Skip to main content Accessibility help
  • Cited by 8
  • Print publication year: 2015
  • Online publication date: August 2015

18 - Developmental mechanisms in the evolution of phenotypic traits in rodent teeth



Evo-Devo does not limit itself to the analysis of phenotypic variation and adaptation, but explicitly addresses the generative mechanisms underlying the evolution of organismal form

(Müller, 2007b: p. 502).

Evo-Devo, or Evolutionary Developmental Biology, combines the two independent research disciplines of Evolutionary Biology and Developmental Biology, that re-joined in the late 1970s and early 1980s, after a break of about 100 years after the ‘biogenetic law’ mostly introduced by Haeckel in the 1860s (Arthur, 2002; Churchill, 2007; Gerson, 2007). Evolutionary Biology explores the evolution of forms that have been realised and their variability, and Developmental Biology proposes morphogenetic mechanisms that could have been explored. Müller (2007b) insisted on the emergence of Evo-Devo from the limitations of these two disciplines to explain the form and the structure of the organisms. Since then, the field of Evo-Devo has become one of the most vigorous parts of biology (Gerson, 2007). In recent years, considerable progress has been made in understanding the developmental basis of morphological evolution (Wagner, 2007). However, to become an independent scientific field, Evo-Devo must prove its potential to induce new scientific questions (Müller, 2007a).

Among the new questions that can be assessed by Evo-Devo, is how development contributes to phenotypic novelty (Müller, 2007a). This question raises the problem of homoplasy, i.e. convergence, parallelism and reversals, in evolution. Are the phenotypic novelties generated by developmental mechanisms homologous or homoplastic? Phenotypic novelties are considered homologous if their similarities between taxa are inherited from a common ancestor, whereas homoplastic traits do not share phylogenetic inheritance (Hall, 2003; Wake et al., 2011). Homoplastic traits that share similar developmental, genetic and/or cell-type mechanisms are considered parallel during evolution, corresponding to the concept of deep-homology (Hall, 2003; Shubin et al., 2009). Homoplastic traits that are defined as convergent are usually observed at greater phylogenetic distances than parallel traits, and may not share similar morphogenetic mechanisms.

Ahn, Y., Sanderson, B. W., Klein, O. D. and Krumlauf, R. (2010). Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development, 137, 3221–3231.
Arthur, W. (2002). The emerging conceptual framework of evolutionary developmental biology. Nature, 415, 757–764.
Biehs, B., Hu, J. K.-H., Strauli, N. B., et al. (2013). BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology, 15, 846–852.
Butler, P. M. (1956). The ontogeny of molar pattern. Biological Review, 31, 31–70.
Butler, P. M. (1978). Molar cusp nomenclature and homology. In Development, Function and Evolution of Teeth, eds. Butler, P. M. and Joysey, K. A., London: Academic Press, pp. 439–453.
Cai, J., Cho, S. W., Kim, J. Y., et al. (2007). Patterning the size and number of tooth and its cusps. Developmental Biology, 304, 499–507.
Chaline, J. (1987). Paléontologie des Vertébrés, Paris: Dunod.
Chaline, J. and Laurin, B. (1986). Phyletic gradualism in the European Plio-Pleistocene Mimomys lineage. Paleobiology, 12, 203–216.
Chaline, J., Brunet-lecomte, P., Montuire, S. and Viriot, L. (1999). Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Annales Zoologici Fennici, 36, 239–267.
Chang, J. Y., Wang, C., Jin, C., et al. (2013). Self-renewal and multilineage differentiation of mouse dental epithelial stem cells. Stem Cell Research, 11, 990–1002.
Charles, C., Hovorakova, M., Ahn, Y., et al. (2011). Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development (Cambridge, England), 138, 4063–4073.
Churchill, F. B. (2007). Living with the biogenetic law. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 37–82.
Cohen, K. M., Finney, S. M., Gibbard, P. L. and Fan, J.-X. (2013). The ICS International Chronostratigraphic Cart. Episodes, 36, 199–204.
Eronen, J. T., Puolamäki, K., Liu, L., et al. (2010a). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 10, 217–233.
Eronen, J. T., Puolamäki, K., Liu, L., et al. (2010b). Precipitation and large herbivorous mammals II–application to fossil data. Evolutionary Ecology Research, 12, 235–248.
