Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T11:22:28.990Z Has data issue: false hasContentIssue false

Chapter 4 - The Ocean's Role in the Hydrological Cycle

from Assessment of Major Ecosystem Services from the Marine Environment (Other than Provisioning Services)

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access

Summary

The interactions between the seawater and freshwater segments of the hydrological cycle

The global ocean covers 71 per cent of the Earth's surface, and contains 97 per cent of all the surface water on Earth (Costello et al., 2010). Freshwater fluxes into the ocean include: direct runoff from continental rivers and lakes; seepage from groundwater; runoff, submarine melting and iceberg calving from the polar ice sheets; melting of sea ice; and direct precipitation that is mostly rainfall but also includes snowfall. Evaporation removes freshwater from the ocean. Of these processes, evaporation, precipitation and runoff are the most significant at the present time.

Using current best estimates, 85 per cent of surface evaporation and 77 per cent of surface rainfall occur over the oceans (Trenberth et al., 2007; Schanze et al., 2010). Consequently, the ocean dominates the global hydrological cycle. Water leaving the ocean by evaporation condenses in the atmosphere and falls as precipitation, completing the cycle. Hydrological processes can also vary in time, and these temporal variations can manifest themselves as changes in global sea level if the net freshwater content of the ocean is altered.

Precipitation results from the condensation of atmospheric water vapour, and is the single largest source of freshwater entering the ocean (∼530,000 km3/yr). The source of water vapour is surface evaporation, which has a maximum over the subtropical oceans in the trade wind regions (Yu, 2007). The equatorward trade winds carry the water vapour evaporated in the subtropics to the Intertropical Convergence Zone (ITCZ) near the equator, where the intense surface heating by the sun causes the warm moist air to rise, producing frequent convective thunderstorms and copious rain (Xie and Arkin, 1997). The high rainfall and the high temperature support and affect life in the tropical rainforest (Malhi and Wright, 2011).

Evaporation is enhanced as global mean temperature rises (Yu, 2007). The water-holding capacity of the atmosphere increases by 7 per cent for every degree Celsius of warming, as per the Clausius-Clapeyron relationship. The increased atmospheric moisture content causes precipitation events to change in intensity, frequency, and duration (Trenberth, 1999) and causes the global precipitation to increase by 2-3 per cent for every degree Celsius of warming (Held and Soden, 2006).

Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 91 - 104
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N., Gorddard, R., Harman, B., Leitch, A., Langridge, J., Ryan, A. and Heyenga, S. (2011). Sea level rise, coastal development and planned retreat: analytical framework, governance principles and an Australian case study, Environmental Science–Policy, 14:279-288.Google Scholar
Aoyama, M., et al. (2008). Marine biogeochemical response to a rapid warming in the main stream of the Kuroshio in the western North Pacific, Fisheries Oceanography, 17, 206–218, doi:10.1111/j.1365-2419.2008.00473.x.Google Scholar
Arrigo, K. (2005). Marine microorganisms and global nutrient cycles. Nature, 437, 15 doi:10.1038/nature04158.Google Scholar
Barnett, J., and Adger, W.N. (2003). Climate Dangers and Atoll Countries. Climatic Change, 61(3), 321–337. doi:10.1023/B:CLIM.0000004559.08755.88.Google Scholar
Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E., Yoccoz, N.G., and Thuiller, W. (2011). Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2306–11. doi:10.1073/pnas. 1007217 108.Google Scholar
Betts, R.A., Collins, M., Hemming, D.L., Jones, C.D., Lowe, J.A. and Sanderson, M.G. (2011). When could global warming reach 4°C? Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 369(1934), 67–84.Google Scholar
Bigg, G.R., Wadley, M.R., Stevens, D.P. and Johnson, J.A. (1997). Modelling the dynamics and thermodynamics of icebergs. Cold Regions Science and Technology, 26, 113–135.Google Scholar
Boening, C., Willis, J.K., Landerer, J.K., Nerem, R.S. and Fasullo, J. (2012). The 2011 La Nina: So strong, the oceans fell. Geophysical Research Letters, 39, L18607, doi:10.1029/2012GL052885.Google Scholar
