogon spp. (Orchidaceae) and insights on the perianth symmetry in the family. Int. J. Plant Sci. 169, 1159–1173.CrossRefGoogle Scholar
Pacini, E., Nepi, M. and Vesprini, J. L. (2003). Nectar biodiversity: a short review. Plant Syst. Evol. 238, 7–21.CrossRefGoogle Scholar
Pai, R. M. (1965). Morphology of the flower in the Cannaceae. J. Biol. Sciences 8, 4–8.Google Scholar
Pai, R. M. and Tilak, V. D. (1965). Septal nectaries in the Scitamineae. J. Biol. Sciences 8, 1–3.Google Scholar
Pauwels, L. (1993). Nzayilu N'ti: Guide des Arbres et Arbustes de la Région de Kinshasa-Brazzaville. Meise: Jardin Botanique National de Belgique.Google Scholar
Pauzé, F. and Sattler, R. (1978). l'Androcée centripète d'Ochna atropurpurea. Can. J. Bot. 56, 2500–2511.CrossRefGoogle Scholar
Payer, J. B. (1857). Traité d'Organogénie Comparée de la Fleur. Paris: Victor Masson.Google Scholar
Pennington, T. D. (2004). Sapotaceae. In The Families and Genera of Vascular Plants, Vol. VI, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 390–421.Google Scholar
Philipson, W. R. (1970). Constant and variable features of the Araliaceae. Bot. J. Linn. Soc. 63 (Suppl. 1), 87–100.Google Scholar
Philipson, W. R. (1985). Is the grass gynoecium monocarpellary?Am. J. Bot. 72, 1954–1961.CrossRefGoogle Scholar
Philipson, W. R. (1993). Monimiaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 426–437.Google Scholar
Pilger, R. (1935). Santalaceae. In Die Natürlichen Pflanzenfamilien 16b, ed. Engler, A.. and Prantl, K.. Leipzig: W. Engelmann, pp. 52–91.Google Scholar
Pluys, T. (2002). Bloemontogenetische studie van de Rosaceae, Dipsacaceae en Malvaceae met bijzondere aandacht voor de bijkelk. Katholieke Universiteit Leuven, Belgium: unpubl. thesis.Google Scholar
Plunkett, G. M. (2001). Relationship of the order Apiales to subclass Asteridae: a re-evaluation of morphological characters based on insights from molecular data. Edinburgh J. Bot. 58, 183–200.CrossRefGoogle Scholar
Plunkett, G. M., Soltis, D. E. and Soltis, P. S. (1996). Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am. J. Bot. 83, 499–515.CrossRefGoogle Scholar
Prance, G. T. and Mori, S. A. (2004). Lecythidaceae. In The Families and Genera of Vascular Plants, Vol. VI, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 221–232.Google Scholar
Prenner, G. (2004a). New aspects in floral development of Papilionoideae: initiated but suppressed bracteoles and variable initiation of sepals. Ann. Bot. 93, 537–545.CrossRefGoogle ScholarPubMed
Prenner, G. (2004b). Floral development in Polygala myrtifolia (Polygalaceae) and its similarities with Leguminosae. Plant Syst. Evol. 249, 67–76.CrossRefGoogle Scholar
Prenner, G. (2004c). Floral ontogeny in Calliandra angustifolia (Leguminosae, Mimosoideae, Ingeae) and its systematic implications. Int. J. Plant Sci. 165, 417–426.CrossRefGoogle Scholar
Prenner, G. and Klitgaard, B. B. (2008). Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am. J. Bot. 95: 1349–1365.CrossRefGoogle Scholar
Prenner, G. and Rudall, P. (2007). Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies, exploring the organ-flower-inflorescence boundary. Am. J. Bot. 94, 1612–1629.CrossRefGoogle ScholarPubMed
Prenner, G. and Rudall, P. (2008). The branching stamens of Ricinus and the homologies of the Angiosperm stamen fascicle. Int. J. Plant Sci. 169, 735–744.CrossRefGoogle Scholar
Puff, C. and Igersheim, A. (1991). The flowers of Paederia L. (Rubiaceae-Paederieae). Opera Bot. Belg. 3, 55–75.Google Scholar
Puglisi, C. (2007). Multiplications of floral parts in the genus Conostegia (Melastomataceae). Royal Botanic Garden Edinburgh: unpubl. MSc thesis.Google Scholar
Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., et al. (1999). The earliest Angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407.CrossRefGoogle ScholarPubMed
Rama Devi, D. (1991a). Floral anatomy of Hypseocharis (Oxalidaceae) with a discussion on its systematic position. Plant Syst. Evol. 177, 161–164.CrossRefGoogle Scholar
Rama Devi, D. (1991b). Floral anatomy of six species of Impatiens. Feddes Repert. 102, 395–398.CrossRefGoogle Scholar
Ramirez-Domenech, J. I. and Tucker, S. C. (1990). Comparative ontogeny of the perianth in Mimosoid legumes. Am. J. Bot. 77, 624–635.CrossRefGoogle Scholar
Rao, V. S. (1953). The floral anatomy of some bicarpellatae 1. Acanthaceae. J. Univ. Bombay 21, 1–34.Google Scholar
Rao, V. S. (1963). The epigynous glands of Zingiberaceae. New Phytol. 62, 342–349.CrossRefGoogle Scholar
Rao, V. S. (1974). The nature of the perianth in Eleagnus on the basis of floral anatomy with some comments on the systematic position of Eleagnaceae. J. Indian Bot. Soc. 53, 156–161.Google Scholar
Rao, V. S., Karnik, H. and Gupte, K. (1954). The floral anatomy of some Scitamineae I. J. Indian Bot. Soc. 33, 118–147.Google Scholar
Rasmussen, D. A., Kramer, E. M. and Zimmer, E. A. (2009). One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. Am. J. Bot. 96, 96–109.CrossRefGoogle ScholarPubMed
Reeves, P. A. and Olmstead, R. G. (1998). Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae). Am. J. Bot. 85, 1047–1056.CrossRefGoogle Scholar
Reinheimer, R., Pozner, R. and Vegetti, A. C. (2005). Inflorescence, spikelet, and floral development in Panicum maximum and Urochloa plantaginea (Poaceae). Am. J. Bot. 92, 565–575.CrossRefGoogle Scholar
Remizowa, M. and Sokoloff, D. (2003). Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Bot. Jahrb. Syst. 124, 255–271.CrossRefGoogle Scholar
Remizowa, M., Sokoloff, D. and Kondo, K. (2008). Floral evolution in the monocot family Nartheciaceae (Dioscoreales), evidence from anatomy and development in Metanarthecium luteo-viride Maxim. Bot. J. Linn. Soc. 158, 1–18.CrossRefGoogle Scholar