Evans, A. R., Wilson, G. P., Fortelius, M. and Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.
Felszeghy, S., Suomalainen, M. and Thesleff, I. (2010). Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor. Differentiation, 80, 241–248.
Feranec, R. S. (2003). Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology, 29, 230–242.
Fortelius, M., Eronen, J. T., Jernvall, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.
Fortelius, M., Eronen, J. T., Kaya, F., et al. (2014). Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annual Review of Earth and Planetary Sciences, 42, 579–603.
Foster, B. L., Nociti, F. H. and Somerman, M. J. (2013). Tooth root development. In Stem Cells in Craniofacial Development and Regeneration, eds. Huang, G. T.-J. and Thesleff, I., New Jersey: Wiley-Blackwell, pp. 153–177.
Fraser, G. J., Hulsey, C. D., Bloomquist, R. F., et al. (2009). An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biology, 7, e1000031.
Gaunt, W. A. (1955). The development of the molar pattern of the house mouse (Mus musculus). Acta Anatomica, 21, 219–263.
Gaunt, W. A. (1961). The development of the molar pattern of the golden hamster (Mesocricetus auratus w.), together with a re-assessment of the molar pattern of the mouse (Mus musculus). Acta Anatomica, 45, 219–251.
Gerson, E. M. (2007). The juncture of evolutionary and developmental biology. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 435–463.
Goin, F. J., Tejedor, M. F., Chornogubsky, L., et al. (2012). Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften, 99, 449–463.
Gomes Rodrigues, H., Charles, C., Marivaux, L., Vianey-Liaud, M. and Viriot, L. (2011). Evolutionary and developmental dynamics of the dentition in Muroidea and Dipodoidea (Rodentia, Mammalia). Evolution and Development, 13, 361–369.
Gomes Rodrigues, H., Renaud, S., Charles, C., et al. (2013). Roles of dental development and adaptation in rodent evolution. Nature Communications, 4, 2504.
Gould, S. J. (1977). Ontogeny and Phylogeny, United State of America: President and Fellows of Harvard College.
Gould, S. J. (2002). The Structure of the Evolutionary Theory, Cambridge, USA: The Belknap Press of Harvard University Press.
Guthrie, W. F. (1965). Variability in characters undergoing rapid evolution, an analysis of Microtus molars. Evolution: International Journal of Organic Evolution, 19, 214–233.
Hall, B. K. (2003). Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews, 78, 409–433.
Handrigan, G. R. and Richman, J. M. (2010). A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Developmental Biology, 348, 130–141.
Handrigan, G. R. and Richman, J. M. (2011). Unicuspid and bicuspid tooth crown formation in squamates. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 316, 598–608.
Harada, H., Kettuner, P., Jung, H.-S., et al. (1999). Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. The Journal of Cell Biology, 147, 105–120.
Harada, H., Toyono, T., Toyoshima, K., et al. (2002). FGF10 maintains stem cell compartment in developing mouse incisor. Development, 129, 1533–1541.
Harjunmaa, E., Kallonen, A., Voutilainen, M., et al. (2012). On the difficulty of increasing dental complexity. Nature, 483, 324–327.
Hartenberger, J.-L. (1998). Desription de la radiation des Rodentia (Mammalia) du Paléocène supérieur au Miocène; incidences phylogénétiques. Comptes Rendus de l'Académie des Sciences, IIa, Sciences de la Terre et des Planètes, 326, 439–444.
Hartenberger, J.-L. (2001). Une brève histoire des mammifères, Paris: Belin.
Hashimoto, E., Nakakura-Ohshima, K., Kenmotsu, S.-I., et al. (2008). The relationship between cusp pattern and plural stem cell compartments in guinea pig cheek teeth by chasing BrdU-labeling. Archives of Histology and Cytology, 71, 317–332.
Hillson, S. (2005). Teeth, Cambridge: Cambridge University Press.
Hinton, M. A. C. (1926). Monograph of the Voles and Lemmings (Microtinae) Living and Extinct, vol. 1, London: British Natural History Museum.
Hu, B., Nadiri, A., Kuchler-Bopp, S., et al. (2006). Tissue engineering of tooth crown, root, and periodontum. Tissue Engineering, 12, 2069–2075.