Borges, A.V., and Gypens, N., (2010). Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography, 55, 346–353.Google Scholar
Bouwman, A.F., Van Drecht, G. and Van der Hoek, K.V. (2005). Global and regional surface balances in intensive agricultural production systems for the period 1970 - 2030. Pedosphere, 15, 2, 137-155.Google Scholar
Box, J.E. and Colgan, W. (2013). Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010). Journal of Climate, 26, 6990–7002. doi: http://dx.doi.org/10.1175/JCLI-D-12-00546.1 Boyer, T.P., Levitus, S., Antonov, J.I., Locarnini, R.A., and Garcia, H.E. (2005) Linear trends in salinity for the World Ocean, 1955-1998. Geophysical Research Letters, 32, L01604. doi: 10.1029/2004GL021791.Google Scholar
Brecht, H., Dasgupta, S., Laplante, B., Murray, S., and Wheeler, D. (2012). Sea- Level Rise and Storm Surges: High Stakes for a Small Number of Developing Countries. The Journal of Environment–Development, 21(1), 120–138. doi:10.1177/1070496511433601.Google Scholar
Brzezinski, M.A., Baines, S.B., Balch, W.M., Beucher, C.P., Chai, F., Dugdale, R.C., Krause, J.W., Landry, M.R., Marchi, A., Measures, C.I., Nelson, D.M., Parker, A.E., Poulton, A.J., Selph, K.E., Strutton, P.G., Taylor, A.G. and Twining, B.S. (2011). Colimitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep-Sea Research II, 58, 493-511. 10.1016/j.dsr2.2010.08.005.Google Scholar
Bumb, B. and Baanante, C. A., (1996). World trends in fertilizer use and projections to 2020. 2020 Brief 38 (International Food Policy Research Institute, Washington, DC, USA).
Chambers, D., (2006). Observing seasonal steric sea level variations with GRACE and satellite altimetry. Journal of Geophysical Research, 111(3):C03010, doi:10.1029/2005JC002914.Google Scholar
Chambers, D.P., Wahr, J. and Nerem, R.S. (2004) Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31, L13310, doi:10.1029/2004GL020461.Google Scholar
Chou, C. and Neelin, J.D. (2004). Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. Journal of Climate, 17 (13), pp 2688-2701. doi:10.1175/1520-0442(2004)0172688:MOGWIO2.0.CO;2Google Scholar
Church, J. A., et al., (2011). Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 38, L18601, doi:10.1029/2011GL048794.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J. and Wehner, M. (2013). Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Costello, M.J., Cheung, A., De Hauwere, N. (2010). Topography statistics for the surface and seabed area, volume, depth and slope, of the world's seas, oceans and countries. Environmental Science and Technology 44(23), 8821-8828. doi:10.1021/ es1012752.Google Scholar
Dasgupta, S., Laplante, B., Murry, S., and Wheeler, D. (2009). Sea-Level Rise and Storm Surges: A Comparative Analysis of Impacts in Developing Countries. World Bank Policy Research Working Paper 4901. Washington, DC: World Bank.
Diaz, R.|J., and Rosenberg, R., (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.Google Scholar
Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R.S., Geider, R.J., Jickells, T., Kuypers, M.M., Langlois, R., Liss, P.S., Liu, S.|M., Middelburg, J.J., Moore, C.M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L.L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320, 893–897.Google Scholar
Durack, P. J. and Wijffels, S.E., (2010). Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broadscale Warming. Journal of Climate, 23, pp 4342-4362. doi: 10.1175/2010JCLI3377.1.Google Scholar
Durack, P.J., Wijffels, S.E. and Matear, R.J. (2012). Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000. Science, 336 (6080), pp 455-458. doi: 10.1126/science.1212222.Google Scholar
Durack, P.J., Wijffels, S.E., and Boyer, T.P. (2013). Long-term salinity changes and implications for the global water cycle. In: Ocean Circulation and Climate: a 21st Century Perspective. Siedler, G.S.M. Griffies, S.M., Gould, J. and Church, J.A. (Eds.). pp 727-757. International Geophysics series, Vol. 103. Academic Press, Elsevier, Oxford, doi: 10.1016/B978-0-12-391851-2.00028-3.
Enderlin, E.M. and Hamilton, G.S. (2014). Estimates of Iceberg Submarine Melting from High-Resolution Digital Elevation Models: Application to Sermilik Fjord, East Greenland. Journal of Glaciology, in press.Google Scholar
European Climate Research Alliance, (2011). Collaborative Programs: Changes in the Hydrological Cycle (full text), http://www.ecra-climate.eu/index.php/ collaborative-programmes/hydrocycle/11-cllaborative-programmes/20-changesin- the-hydrological-cyclefull, last accessed on 2014-07-18.