Remizowa, M., Sokoloff, D. and Rudall, P. J. (2006). Evolution of the monocot gynoecium, evidence from comparative morphology and development in Tofieldia, Japanolirion, Petrosavia and Narthecium. Plant Syst. Evol. 258, 183–209.CrossRefGoogle Scholar
Renner, S. S. (1999). Circumscription and phylogeny of the Laurales, evidence from molecular and morphological data. Am. J. Bot. 86, 1301–1315.CrossRefGoogle ScholarPubMed
Richardson, F. C. (1969). Morphological studies of the Nymphaceae IV. Structure and development of the flower of Brasenia schreberi Gmel. Univ. Calif. Publ. Bot. 47, 1–101.Google Scholar
Richardson, J. E., Fay, M. F., Cronk, Q. C. B., Bowman, D. and Chase, M. W. (2000). A phylogenetic analysis of Rhamnaceae using RbcL and trnL-F plastid DNA sequences. Am. J. Bot. 87, 1309–1324.CrossRefGoogle ScholarPubMed
Robbrecht, E. (1988). Tropical woody Rubiaceae. Opera Bot. Belg. 1, 1–271.Google Scholar
Rodman, J. E., Soltis, P. S., Soltis, D. E., Sytsma, K. J. and Karol, K. G. (1998). Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am. J. Bot. 85, 997–1006.CrossRefGoogle ScholarPubMed
Roels, P., Ronse De Craene, L. P. and Smets, E. F. (1997). A floral ontogenetic investigation of the Hydrangeaceae. Nord. J. Bot. 17, 235–254.CrossRefGoogle Scholar
Roels, P. and Smets, E. F. (1994). A comparative floral ontogenetical study between Adoxa moschatellina and Sambucus ebulus. Belg. J. Bot. 127, 157–170.Google Scholar
Roels, P. and Smets, E. F. (1996). A floral ontogenetic study in the Dipsacales. Int. J. Plant Sci. 157, 203–218.CrossRefGoogle Scholar
Rohrer, J. R., Robertson, K. R. and Phipps, J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Am. J. Bot. 81, 574–581.CrossRefGoogle Scholar
Rohweder, O. (1965). Centrospermen-Studien 2. Entwicklung und morphologische Deutung des Gynöciums bei Phytolacca. Bot. Jahrb. Syst. 84, 509–526.Google Scholar
Rohweder, O. and Huber, K. (1974). Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceen. Bot. Jahrb. Syst. 94, 327–359.Google Scholar
Rohwer, J. (1993a). Lauraceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 366–391.Google Scholar
Rohwer, J. (1993b). Phytolaccaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 506–515.Google Scholar
Ronse De Craene, L. P. (1988). Two types of ringwall formation in the development of complex polyandry. Bull. Soc. Roy. Bot. Belg. 121, 122–124.Google Scholar
Ronse De Craene, L. P. (1989a). The flower of Koenigia islandica L. (Polygonaceae), an interpretation. Watsonia 17, 419–423.Google Scholar
Ronse De Craene, L. P. (1989b). The floral development of Cochlospermum tinctorium and Bixa orellana with special emphasis on the androecium. Am. J. Bot. 76, 1344–1359.Google Scholar
Ronse De Craene, L. P. (1990). Morphological studies in Tamaricales I. Floral ontogeny and anatomy of Reaumuria vermiculata L. Beitr. Biol. Pflanz. 65, 181–203.Google Scholar
Ronse De Craene, L. P. (2002). Floral development and anatomy of Pentadiplandra (Pentadiplandraceae): a key genus in the identification of floral morphological trends in the core Brassicales. Can. J. Bot. 80, 443–459.CrossRefGoogle Scholar
Ronse De Craene, L. P. (2003). The evolutionary significance of homeosis in flowers, a morphological perspective. Int. J. Plant Sci. 164 (5 Suppl.), S225–S235.CrossRefGoogle Scholar
Ronse De Craene, L. P. (2004). Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core eudicots. Ann. Bot. 94, 1–11.CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2005). Floral developmental evidence for the systematic position of Batis (Bataceae). Am. J. Bot. 92, 752–760.CrossRefGoogle Scholar
Ronse De Craene, L. P. (2007). Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann. Bot. 100, 621–630.CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2008). Homology and evolution of petals in the core eudicots. Syst. Bot. 33, 301–325.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Akeroyd, J. R. (1988). Generic limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters. Bot. J. Linn. Soc. 98, 321–371.Google Scholar
Ronse De Craene, L. P., Clinckemaillie, D. and Smets, E. F. (1993). Stamen-petal complexes in Magnoliatae. Bull. Jard. Bot. Nat. Belg. 62, 97–112.Google Scholar
Ronse De Craene, L. P., Laet, J. and Smets, E. F. (1996). Morphological studies in Zygophyllaceae II. The floral development and vascular anatomy of Peganum harmala. Am. J. Bot. 83, 201–215.Google Scholar
Ronse De Craene, L. P., Laet, J. and Smets, E. F. (1998). Floral development and anatomy of Moringa oleifera (Moringaceae): what is the evidence for a capparalean or sapindalean affinity?Ann. Bot. 82, 273–284.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Haston, E. (2006). The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot. J. Linn. Soc. 151, 453–494.CrossRefGoogle Scholar
Ronse De Craene, L. P., Hong, S.-P. and Smets, E. F. (2004). What is the taxonomic status of Polygonella? Evidence from floral morphology. Ann. Missouri Bot. Gard. 91, 320–345.Google Scholar
Ronse De Craene, L. P., Linder, H. P., Dlamini, T. and Smets, E. F. (2001). Evolution and development of floral diversity of Melianthaceae, an enigmatic Southern African family. Int. J. Plant Sci. 162: 59–82.CrossRefGoogle Scholar
Ronse De Craene, L. P., Linder, H. P. and Smets, E. F. (2000). The questionable relationship of Montinia (Montiniaceae): evidence from a floral ontogenetic and anatomical study. Am. J. Bot. 87, 1408–1424.Google Scholar
Ronse De Craene, L. P., Linder, H. P. and Smets, E. F. (2001). Floral ontogenetic evidence in support of the Willdenowia clade of South African Restionaceae. J. Plant Res. 114, 329–342.CrossRefGoogle Scholar
Ronse De Craene, L. P.Linder, H. P. and Smets, E. F. (2002). Ontogeny and evolution of the flower of South African Restionaceae with special emphasis on the gynoecium. Plant Syst. Evol. 231, 225–258.Google Scholar