Hunt, A. M. (1958). A description of the molar teeth and investigating tissues of normal guinea pigs. Journal of Dental Research, 38, 216–231.
Hunter, J. P. and Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 92, 10 718–10 722.
Hunter, J. P., Guatelli-Steinberg, D., Weston, T. C., Durner, R. and Betsinger, T. K. (2010). Model of tooth morphogenesis predicts carabelli cusp expression, size, and symmetry in humans. PLoS ONE, 5, e11844.
Ishida, K., Murofushi, M., Nakao, K., et al. (2011). The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochemical Biophysical Research Communications, 405, 455–461.
Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. Mémoires du Muséum National d'Histoire Naturelle, 53, 367–387.
Janis, C. M. and Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews, 63, 197–230.
Jardine, P. E., Janis, C. M., Sahney, S. and Benton, M. J. (2012). Grit not grass: Concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366, 1–10.
Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29.
Jernvall, J. and Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139, 3487–3497.
Jernvall, J., Kettunen, P., Karanova, I., Martin, L. B. and Thesleff, I. (1994). Evidence for the role of the EK as a control center in mammalian tooth cusp formation: non dividing cells express growth stimulating Fgf-4 gene. International Journal of Developmental Biology, 38, 463–469.
Jowett, A., Vainio, S., Ferguson, M., Sharpe, J. and Thesleff, I. (1993). Epithelial-mesenchymal interactions are required for Msx 1 and Msx 2 gene expression in the developing murine molar toothDevelopment, 117, 461–470.
Juuri, E., Saito, K., Ahtiainen, L., et al. (2012). Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Developmental Cell, 23, 317–328.
Kaiser, T. M. (2003). The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (Upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 381–402.
Kaiser, T. M., Müller, D. W. H., Fortelius, M., et al. (2013). Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review, 43, 34–46.
Kavanagh, K. D., Evans, A. R. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.
Keränen, S. V., Åberg, T., Kettunen, P., Thesleff, I. and Jernvall, J. (1998). Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Development Genes and Evolution, 208, 477–486.
Keyes, P. H. and Dale, P. P. (1944). A preliminary survey of the pouches and dentition of Syrian hamster. Journal of Dental Research, 23, 427–438.
Klein, O. D., Lyons, D. B., Balooch, G., et al. (2008). An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development, 135, 377–385.
Koenigswald, v. W. (2011). Diversity of hypsodont teeth in mammalian dentitions: construction and classification. Palaeontographica, Abt. A: Palaezoology-Stratigraphy, 294, 63–94.
Labonne, G., Laffont, R., Renvoisé, E., et al. (2012). When less means more: evolutionary and developmental hypotheses in rodent molars. Journal of Evolutionary Biology, 25, 2102–2111.
Laubichler, M. D. and Maienschein, J. (2007). From Embryology to Evo-Devo: a History of Developmental Evolution, Cambridge, Massachusetts: MIT Press.
Line, S. R. P. (2003). Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evolution and Development, 5, 295–304.
Lowe, V. P. W. (1971). Root development of molar teeth in the bank vole (Clethrionomys glareolus). Journal of Animal Ecology, 40, 49–61.
Luan, X., Ito, Y. and Diekwisch, T. G. (2006). Evolution and development of Hertwig's epithelial root sheath. Developmental Dynamics, 235, 1167–1180.
Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents, eds. Luckett, W. P. and Hartenberger, J.-L., New York: Plenum Publishing Corporation, pp. 227–275.
Luckett, W. P. (1993a). An ontogenetic assessment of dental homologies in Therian mammals. In Mammal Phylogeny, eds. Szalay, F., Novacek, M. and McKenna, M., New York: Springer, pp. 182–204.
Luckett, W. P. (1993b). Ontogenetic staging of the mammalian dentition, and its value for assessment of homology and heterochrony. Journal of Mammalian Evolution, 1, 269–281.
Luckett, W. P. and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: possible conflict between morphological and molecular interpretations. Journal of Mammalian Evolution, 1, 127–147.
Mahn, R. (1890). Bau und entwicklung der molaren bei Mus und Arvicola. Morphologisches Jahrbuch, 16, 652–683.
Mammoto, T., Mammoto, A., Torisawa, Y.-S., et al. (2011). Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Developmental Cell, 21, 758–769.