FAO (2015) (Food and Agriculture Organization of the United Nations), on-line Global Capture Production Database 1950-2013, http://www.fao.org/figis/ servlet/TabLandArea?tb_ds=Capture&tb_mode=TABLE&tb_act=SELECT&tb_ grp=COUNTRY, last accessed on 2015-05-15.
Fasullo, J.T., Boening, C., Landerer, F.W., and Nerem, R.S., (2013). Australia's unique influence on global sea level in 2010–2011. Geophysical Research Letters, 40, 4368–4373, doi:10.1002/grl.50834.Google Scholar
Field, C.|B., Barros, V., Stocker T., F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., et al. (2012). IPCC: Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Freeland, H., Denman, K., Wong, C.S., Whitney, F., and Jacques, R. (1997). Evidence of change in the winter mixed layer in the Northeast Pacific Ocean, Deep Sea Research Part I, 44, 2117– 2129.Google Scholar
Galloway, J. N., et al., (2008): Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.Google Scholar
Gelderloos, R., Straneo, F., and Katsman, C. (2012). Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the Great Salinity Anomaly years 1968-1971. Journal of Climate, 25, 6745-6755.Google Scholar
GESAMP (2001) (Group of Experts on the Scientific Aspects of Marine Environmental Protection: a IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP Joint Advisory Committee on Protection of the Sea). Protecting the oceans from land-based activities - Land-based sources and activities affecting the quality and uses of the marine, coastal and associated freshwater environment. Rep. Stud. GESAMP No. 71, 162 pp.
Giannini, A., Saravanan, R., and Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 1027-1030.Google Scholar
Good, S.A., Martin, M.J. and Rayner, N.A. (2013). EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118 (12), pp. 6704-6716. doi: 10.1002/2013JC009067.Google Scholar
Gordon, A.L. (1986). Inter-Ocean Exchange of Thermocline Water. Journal of Geophyical Research, 91(C4), 5037-5046.Google Scholar
Graham, S., Parkinson, C., and Chahine, M. (2010). The Water Cycle. http://earthobservatory. nasa.gov/Features/Water/page3.php
Green, D. (2006) How Might Climate Change Affect Island Culture in the Torres Strait? CSIRO Marine and Atmospheric Research Paper 011.
Guo, X., Zhu, X.-H., Wu, Q.-S., and Huang, D. (2012). The Kuroshio nutrient stream and its temporal variation in the East China Sea, Journal of Geophysical Research, 117, C01026, doi:10.1029/2011JC007292.Google Scholar
Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Bronnimann, S., Charabi, Y., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, B.W., Wild, M., and Zhai, P.M. (2013). Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge University Press, Cambridge, UK, 1535 pp.
Hay, J.E. and Mimura, N. (2006). Sea-level rise: Implications for water resources management. Mitigation and Adaptation Strategies for Global Change, 10, 717-737.Google Scholar
Held, I. M., and Soden, B.J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699, doi: 10.1175/JCLI3990.1.Google Scholar
Helm, K.P., Bindoff, N.L. and Church, J.A. (2010). Changes in the global hydrologicalcycle inferred from ocean salinity. Geophysical Research Letters, 37 (18), L18701. doi: 10.1029/2010GL044222.Google Scholar
Hoegh-Guldberg, O., Cai, R., Poloczanska, E.S., Brewer, P.G., Sundby, S., Hilmi, K., Fabry, V.J. and Jung, S. (2014). The Ocean. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1655-1731.
Hoozemans, F.M.J., Marchand, M., and Pennekamp, H.A. (1993). A Global Vulnerability Analysis: Vulnerability Assessment for Population, Coastal Wetlands and Rice Production on a Global Scale. 2nd edition. Delft, Netherlands: Delft Hydraulics Software.
Hosoda, S., Suga, T., Shikama, N., and Mizuno, K. (2009). Global Surface Layer Salinity Change Detected by Argo and Its Implication for Hydrological Cycle Intensification. Journal of Oceanography, 65, pp 579-596. doi: 10.1007/s10872-009-0049-1Google Scholar
Hutchins, D.A., Mulholland, M.R., and Fu, F. (2009). Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean. Oceanography 22(4):128–145Google Scholar
IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge University Press, Cambridge, UK, 1535 pp.