Ronse De Craene, L. P. and Miller, A. G. (2004). Floral development and anatomy of Dirachma socotrana (Dirachmaceae), a controversial member of the Rosales. Plant Syst. Evol. 249, 111–127.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Smets, E. F. (1987). The distribution and the systematic relevance of the androecial characters Oligomery and Polymery in the Magnoliophytina. Nord. J. Bot. 7, 239–253.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (1990a). The floral development of Popowia whitei (Annonaceae). Nord. J. Bot. 10, 411–420. [Correction in Nord. J. Bot. 11 (1991), 420.]Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1990b). The systematic relationship between Begoniaceae and Papaveraceae, a comparative study of their floral development. Bull. Jard. Bot. Nat. Belg. 60, 229–273.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1991a). The impact of receptacular growth on polyandry in the Myrtales. Bot. J. Linn. Soc. 105, 257–269.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1991b). The floral nectaries of Polygonum s.l. and related genera (Persicarieae and Polygoneae), position, morphological nature and semophylesis. Flora 185, 165–185.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Smets, E. F. (1991c). The floral ontogeny of some members of the Phytolaccaceae (subfamily Rivinoideae) with a discussion of the evolution of the androecium in the Rivinoideae. Biol. Jahrb. Dodonaea 59, 77–99.Google Scholar
Ronse Decraene, L. P. and Smets, E. F. (1991d). Androecium and floral nectaries of Harungana madagascariensis (Clusiaceae). Plant Syst. Evol. 178, 179–194.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1991e). Morphological studies in Zygophyllaceae I. The floral development and vascular anatomy of Nitraria retusa. Am. J. Bot. 78, 1438–1448.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1992a). Complex polyandry in the Magnoliatae, definition, distribution and systematic value. Nord. J. Bot. 12, 621–649.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1992b). An updated interpretation of the androecium of the Fumariaceae. Can. J. Bot. 70, 1765–1776.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1993). The distribution and systematic relevance of the androecial character polymery. Bot. J. Linn. Soc. 113, 285–350.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1994). Merosity, definition, origin and taxonomic significance. Plant Syst. Evol. 191, 83–104.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Smets, E. F. (1995a). The androecium of monocotyledons. In Monocotyledons: Systematics and Evolution, ed. Rudall, P. J., Cribb, P., Cutler, D. F., and Hymphries, C. J.. Kew, UK: Royal Botanic Gardens, pp. 243–254.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1995b). The distribution and systematic relevance of the androecial character oligomery. Bot. J. Linn. Soc. 118, 193–247.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1995c). Evolution of the androecium in the Ranunculiflorae. Plant Syst. Evol. Suppl. 9, 63–70.Google Scholar
Ronse Decraene, L. P. and Smets, E. F. (1996a). The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert. 107, 1–17.CrossRefGoogle Scholar
Ronse Decraene, L. P. and Smets, E. F. (1996b). The floral development of Neurada procumbens L. (Neuradaceae). Acta Bot. Neerl. 45, 229–241.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Smets, E. F. (1997a). A floral ontogenetic study of some species of Capparis and Boscia, with special emphasis on the androecium. Bot. Jahrb. Syst. 119, 231–255.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1997b). Evidence for carpel multiplications in the Capparaceae. Belg. J. Bot. 130, 59–67.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1998a). Notes on the evolution of androecial organisation in the Magnoliophytina (Angiosperms). Bot. Acta 111, 77–86.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1998b). Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In Reproductive Biology in Systematics, Conservation and Economic Botany, ed. Owens, S. J. and Rudall, P. J.. Kew, UK: Royal Botanic Gardens, pp. 85–112.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1999a). The floral development and anatomy of Carica papaya (Caricaceae). Can. J. Bot. 77, 582–598.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (1999b). Similarities in floral ontogeny and anatomy between the genera Francoa (Francoaceae) and Greyia (Greyiaceae). Int. J. Plant Sci. 160, 377–393.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Smets, E. F. (2000). Floral development of Galopina tomentosa with a discussion of sympetaly and placentation in the Rubiaceae. Syst. Geogr. Plants 70, 155–170.Google Scholar
Ronse De Craene, L. P. and Smets, E. F. (2001a). Staminodes: their morphological and evolutionary significance. Bot. Rev. 67, 351–402.Google Scholar
Ronse De Craene, L. P., and Smets, E. F. (2001b). Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). Ann. Bot. 88, 879–892.CrossRefGoogle Scholar
Ronse De Craene, L. P., Smets, E. F. and Clinckemaillie, D. (1995). The floral development and floral anatomy of Coris monspeliensis. Can. J. Bot. 73, 1687–1698.Google Scholar
Ronse De Craene, L. P., Smets, E. F. and Clinckemaillie, D. (2000). Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Plant Syst. Evol. 223, 91–107.Google Scholar
Ronse De Craene, L. P., Smets, E. F. and Vanvinckenroye, P. (1998). Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J. Plant Res. 111, 25–43.CrossRefGoogle Scholar
Ronse De Craene, L. P., Soltis, P. S. and Soltis, D. E. (2003). Evolution of floral structures in basal Angiosperms. Int. J. Plant Sci. 164 (5 Suppl.), S329–S363.CrossRefGoogle Scholar
Ronse De Craene, L. P., Vanvinckenroye, P. and Smets, E. F. (1997). A study of the floral morphological diversity in Phytolacca (Phytolaccaceae) based on early floral ontogeny. Int. J. Plant Sci. 158, 56–72.Google Scholar