Maul, L. C., Masini, F., Parfitt, S. A., Rekovets, L. and Savorelli, A. (2014). Evolutionary trends in arvicolids and the endemic murid Mikrotia – New data and a critical overview. Quaternary Science Reviews, 96, 240–258.
Michaux, J. R., Aguilar, J.-P., Montuire, S., Wolff, A. and Legendre, S. (1997). Les Murinae (Rodentia, Mammalia) néogènes du Sud de la France: évolution et paléoenvironnements. Geobios, 20, 379–385.
Michon, F., Jheon, A., Seidel, K. and Klein, O. D. (2013). An incisive look at stem cells: the mouse incisor as an emerging model for tooth renewal. In Stem Cells in Craniofacial Development and Regeneration, eds. Huang, G. T.-J. and Thesleff, I.. New Jersey: Wiley-Blackwell, pp. 315–327.
Misonne, X. (1969). African and Indo-Australian Muridae. Evolutionary Trends, Belgium: Musée Royal de l'Afrique centrale (Tervuren).
Mitsiadis, T. A., Barrandon, O., Rochat, A., Barrandon, Y. and De Bari, C. (2007). Stem cell niches in mammals. Experiment in Cell Research, 313, 3377–3385.
Mones, A. (1968). Proposición de una nueva terminología relacionada con el crecimiento de los molars. Zoología Platense, 1, 13–14.
Mones, A. (1982). An equivocal nomenclature: what means hypsodonty?Paläontologische Zeitschrift, 56, 107–111.
Müller, G. B. (2007a). Evo-Devo: extending the evolutionary synthesis. Nature Review Genetics, 8, 943–949.
Müller, G. B. (2007b). Six memos for Evo-Devo. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 499–524.
Munne, P. M., Felszeghy, S., Jussila, M., et al. (2010). Splitting placodes: effects of Bone Morphogenetic Protein and Activin on the patterning and identity of mouse incisors. Evolution and Development, 12, 383–392.
Ohshima, H., Nakasone, N., Hashimoto, E., et al. (2005). The eternal tooth germ is formed at the apical end of continuously growing teeth. Archives of Oral Biology, 50, 153–157.
Perez, M. E. and Vucetich, M. G. (2011). A new extinct genus of Cavioidea (Rodentia, Hystricognathi) from the Miocene of Patagonia (Argentina) and the evolution of cavioid mandiular morphology. Journal of Mammalian Evolution, 18, 163–183.
Peterková, R., Lesot, H., Viriot, L. and Peterka, M. (2005). The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology, 50, 219–225.
Peterková, R., Lesot, H. and Peterka, M. (2006). Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 306, 234–250.
Pispa, J., Jung, H.-S., Jernvall, J., et al. (1999). Cusp patterning defect in tabby mouse teeth and its partial rescue by FGF. Developmental Biology, 216, 521–534.
Polly, P. D. (2007). Development with a bite. Nature, 449, 413–415.
Prochazka, J., Pantalacci, S., Churava, S., et al. (2010). Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences of the United States of America, 107, 15 497–15 502.
Pummila, M., Fliniaux, I., Jaatinen, R., et al. (2007). Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development, 134, 117–125.
Raff, M. C. (1996). Size control: the regulation of cell numbers in animal development. Cell, 86, 173–175.
Reisz, R. R. (2006). Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution?Journal of Experimental Zoology B (Molecular and Developmental Evolution), 306B, 261–277.
Renaud, S., Michaux, J., Schmidt, D. N., et al. (2005). Morphological evolution, ecological diversification and climate change in rodents. Proceedings of the Royal Society B: Biological Sciences, 2005, 609–617.
Renaud, S., Pantalacci, S. and Auffray, J.-C. (2011). Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS ONE, 6, e18951.
Rensberger, J. M. (1975). Cheek tooth evolution of hypsodont geomyoid rodents. Journal of Paleontology, 49, 10–22.
Renvoisé, E., Evans, A. R., Jebrane, A., et al. (2009). Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution, 63, 1327–1340.
Rinke, T. (1991). Percentage of volume versus number of species: availability and intake of grasses and forbs in Microtus arvalis. Folia Zoologica, 40, 143–151.