Kates, R.W., Travis, W.R. and Wilbanks, T.J. (2012). Transformational adaptation when incremental adaptations to climate change are insufficient. Proceedings of the National Academy of Sciences of the United States of America 109 (19):7156- 71617156- 71617156- 7161>. doi:10.1073/pnas.1115521109Google Scholar
Kim, T.W., Lee, K., Najjar, R.G., Jeong, H.D. and Jeong, H.J. (2011). Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science, 334, 505–509.Google Scholar
Kelly, K.A., Thompson, L., Lyman, J. (2014). The coherence and impact of meridional heat transport anomalies in the Atlantic Ocean inferred from observations. Journal of Climate, 27, 1469–1487, doi: 10.1175/JCLI-D-12-00131.1.Google Scholar
Leuliette, E.W., and Willis, J.K. (2011). Balancing the sea level budget. Oceanography, 24 (2), 122–129, doi:10.5670/oceanog.2011.32.Google Scholar
Malhi, Y., and Wright, J. (2011). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society, London B 359(1443), 311-29. DOI: 10.1098/rstb.2003.1433.
Merrifield, M.A., Thompson, P.R., and Lander, M. (2012). Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophysical Research Letters, 39, L13602, doi:10.1029/2012GL052032.Google Scholar
Midgley, G. and Thuiller, W. (2011). Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Regional Environmental Change, 11, 127–135.Google Scholar
Millennium Assessment (2005). Ecosystems and Human Well-being: A Framework for Assessment, Island Press, The Center for Resource Economics, Washington DC, 245 pp., ISBN 1-55963-402-2.
Milly, P.C.D., Dunne, K., and Vecchia, A.V. (2005). Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438 (7066), 347–350, http://dx.doi.org/10.1038/nature04312.Google Scholar
Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy, Series B Physical and Biological Sciences 89(7): 281–301. doi: 10.2183/pjab.89.281. The Ocean's Role in the Hydrological CycleGoogle Scholar
Moon, J.-H., Song, Y.T., Bromirski, P.D., and Miller, A.J. (2013). Multidecadal regional sea level shifts in the Pacific over 1958-2008. Journal of Geophysical Research, 118, 7024–7035, doi:10.1002/2013JC009297.Google Scholar
Nagano, A., Uehara, K., Suga, T., Kawai, Y., Ichikawa, H. and Cronin, M.F. (2014). Origin of near-surface high-salinity water observed in the Kuroshio Extension region, Journal of Oceanography, 70, 389-403. doi: 10.1007/s10872-014-0237-5.Google Scholar
Nakamura, T., Toyoda, T., Ishikawa, Y., and Awaji, T. (2006). Effects of tidal mixing at the Kuril Straits on North Pacific ventilation: Adjustment of the intermediate layer revealed from numerical experiments, Journal of Geophysical Research, 111, C04003, doi:10.1029/2005JC003142.Google Scholar
Nicholls, R.J. and Cazenave, A. (2010). Sea-level rise and its impact on coastal zones, Science, 328, 1517-20.Google Scholar
Nicholls, R.J., Marinova, N., Lowe, J.A., Brown, S., Vellinga, P., de Gusmao, D., Hinkel, J. et al. (2011). Sea-level rise and its possible impacts given a “beyond 4°C world” in the twenty-first century. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 369(1934), 161–81. doi:10.1098/ rsta.2010.0291.Google Scholar
Nicholls, R.J., and Tol, R.S.J. (2006). Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 364:1073– 1095.Google Scholar
Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J.O., Hay, J.E., McLean, R.F., Ragoonaden, S., and Woodroffe, C.D. (2007). Coastal systems and low-lying areas. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., and Hanson, C.E. (eds.). Cambridge University Press, Cambridge, UK, pp. 315-356.
Nicholls, R.J., Woodroffe, C.D. and Burkett, V. (2009). Coastline degradation as an indicator of global change. In: Climate Change: Observed Impacts on Planet Earth. Letcher, T.M. (ed.). Elsevier, 409-24.
Nicholls, R.J. (2010). Impacts of and responses to sea-level rise. In: Understanding Sea-level rise and variability. Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S. (eds.). Wiley-Blackwell. ISBN 978-4443-3451-7, 17-43.