Ronse De Craene, L. P.Volgin, S. A. and Smets, E. F. (1999). The floral development of Pleuropetalum darwinii, an anomalous member of the Amaranthaceae. Flora 194, 189–199.CrossRefGoogle Scholar
Ronse De Craene, L. P., Yang, T. Y., Schols, P. and Smets, E. F. (2002). Floral anatomy and systematics of Bretschneidera (Bretschneideraceae). Bot. J. Linn. Soc. 139, 29–45.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Wanntorp, L. (2006). Evolution of floral characters in Gunnera (Gunneraceae). Syst. Bot. 31, 671–688.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Wanntorp, L. (2008). Morphology and anatomy of the flower of Meliosma (Sabiaceae), implications for pollination biology. Plant Syst. Evol. 271, 79–91.CrossRefGoogle Scholar
Ronse De Craene, L. P. and Wanntorp, L. (2009). Floral development and anatomy of Salvadoraceae. Ann. Bot. 104, 913–923.CrossRefGoogle ScholarPubMed
Ross, R. (1982). Initiation of stamens, carpels and receptacle in the Cactaceae. Am. J. Bot. 69, 369–379CrossRefGoogle Scholar
Rudall, P. J. (2002). Homologies of inferior ovaries and septal nectaries in monocotyledons. Int. J. Plant Sci. 163, 261–276.CrossRefGoogle Scholar
Rudall, P. J. (2003). Monocot pseudanthia revisited, floral structure of the mycoheterotrophic family Triuridaceae. Int. J. Plant Sci. 164 (5 Suppl.), S307–S320.CrossRefGoogle Scholar
Rudall, P. J. and Bateman, R. M. (2003). Evolutionary change in flowers and inflorescences, evidence from naturally occurring terata. Trends Plant Sci. 8, 76–82.CrossRefGoogle ScholarPubMed
Rudall, P. J. and Bateman, R. M. (2004). Evolution of zygomorphy in monocot flowers, iterative patterns and developmental constraints. New Phytol. 162, 25–44.CrossRefGoogle Scholar
Rudall, P. J., Bateman, R. M., Fay, M. F. and Eastman, A. (2002). Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. Am. J. Bot. 89, 1867–1883.CrossRefGoogle ScholarPubMed
Rudall, P. J., Sokoloff, D. D., Remizowa, M. V., et al. (2007). Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent Angiosperm lineage. Am. J. Bot. 94, 1073–1092.CrossRefGoogle ScholarPubMed
Rudall, P. J., Stuppy, W., Cunniff, J., Kellogg, E. A. and Briggs, B. G. (2005). Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am. J. Bot. 92, 1432–1443.CrossRefGoogle ScholarPubMed
Rutishauser, R., Ronse De Craene, L. P., Smets, E. F. and Mendoza-Heuer, I. (1998). Theligonum cynocrambe, developmental morphology of a peculiar rubiaceous herb. Plant Syst. Evol. 210, 1–24.CrossRefGoogle Scholar
Sajo, M. G., Longhi-Wagner, H. and Rudall, P. J. (2007). Floral development and embryology in the early-divergent grass Pharus. Int. J. Plant Sci. 168, 181–191.CrossRefGoogle Scholar
Sajo, M. G., Longhi-Wagner, H. M. and Rudall, P. J. (2008). Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst. Evol. 275, 245–255.CrossRefGoogle Scholar
Sampson, F. B. (1969). Studies on the Monimiaceae II. Floral morphology of Laurelia novae-zelandiae A.Cunn. (Subfamily Atherospermoideae). New Zeal. J. Bot. 7, 214–240.CrossRefGoogle Scholar
Sanchez, A. and Kron, K. A. (2008). Phylogenetics of Polygonaceae with an emphasis on the evolution of Eriogonoideae. Syst. Bot. 33, 87–96.CrossRefGoogle Scholar
Sattler, R. (1962). Zur frühen Infloreszenz und Blütenentwicklung der Primulales sensu lato mit besonderer Berücksichtigung der Stamen-Petalum-Entwicklung. Bot. Jahrb. Syst. 81, 385–396Google Scholar
Sattler, R. (1973). Organogenesis of Flowers: A Photographic Text-Atlas. Toronto and Buffalo: University of Toronto Press.Google Scholar
Sattler, R. (1977). Kronröhrenentstehung bei Solanum dulcamara L. und ‘kongenitale Verwachsung’. Ber. Dtsch. Bot. Ges. 90, 29–38.Google Scholar
Sattler, R. (1978). ‘Fusion’ and ‘Continuity’ in floral morphology. Notes Roy. Bot. Gard. Edinburgh 36, 397–405.Google Scholar
Sattler, R. and Perlin, L. (1982). Floral development of Bougainvillea spectabilis Willd., Boerhaavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). Bot. J. Linn. Soc. 84, 161–182.CrossRefGoogle Scholar
Sattler, R. and Singh, V. (1973). Floral development of Hydrocleis nymphoides. Can. J. Bot. 51, 2455–2458.CrossRefGoogle Scholar
Sattler, R. and Singh, V. (1977). Floral organogenesis of Limnocharis flava. Can. J. Bot. 55, 1076–1086.CrossRefGoogle Scholar
Sattler, R. and Singh, V. (1978). Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot. J. Linn. Soc. 77, 141–156.CrossRefGoogle Scholar
Saunders, E. R. (1937, 1939). Floral Morphology. A New Outlook with Special Reference to the Interpretation of the Gynoecium, Vols I and II. Cambridge, UK: W. Heffer and Sons.Google Scholar
Sauquet, H. (2003). Androecium diversity and evolution in Myristicaceae (Magnoliales), with a description of a new Malagasy genus, Doyleanthus gen. nov. Am. J. Bot. 90, 1293–1305.CrossRefGoogle Scholar
Schaeppi, H. (1976). Über die männlichen Blüten einiger Menispermaceen. Beitr. Biol. Pflanz. 52, 207–215.Google Scholar
Schindler, A. K. (1905). Halorrhagaceae. In Das Pflanzenreich IV, 225, ed. Engler, A.. Leipzig: W. Engelmann, pp. 1–133.Google Scholar
Schmid, R. (1980). Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29, 559–595.CrossRefGoogle Scholar
Schmidt, E. (1928). Untersuchungen über Berberidaceen. Beih. Bot. Centralbl. 45, 329–396.Google Scholar
Schneider, E. L. (1976). The floral anatomy of Victoria Schomb. (Nymphaeaceae). Bot. J. Linn. Soc. 72, 115–148.CrossRefGoogle Scholar
Schneider, E. L., Tucker, S. C. and Williamson, P. S. (2003). Floral development in the Nymphaeales. Int. J. Plant Sci. 164 (5 Suppl.), S279–S292.CrossRefGoogle Scholar
Schöffel, K. (1932). Untersuchungen über den Blütenbau der Ranunculaceen. Planta 17, 315–371.CrossRefGoogle Scholar
Schönenberger, J., Anderberg, A. A. and Sytsma, K. J. (2005). Molecular phylogenetics and patterns of floral evolution in the Ericales. Int. J. Plant Sci. 166, 265–288.CrossRefGoogle Scholar