Rompolas, P., Mesa, K. R. and Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature, 502, 513–518.
Salazar-Ciudad, I. and Jernvall, J. (2002). A gene network model accounting for development. Proceedings of the National Academy of Sciences of the United States of America, 99, 8116–8120.
Salazar-Ciudad, I. and Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variations. Nature, 464, 583–586.
Schaub, S. (1938). Tertiäre und Quartäre Murinae. Abhandlungen des Schweizerischen Paläontologischen Gesellschaft, 61, 1–39.
Schour, I. and Massler, M. (1942). The teeth. In The Rat in Laboratory Investigation, eds. Griffith, J. Q. and Farris, E. J., Philadelphia: J. B. Lippencott Company.
Seidel, K., Ahn, C. P., Lyons, D., et al. (2010). Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development, 137, 3753–3761.
Shubin, N., Tabin, C. and Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.
Soukup, V., Epperlin, H.-H., Horácek, I. and Czerny, R. (2008). Dual epithelial origin of vertebrate oral teeth. Nature, 455, 795–798.
Stehlin, H. G. and Schaub, S. (1951). Die Trigonodontie des simplicidentated Nager. Schweizerische Paläontologischen Abhandlungen, 67, 1–385.
Stenseth, N. C., Hansson, L. and Myllymäki, A. (1977). Food selection of the field vole Microtus agrestis. Oikos, 29, 511–524.
Thesleff, I. and Tummers, M. (2009). Tooth organogenesis and regeneration. In Stem Book, eds. Watt, F. and Gage, F., The Stem Cell Research Community, pp. 1–12.
Tummers, M. and Thesleff, I. (2003). Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 130, 1049–1057.
Tummers, M. and Thesleff, I. (2009). The importance of signal pathway modulation in all aspects of tooth development. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 312B, 309–319.
Tummers, M., Yamashiro, T. and Thesleff, I. (2007). Modulation of epithelial cell fate of the root in vitro. Journal of Dental Research, 86, 1063–1067.
Ungar, P. S. (2010). Mammal Teeth: Origin, Evolution, and Diversity, United States of America: The John Hopkins University Press.
Van der Meulen, A. J. (1973). Middle Pleistocene smaller mammals from the Monte Peglia (Orvieto, Italia) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia). Quaternaria, XVII, 1–128.
Van Valen, L. M. (1960). A functional index of hypsodonty. Evolution, 14, 531–532.
Van Valen, L. M. (1982). Homology and causes. Journal of Morphology, 173, 305–312.
Vianey-Liaud, M. and Michaux, J. R. (2003). Evolution “graduelle” à l’échelle géologique chez les rongeurs fossiles du Cénozoïque européen. Comptes Rendus Palevol, 2, 455–472.
Viriot, L. (1994). Tendences évolutives des molaires chez les arvicolidés (Rodentia, Mammalia). PhD, unpublished, Université de Bourgogne, Dijon, France.
Viriot, L., Peterková, R., Peterka, M. and Lesot, H. (2002). Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connective Tissue Research, 43, 129–133.
Vucetich, M. G., Deschamps, C. M., Olivares, A. I. and Dozo, M. T. (2005). Capybaras, size, shape, and time: a model kit. Acta Palaeontologica Polonica, 50, 259–272.
Wagner, G. (2007). The current state and the future of developmental evolution. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 525–545.
Wake, D. B., Wake, M. H. and Specht, C. D. (2011). Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science, 331, 1032–1035.
Wang, X.-P., Suomalainen, M., Jorgez, C. J., et al. (2004). Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Developmental Cell, 7, 719–730.
Wang, X.-P., Suomalainen, M., Felszeghy, S., et al. (2007). An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biology, 5, e159.
White, T. E. (1959). The endocrine gland and evolution, no. 3: os cementum, hypsodonty and diet. Contributions from the Museum of Paleontology: The University of Michigan, 13, 211–265.
Witter, K., Pavlikova, H., Matulova, P. and Misek, I. (2005). Relationship between vestibular lamina, dental lamina, and the developing oral vestibule in the upper jaw of the field vole (Microtus agrestis, Rodentia). Journal of Morphology, 265, 264–270.
Yokohama-Tamaki, T., Ohshima, H., Fujiwara, N., et al. (2006). Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development, 133, 1359–1366.