Ono, T., Midorikawa, T., Watanabe, Y.W., Tadokoro, K., and Saino, T. (2001). Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of the western subarctic Pacific from 1968 to 1998, Geophysical Research Letters, 28(17), 3285–88.Google Scholar
Ono, T., Tadokoro, K., Midorikawa, T., Nishioka, J., and Saino, T. (2002). Multi-decadal decrease of net community production in western subarctic North Pacific, Geophysical Research Letters, 29(8), 1186, doi:10.1029/2001GL014332.Google Scholar
Ono, T., Shiomoto, A., and Saino, T. (2008). Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic North Pacific highnutrient low-chlorophyll region, Global Biogeochemical Cycles, 22, GB3027, doi:10.1029/2007GB003092.Google Scholar
Osafune, S., and Yasuda, I. (2006). Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6- year period nodal tidal cycle, Journal of Geophysical Research, 111, C05007, doi:10.1029/2005JC003277Google Scholar
Oude Essink, G.H.P., Boekelman, R.H. and Bosters, M.C.J. (1993). Physical impacts of sea level change. In: Jelgersma, S., Tooley, M.J., Oerlemans, J., van Dam, J.C., Liebscher, H.J., Oude Essink, G.H.P., Boekelman, R.H., Bosters, M.C.J., Wolff, W.J., Dijksma, K.S., et al. State of the art report: Sea level changes and their consequences for hydrology and water management: Fundamental Aspects, Policy and Protection in Low Lying Coastal Regions and Deltaic Areas. Netherlands Institute for Marine and Coastal Zone Management (formerly Tidal Waters Division), The Hague, The Netherlands.
Provoost, P., van Heuven, S., Soetaert, K., Laane, R.W.P.M., and Middelburg, J.J. (2010). Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences, 7, 3869–78.Google Scholar
Rignot, E. and Thomas, R.H. (2002). Mass Balance of Polar Ice Sheets. Science, 297, 1502–06.Google Scholar
Rouault, M., Penven, P., and Pohl, B. (2009). Warming in the Agulhas Current system since the 1980's. Geophysical Research Letters, 36(12), L12602, doi: 10.1029/2009GL037987.Google Scholar
Rouault, M., White, S.A., Reason, C.J.C. Lutjeharms, J.R.E., and Jobard, I. (2002). Ocean–Atmosphere Interaction in the Agulhas Current Region and a South African Extreme Weather Event. Weather Forecasting, 17, 655–669. doi: 10.1175/1520-0434(2002)017.0.CO;2Google Scholar
Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A.F. (2004). The Oceanic Sink for Anthropogenic CO2, Science, 305 (5682) pp. 367-71. doi: 10.1126/science.1097403.Google Scholar
Schaeffer, M., Hare, W., Rahmstorf, S., and Vermeer, M. (2012). Long term sea-level rise implied by 1.5 °C and 2 °C warming levels. Nature Climate Change, 2: 867- 870. doi:10.1038/nclimate1584.Google Scholar
Schanze, J.J.R. Schmitt, W. and Yu, L.L.(2010) The global oceanic freshwater cycle: A state-of-the-art quantification. Journal of Marine Research, 68, pp 569-595. doi: 10.1357/002224010794657164Google Scholar
Schmitz, W.J. Jr. (1996). On the World Ocean Circulation, Volume I. Some Global Features/North Atlantic Circulation. Woods Hole Oceanographic Institution, Technical Report WHOI-96- 03, 140 pp.Google Scholar
Scott, D., Simpson, M.C., and Sim, R. (2012). The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise, Journal of Sustainable Tourism, 20:883-898. Doi: 10.1080/09669582.2012.699063.Google Scholar
Seitzinger, S.P., et al. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 24, DOI: 10.1029/2009GB003587.Google Scholar
Skliris, N., Marsh, R., Josey, S.A., Good, S.A., Liu, C., and Allan, R.P. (2014). Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics,43:709-736. doi: 10.1007/s00382-014-2131-7.Google Scholar
Smith, R.L., and Smith, T.M., (1998). Elements of Ecology, Pearson, Benjamin Cummings, San Francisco, USA.
Sunda, W.G. and Cai, W.-J. (2012). Eutrophication Induced CO2 Acidification of Subsurface Coastal Waters: Interactive Effects of Temperature, Salinity, and Atmospheric PCO2, Journal of Environmental Science & Technology, October.Google Scholar
Tadokoro, K., Ono, T., Yasuda, I., Osafune, S., Shiomoto, A., and Sugisaki, H. (2009) Possible mechanisms of decadal-scale variation in PO4 concentration in the western North Pacific, Geophysical Research Letters, 36, L08606, doi:10.1029/2009GL037327.Google Scholar
Tilman, D., Fargione Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., and Swackhamer, D. (2001) Forecasting Agriculturally Driven Global Environmental Change, Science, 292, 13 April 2001.Google Scholar
Terray, L., Corre, L., Cravatte, S., Delcroix, T., Reverdin, G., and Ribes, A. (2012) Near- Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle. Journal of Climate, 25 (3), pp 958-977. doi: 10.1175/JCLID- 10-05025.1 The Ocean's Role in the Hydrological CycleGoogle Scholar
Trenberth, K.E., (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339.Google Scholar
Trenberth, K.E., Smith, L., Qian, T., Dai, A., and Fasullo, J. (2007). Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. Journal of Hydrometeorology, 8, 758-769. doi: 10.1175/JHM600.1.Google Scholar
United Nations Environment Programme (2006). The State of the Marine Environment: A regional assessment. Global Programme of Action for the Protection of the Marine Environment from Land-based Activities, United Nations Environment Programme, The Hague.