Schönenberger, J. and Conti, E. (2003). Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhychocalycaceae, and Alzateaceae (Myrtales). Am. J. Bot. 90, 293–309CrossRefGoogle Scholar
Schönenberger, J. and Endress, P. K. (1998). Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications. Int. J. Plant Sci. 159, 446–465.CrossRefGoogle Scholar
Schönenberger, J. and Friis, E. M. (2001). Fossil flowers of ericalean s.l. affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480.CrossRefGoogle ScholarPubMed
Schönenberger, J., Friis, E. M., Matthews, M. L. and Endress, P. K. (2001). Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. Ann. Bot. 88, 423–437.CrossRefGoogle Scholar
Schönenberger, J. and Grenhagen, A. (2005). Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Syst. Evol. 254, 233–249.CrossRefGoogle Scholar
Schönenberger, J. and Balthazar, M. (2006). Reproductive structures and phylogenetic framework of the rosids: progress and prospects. Plant Syst. Evol. 260, 87–106.Google Scholar
Scotland, R. W., Endress, P. K. and Lawrence, T. J. (1994). Corolla ontogeny and aestivation in the Acanthaceae. Bot. J. Linn. Soc. 114, 49–65.CrossRefGoogle Scholar
Scribailo, R. W. and Posluszny, U. (1985). Floral development of Hydrocharis morsus-ranae L. (Hydrocharitaceae). Am. J. Bot. 72, 1578–1589.CrossRefGoogle Scholar
Sérsic, A. N. and Cocucci, A. A. (1999). An unusual kind of nectary in the oil flowers of Monttea, its structure and function. Flora 194, 393–404.CrossRefGoogle Scholar
Simmons, M. P. (2004). Celastraceae. In The Families and Genera of Vascular Plants, Vol. VI, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 29–64.Google Scholar
Simpson, M. G. (1990). Phylogeny and classification of Haemodoraceae. Ann. Missouri Bot. Gard. 77, 722–784.CrossRefGoogle Scholar
Simpson, M. G. (1998a). Reversal in ovary position from inferior to superior in the Haemodoraceae: evidence from floral ontogeny. Int. J. Plant. Sci. 159, 466–479.CrossRefGoogle Scholar
Simpson, M. G. (1998b). Haemodoraceae. In The Families and Genera of Vascular Plants, Vol. IV, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 212–222.Google Scholar
Simpson, M. G. (2006). Plant Systematics. Amsterdam: Elsevier.Google Scholar
Singh, V. and Sattler, R. (1973). Nonspiral androecium and gynoecium of Sagittaria latifolia. Can. J. Bot. 51, 1093–1095.CrossRefGoogle Scholar
Singh, V. and Sattler, R. (1977a). Development of the inflorescence of Sagittaria cuneata. Can. J. Bot. 55, 1087–1105.CrossRefGoogle Scholar
Singh, V. and Sattler, R. (1977b). Floral development of Aponogeton natans and A. undulatus. Can. J. Bot. 55, 1106–1120.CrossRefGoogle Scholar
Sleumer, H. (1935). Olacaceae. In Die Natürlichen Pflanzenfamilien 16b, ed. Engler, A. and Prantl, K.. Leipzig: W. Engelmann, pp. 5–32.Google Scholar
Smets, E. (1986). Localization and systematic importance of the floral nectaries in the Magnoliatae (Dicotyledons). Bull. Jard. Bot. Nat. Belg. 56, 51–76.CrossRefGoogle Scholar
Smets, E. (1988). La présence des ‘nectaria persistentia’ chez les Magnoliophytina (Angiospermes). Candollea 43, 709–716.Google Scholar
Smets, E. F., Ronse De Craene, L. P., Caris, P. and Rudall, P. J. (2000). Floral nectaries in monocotyledons, distribution and evolution. In Monocots: Systematics and Evolution, ed. Wilson, K. L. and Morrison, D. A.. Melbourne: CSIRO, pp. 230–240.Google Scholar
Sokoloff, D., Oskolski, A. A., Remizowa, M. V. and Nuraliev, M. S. (2007). Flower structure and development in Tupidanthus calyptratus (Araliaceae), an extreme case of polymery among asterids. Plant Syst. Evol. 268, 209–234.CrossRefGoogle Scholar
Sokoloff, D., Rudall, P. J. and Remizowa, M. (2006). Flower-like terminal structures in racemose inflorescences, a tool in morphogenetic and evolutionary research. J. Exper. Bot. 57, 3517–3530.CrossRefGoogle ScholarPubMed
Soltis, D. E., Senters, A. E., Zanis, M. J., et al. (2003). Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. Am. J. Bot. 90, 461–470.CrossRefGoogle ScholarPubMed
Soltis, P. S. and Soltis, D. E. (2004). The origin and diversification of Angiosperms. Am. J. Bot. 91, 1614–1626.CrossRefGoogle Scholar
Soltis, D. E., Soltis, P. S., Endress, P. K. and Chase, M. W. (2005). Phylogeny and Evolution of Angiosperms. Sunderland, MA: Sinauer.Google Scholar
Spichiger, R.-E., Savolainen, V. V., Figeat, M. and Jeanmonod, D. (2002). Botanique Systématique des Plantes à Fleurs, 2nd edn. Lausanne: Presses polytechniques et universitaires Romandes.Google Scholar
Stace, C. A. (2007). Combretaceae. In The Families and Genera of Vascular Plants, Vol. IX, ed. Kubitzki, K.. Berlin: Springer Verlag, pp. 67–82.Google Scholar
Staedler, Y. M. and Endress, P. K. (2009). Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). Int. J. Plant Sci. 170, 522–550.CrossRefGoogle Scholar
Staedler, Y. M., Weston, P. H. and Endress, P. K. (2007). Floral phyllotaxis and floral architecture in Calycanthaceae (Laurales). Int. J. Plant Sci. 168, 285–306.CrossRefGoogle Scholar
Stauffer, F. W. and Endress, P. K. (2003). Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). Plant Syst. Evol. 242, 171–203.CrossRefGoogle Scholar
Stauffer, F. W., Rutishauser, R. and Endress, P. K. (2002). Morphology and development of the female flowers in Geonoma interrupta (Arecaceae). Am. J. Bot. 89, 220–229.CrossRefGoogle Scholar
Steeves, T. A., Steeves, M. W. and Randall Olson, A. (1991). Flower development in Amelanchier alnifolia (Maloideae). Can. J. Bot. 69, 844–857.CrossRefGoogle Scholar
Steinecke, H. (1993). Embryologische, morphologische und systematische Untersuchungen ausgewählter Annonaceae. Diss. Bot. 205, 1–237.Google Scholar
Stern, K. (1917). Beiträge zur Kenntnis der Nepenthaceae. Flora 109, 213–282.Google Scholar
Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. www.mobot.org/MOBOT/research/APweb/.
Strange, A., Rudall, P. J. and Prychid, C. J. (2004). Comparative floral anatomy of Pontederiaceae. Bot. J. Linn. Soc. 144, 395–408.CrossRefGoogle Scholar
Struwe, L., Kadereit, J. W., Klackenberg, J., et al. (2002). Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In Gentianaceae: Systematics and Natural History, ed. Struwe, L. and Albert, V. A.. Cambridge, UK: Cambridge University Press, pp. 21–309.Google Scholar
Stützel, T. (2006). Botanische Bestimmungsübungen, 2nd edn. Stuttgart: Ulmer.Google Scholar
Suessenguth, K. (1938). Neue Ziele der Botanik: Über das Vorkommen getrennter Kronblätter bei den Sympetalen. München-Berlin, pp. 32–36.Google Scholar
Sugiyama, M. (1991). Scanning electron microscopy observation on early ontogeny of the flower of Camellia japonica L. J. Jap. Bot. 66, 295–299.Google Scholar
Sutter, D. and Endress, P. K. (1995). Aspects of gynoecium structure and macrosystematics in Euphorbiaceae. Bot. Jahrb. Syst. 116, 517–536.Google Scholar
Svoma, E. (1991). The development of the bicarpellate gynoecium of Paederia L. species (Rubiaceae–Paederieae). Opera Bot. Belg. 3, 77–86.Google Scholar
Sweeney, P. W. (2008). Phylogeny and floral diversity in the genus Garcinia (Clusiaceae) and relatives. Int. J. Plant Sci. 169, 1288–1303.CrossRefGoogle Scholar
Takahashi, H. (1994). A comparative study of floral development in Trillium apetalon and T. camtschaticum (Liliaceae). J. Plant Res. 107, 237–245.CrossRefGoogle Scholar
Takhtajan, A. (1997). Diversity and Classification of Flowering Plants. New York: Columbia University Press.Google Scholar
Terabayashi, S. (1983). Studies in the morphology and systematics of Berberidaceae VI. Floral anatomy of Diphylleia Michx., Podophyllum L. and Dyosma Woodson. Acta Phytotax. Geobot. 34, 27–47.Google Scholar
Theissen, G., Becker, A., Winter, K.-U., Münster, T., Kirchner, C. and Saedler, H. (2002). How the land plants learned their floral ABCs, the role of MADS box genes in the evolutionary origin of flowers. In Developmental Genetics and Plant Evolution, ed. Cronk, A. C. B., Bateman, R. M. and Hawkins, J. A.. London: Taylor and Francis, pp. 173–205.Google Scholar
Thorne, R. F. (1992). An updated phylogenetic classification of the flowering plants. Aliso 13, 365–389.CrossRefGoogle Scholar
Tiagi, Y. D. (1969). Vascular anatomy of the flower of certain species of the Combretaceae. Bot. Gaz. 130, 150–157.CrossRefGoogle Scholar
Tillson, A. H. (1940). The floral anatomy of the Kalanchoideae. Am. J. Bot. 27, 595–600.CrossRefGoogle Scholar
Tobe, H., Graham, S. A. and Raven, P. H. (1998). Floral morphology and evolution in Lythraceae sensu lato. In Reproductive Biology in Systematics, Conservation and Economic Botany, ed. Owens, S. J. and Rudall, P. J.. Kew, UK: Royal Botanic Gardens, pp. 329–344.Google Scholar
Todzia, C. A. (1993). Ulmaceae. In The Families and Genera of Vascular Plants, Vol. II, ed. Kubitzki, K., Rohwer, J. G. and Bittrich, V.. Berlin: Springer Verlag, pp. 603–611.Google Scholar
Tokuoka, T. (2008). Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J. Plant Res. 121, 253–260.CrossRefGoogle ScholarPubMed
Tokuoka, T. and Tobe, H. (2006). Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sensu stricto. J. Plant Res. 119, 599–616.CrossRefGoogle Scholar
Trimbacher, C. (1989). Der Aussenkelch der Rosaceen. In Symposium Morphologie, Anatomie und Systematik, Zusammenfassungen der Vorträge, Vol. 9, ed. Weber, A., Vitek, E. and Kiehn, M.. Vienna: Institute of Botany, University of Vienna, p. 66.Google Scholar
Troll, W. (1956). Die Urbildlichkeit der organischen Gestaltung und Goethes prinzip der ‘Variablen Proportionen’Neu Hefte zur Morphologie 2, 64–76.Google Scholar
Tsou, C.-H. (1998). Early floral development of Camellioideae (Theaceae). Am. J. Bot. 85, 1531–1547.CrossRefGoogle Scholar
Tsou, C.-H. and Mori, S. A. (2007). Floral organogenesis and floral evolution of the Lecythidoideae. Am. J. Bot. 94, 716–736.CrossRefGoogle ScholarPubMed
Tucker, S. C. (1984). Unidirectional organ initiation in leguminous flowers. Am. J. Bot. 71, 1139–1148CrossRefGoogle Scholar
Tucker, S. C. (1985). Initiation and development of inflorescence and flower in Anemopsis californica (Saururaceae). Am. J. Bot. 72, 20–31.CrossRefGoogle Scholar
Tucker, S. C. (1988a). Dioecy in Bauhinia resulting from organ suppression. Am. J. Bot. 75, 1584–1597.CrossRefGoogle Scholar
Tucker, S. C. (1988b). Loss versus suppression of floral organs. In Aspects of Floral Development, ed. Leins, P., Tucker, S. C., and Endress, P. K.. Berlin: J. Cramer, pp. 69–82.Google Scholar
Tucker, S. C. (1992). The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae, Caesalpinioideae, Cassieae). Am. J. Bot. 79, 318–327.CrossRefGoogle Scholar
Tucker, S. C. (1996). Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna, and Chamaecrista (Leguminosae, Caesalpinioideae, Cassieae, Cassiinae): a study in convergence. Am. J. Bot. 83, 687–711CrossRefGoogle Scholar
Tucker, S. C. (1997). Floral evolution, development, and convergence, the hierarchical-significance hypothesis. Int. J. Plant Sci. 158 (6 Suppl.), S143–S161.CrossRefGoogle Scholar
Tucker, S. C. (1998). Floral ontogeny in Legume genera Petalostylis, Labichea, and Dialium (Caesalpinioideae, Cassieae), a series in floral reduction. Am. J. Bot. 85, 184–208.CrossRefGoogle Scholar
Tucker, S. C. (1999a). The inflorescence: introduction. Bot. Rev. 65, 303–316.CrossRefGoogle Scholar
Tucker, S. C. (1999b). Evolutionary lability of symmetry in early floral development. Int. J. Plant Sci. 160 (6 Suppl.), S25–S39.CrossRefGoogle ScholarPubMed
Tucker, S. C. (2000a). Evolutionary loss of sepals and/or petals in Detarioid legume taxa (Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae, Caesalpinioideae). Am. J. Bot. 87, 608–624.CrossRefGoogle Scholar