UNEP Global Environment Monitoring System Water Programme (2008). Water Quality for Ecosystem and Human Health, 120 pp., Ontario, Canada.
Van den Broeke, M.R., Bamber, J.L., Ettema, J., Rignot, E. Schrama, E., van de Berg, W.J., Velicogna, I., and Wouters, B. (2009). Partitioning recent Greenland mass loss. Science, 326(5955), 984-986.Google Scholar
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. (2013). Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge University Press, Cambridge, UK, 1535 pp.
Vinogradova, N.T. and Ponte, R.M. (2013). Clarifying the link between surface salinity and freshwater fluxes on monthly to inter-annual timescales. Journal of Geophysical Research, 108 (6), pp 3190-3201. doi: 10.1002/jgrc.20200.Google Scholar
Watanabe, Y.W., Wakita, M., Maeda, N., Ono, T., and Gamo, T. (2003). Synchronous bidecadal periodic changes of oxygen, phosphate and temperature between the Japan Sea deep water and the North Pacific intermediate water, Geophysical Research Letters, 30(24), 2273, doi:10.1029/2003GL018338.Google Scholar
Watanabe, Y.W., Ishida, H., Nakano, T., and Nagai, N. (2005) Spatiotemporal Decreases of Nutrients and Chlorophyll-a in the Surface Mixed Layer of the Western North Pacific from 1971 to 2000. Journal of Oceanography, 61, 1011-16.Google Scholar
Watanabe, Y.W., Shigemitsu, M., and Tadokoro, K. (2008). Evidence of a change in oceanic fixed nitrogen with decadal climate change in the North Pacific subpolar region, Geophysical Research Letters, 35(1), L01602, doi:10.1029/2007GL032188.Google Scholar
Webb, A.P. and Kench, P.S. (2010). The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific, Global and Planetary Change, 72: 234-246. dx.doi.org/10.1016/j.gloplacha. 2010.05.003.Google Scholar
White, N.J., Haigh, I.D., Church, J.A., Koen, T., Watson, C.S., Pritchard, T.R., Watson, P.J., Burgette, R.J., McInnes, K.L., You, Z.-J., Zhang, X., Tregoning, P. (2014). Australian sea levels—Trends, regional variability and influencing factors. Earth-Science Reviews, 136, 155–74, doi: 10.1016/j.earscirev.2014.05.011.Google Scholar
Whitney, F.A. (2011) Nutrient variability in the mixed layer of the subarctic Pacific Ocean, 1987–2010, Journal of Oceanography., 67, 481–92, doi:10.1007/s10872- 011-0051-2.Google Scholar
Whitney, F.A., Bograd, S.J., and Ono, T. (2013) Nutrient enrichment of the subarctic Pacific Ocean pycnocline, Geophysical Research Letters, 40, 2200–2205, doi:10.1002/grl.50439.Google Scholar
World Bank. (2012). Turn Down the Heat: Why a 4 °C Warmer World must be Avoided (Potsdam Institute for Climate Impact Research and Climate Analytics). http:// www.worldbank.org/content/dam/Worldbank/document/Full_Report_Vol_2_ Turn_Down_The_Heat_%20Climate_Extremes_Regional_Impacts_Case_for_ Resilience_Print%20version_FINAL.pdf, last accessed on 2014-07-18.
Wüst, G. (1928). Der Ursprung der Atlantischen Tiefenwassar. Jubilaums' Sonderband. Zeitschrift der Gesellschaft für Erdkunde.
Xie, P., and Arkin, P.A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78(11), 2539-2558.Google Scholar
Yu, L., (2007). Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed. Journal of Climate, 20(21), 5376-90.Google Scholar
Yu, L. (2011). A global relationship between the ocean water cycle and nearsurface salinity. Journal of Geophysical Research, 116 (C10), C10025. doi: 10.1029/2010JC006937Google Scholar
Zhang, X., and J.A., Church, (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophysical Research Letters, 39(21), L21701. doi:10.1029/2012GL053240.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×