Tucker, S. C. (2000b). Floral development in tribe Detarieae (Leguminosae, Caesalpinioideae), Amherstia, Brownea, and Tamarindus. Am. J. Bot. 87, 1385–1407.CrossRefGoogle Scholar
Tucker, S. C. (2000c). Floral development and homeosis in Saraca (Leguminosae, Caesalpinioideae, Detarieae). Int. J. Plant Sci. 161, 537–549.CrossRefGoogle Scholar
Tucker, S. C. (2001a). The ontogenetic basis for missing petals in Crudia (Leguminosae, Caesalpinioideae, Detarieae). Int. J. Plant Sci. 162, 83–89.CrossRefGoogle Scholar
Tucker, S. C. (2001b). Floral development in Schotia and Cynometra (Leguminosae, Caesalpinioideae, Detarieae). Am. J. Bot. 88, 1164–1180.CrossRefGoogle Scholar
Tucker, S. C. (2002a). Floral ontogeny in Sophoreae (Leguminosae, Papilionoideae) III. Radial symmetry and random petal aestivation in Cadia purpurea. Am. J. Bot. 89, 748–757.CrossRefGoogle ScholarPubMed
Tucker, S. C. (2002b). Comparative floral ontogeny in Detarieae (Leguminosae, Caesalpinioideae) II. zygomorphic taxa with petal and stamen suppression. Am. J. Bot. 89, 888–907.CrossRefGoogle Scholar
Tucker, S. C. (2003a). Floral development in Legumes. Plant Physiology 131: 911–926CrossRefGoogle ScholarPubMed
Tucker, S. C. (2003b). Floral ontogeny in Swartzia (Leguminosae, Papilionoideae, Swartzieae): distribution and role of the ring meristem. Am. J. Bot. 90, 1274–1292.CrossRefGoogle ScholarPubMed
Tucker, S. C. and Bernhardt, P. (2000). Floral ontogeny, pattern formation, and evolution in Hibbertia and Adrastea (Dilleniaceae). Am. J. Bot. 87, 1915–1936.CrossRefGoogle Scholar
Tucker, S. C. and Douglas, A. W. (1996). Floral structure, development, and relationships of paleoherbs, Saruma, Cabomba, Lactoris and selected Piperales. In Flowering Plant Origin, Evolution and Phylogeny, ed. Taylor, D. W. and Hickey, L. J.. New York: Chapman and Hall, pp. 141–175.CrossRefGoogle Scholar
Tucker, S. C., Douglas, A. W. and Liang, H.-X. (1993). Utility of ontogenetic and conventional characters in determining phylogenetic relationships of Saururaceae and Piperaceae (Piperales). Syst. Bot. 18, 614–641.CrossRefGoogle Scholar
Uhl, N. W. (1976a). Developmental studies in Ptychosperma (Palmae) I. The inflorescence and flower cluster. Am. J. Bot. 63, 82–96.CrossRefGoogle Scholar
Uhl, N. W. (1976b). Developmental studies in Ptychosperma (Palmae) II. The staminate and pistillate flowers. Am. J. Bot. 63, 97–109.CrossRefGoogle Scholar
Uhl, N. W. and Moore, H. E. (1980). Androecial development in six polyandrous genera representing five major groups of palms. Ann. Bot. 45, 57–75.CrossRefGoogle Scholar
Urban, I. (1892). Blüthen- und Fruchtbau der Loasaceen. Ber. Dtsch. Bot. Ges. 10, 259–265.Google Scholar
Vaes, E., Vrijdaghs, A., Smets, E. F. V. and Dessein, S. (2006). Elaborate petals in Australian Spermacoce (Rubiaceae) species, morphology, ontogeny and function. Ann. Bot. 98, 1167–1178.CrossRefGoogle ScholarPubMed
Heel, W. A. (1966). Morphology of the androecium in Malvales. Blumea 13, 177–394.Google Scholar
Heel, W. A. (1978). Morphology of the pistil in Malvaceae – Ureneae. Blumea 24, 123–137.Google Scholar
Heel, W. A. (1987). Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). Bot. Jahrb. Syst. 109, 17–23Google Scholar
Heel, W. A. (1993). Floral ontogeny of Archidendron luceyi (Mimosaceae), with remarks on Amherstia nobilis (Caesalpiniaceae). Bot. Jahrb. Syst. 114, 551–560.Google Scholar
Heel, W. A. (1995). Morphology of the gynoecium of Kitaibelia vitifolia Willd. and Malope trifida L. (Malvaceae-Malopeae). Bot. Jahrb. Syst. 117, 485–493.Google Scholar
Vanvinckenroye, P., Cresens, E., Ronse De Craene, L. P. and Smets, E. F. (1993). A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. Bull. Jard. Bot. Nat. Belg. 62, 69–96.CrossRefGoogle Scholar
Vanvinckenroye, P., Ronse De Craene, L. P. and Smets, E. F. (1997). The floral development of Monococcus echinophorus (Phytolaccaceae). Can. J. Bot. 75, 1941–1950.CrossRefGoogle Scholar
Vanvinckenroye, P. and Smets, E. F. (1996). Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J. Plant Res. 109, 387–402.CrossRefGoogle Scholar
Vanvinckenroye, P. and Smets, E. F. (1999). floral ontogeny of Anacampseros subg. Anacampseros sect. Anacampseros (Portulacaceae). Syst. Geogr. Pl. 68, 173–194.CrossRefGoogle Scholar
Venkata Rao, C. (1952). Floral anatomy of some Malvales and its bearing on the affinities of families included in the order. J. Indian Bot. Soc. 31, 171–203.Google Scholar
Venkata Rao, C. (1963). On the morphology of the calyculus. J. Indian Bot. Soc. 42, 618–628.Google Scholar
Vergara-Silva, F.Espinosa-Matías, S., Ambrose, B. A., et al. (2003). Inside-out flowers characteristic of Lacandonia schismatica evolved at least before its divergence from a closely related taxon, Triuris brevistylis. Int. J. Plant Sci. 164, 345–357.CrossRefGoogle Scholar
Vink, W. (1995). Revision of Magodendron (Sapotaceae) with observations on floral development and morphology. Blumea 40, 91–107.Google Scholar
Vogel, S. (1977). Nektarien und ihre ökologische Bedeutung. Apidology 8, 321–335.CrossRefGoogle Scholar
Vogel, S. (1997). Remarkable nectaries, structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora 192, 305–333.CrossRefGoogle Scholar
Vogel, S. (1998a). Remarkable nectaries, structure, ecology, organophyletic perspectives II. Nectarioles. Flora 193, 1–29.CrossRefGoogle Scholar
Vogel, S. (1998b). Remarkable nectaries, structure, ecology, organophyletic perspectives III. Nectar ducts. Flora 193, 113–131.CrossRefGoogle Scholar
Vogel, S. (1998c). Remarkable nectaries, structure, ecology, organophyletic perspectives IV. Miscellaneous cases. Flora 193, 225–248.CrossRefGoogle Scholar
Vogel, S. (2000). The floral nectaries of Malvaceae sensu lato: a conspectus. Kurtziana 28, 155–171.Google Scholar
Balthazar, M., Alverson, W. S., Schönenberger, J. and Baum, D. A. (2004). Comparative floral development and androecium structure in Malvoideae (Malvaceae s.l.). Int. J. Plant Sci. 165, 445–473.CrossRefGoogle Scholar
Balthazar, M. and Endress, P. K. (2002a). Reproductive structures and systematics of Buxaceae. Bot. J. Linn. Soc. 140, 193–228.CrossRefGoogle Scholar
Balthazar, M. and Endress, P. K. (2002b). Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. Int. J. Plant Sci. 163, 847–876.CrossRefGoogle Scholar
Balthazar, M. and Schönenberger, J. (2009). Floral structure and organization in Platanaceae. Int. J. Plant Sci. 170, 210–225.CrossRefGoogle Scholar
Balthazar, M., Schönenberger, J., Alverson, W. S., Janka, H., Bayer, C. and Baum, D. A. (2006). Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst. Evol. 260, 171–197.Google Scholar
Wagenitz, G. and Laing, B. (1984). The nectaries of the Dipsacales and their systematic significance. Bot. Jahrb. Syst. 104, 483–507.Google Scholar
Walker-Larsen, J. and Harder, L. D. (2000). The evolution of staminodes in Angiosperms: patterns of stamen reduction, loss, and functional re-invention. Am. J. Bot. 87, 1367–1384.CrossRefGoogle ScholarPubMed
Wallnöfer, B. (2004). Ebenaceae. In The Families and Genera of Vascular Plants, Vol. VI, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer Verlag, pp. 125–130.Google Scholar
Walter, H. (1906). Die Diagramme der Phytolaccaceen. Bot. Jahrb. Syst. 37, Beibl. 85, 1–57.Google Scholar
Wang, H., Meng, A., Li, J., Feng, M., Chen, Z. and Wang, W. (2006). Floral organogenesis of Cocculus orbiculatus and Stephania dielsiana (Menispermaceae). Int. J. Plant Sci. 167, 951–960.CrossRefGoogle Scholar
Wang, H., Moore, M. J., Soltis, P. S., et al. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl Acad. Sci. 106, 3853–3858.CrossRefGoogle ScholarPubMed
Wannan, B. C. and Quinn, C. J. (1991). Floral structure and evolution in the Anacardiaceae. Bot. J. Linn. Soc. 107, 349–385.CrossRefGoogle Scholar
Wanntorp, L. and Ronse De Craene, L. P. (2005). The Gunnera flower: key to eudicot diversification or response to pollination mode?Int. J. Plant Sci. 166, 945–953.CrossRefGoogle Scholar
Wanntorp, L. and Ronse De Craene, L. P. (2007). Floral development of Meliosma (Sabiaceae): evidence for multiple origins of pentamery in the eudicots. Am. J. Bot. 94, 1828–1836.CrossRefGoogle Scholar
Wanntorp, L. and Ronse De Craene, L. P. (2009). Perianth evolution in the Sandalwood order Santalales. Am. J. Bot. 96, 1361–1371.CrossRefGoogle ScholarPubMed
Weberling, F. (1989). Morphology of Flowers and Inflorescences. Cambridge, UK: Cambridge University Press.Google Scholar
Weigend, M. (2007). Grossulariaceae. In The Families and Genera of Vascular Plants, Vol. IX, ed. Kubitzki, K. and Bayer, C.. Berlin: Springer Verlag, pp. 168–176.Google Scholar
Williams, S. E., Albert, V. A. and Chase, M. W. (1994). Relationships of Droseraceae: a cladistic analysis of rbcL sequence and morphological data. Am. J. Bot. 81, 1027–1037.CrossRefGoogle Scholar
Williamson, P. S. and Moseley, M. F. (1989). Morphological studies of the Nymphaeaceae sensu lato XVII. Floral anatomy of Ondinea purpurea ssp. purpurea (Nymphaeaceae). Am. J. Bot. 76, 1779–1794.CrossRefGoogle Scholar
Worberg, A., Alford, M. H., Quandt, D. and Borsch, T. (2008). The Huertales clade identified to contain Dipentodon, Perrottetia, Huertea, Tapiscia and Gerrardina, and to be sister to Brassicales plus Malvales. In Systematics 2008: Programme and Abstracts, Göttingen 7–11 April 2008, ed. Gradstein, S. R.et al. Göttingen: Universitätsverlag, p. 350.Google Scholar
Worberg, A., Quandt, D., Barniske, A.-M., Löhne, C., Hilu, K. W. and Borsch, T. (2007). Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Org. Div. Evol. 7, 55–77.CrossRefGoogle Scholar
Wu, H.-C., Su, H.-J. and Hu, J.-M. (2007). The identification of A-, B-, C-, and E-class Mads-Box genes and implications for perianth evolution in the basal eudicot Trochodendron aralioides (Trochodendraceae). Int. J. Plant Sci. 168, 775–799.CrossRefGoogle Scholar
Xu, F.-X. (2006). Floral ontogeny of two species of Magnolia L. J. Integr. Plant Biol. 48, 1197–1203.CrossRefGoogle Scholar
Xu, F.-X. and Rudall, P. J. (2006). Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Syst. Evol. 258, 1–15.CrossRefGoogle Scholar
Zandonella, P. (1977). Apports de l'étude comparée des nectaires floraux à la conception phylogénétique de l'ordre des Centrospermes. Ber. Dtsch. Bot. Ges. 90, 105–125.Google Scholar
Zanis, M. J., Soltis, P. S., Qiu, Y. L., Zimmer, E. and Soltis, D. E. (2003). Phylogenetic analyses and perianth evolution in basal Angiosperms. Ann. Missouri Bot. Gard. 90, 129–150.CrossRefGoogle Scholar
Zhang, X.-H. and Ren, Y. (2008). Floral morphology and development in Sargentodoxa (Lardizabalaceae). Int. J. Plant Sci. 169, 1148–1158.CrossRefGoogle Scholar
Zhou, Q., Wang, Y. and Xiaobai, J. (2002). Ontogeny of floral organs and morphology of floral apex in Phellodendron amurense (Rutaceae). Aust. J. Bot. 50, 633–644.CrossRefGoogle Scholar
Zohary, M. and Baum, B. (1965). On the androecium of Tamarix flower and its evolutionary trends. Israel J. Bot. 14, 101–111.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 24 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806711.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 24 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806711.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Louis P. Ronse De Craene, Royal Botanic Garden Edinburgh
  • Book: Floral Diagrams
  • Online publication: 24 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806711.017
Available formats
×