Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T19:08:16.028Z Has data issue: false hasContentIssue false

Part I - Theory of Senescence

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bateson, P., Barker, D., Clutton-Brock, T., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–21.CrossRefGoogle ScholarPubMed
Bell, G. (1984). Evolutionary and nonevolutionary theories of senescence. American Naturalist, 124, 600–3.CrossRefGoogle Scholar
Buss, L. W. (1988). The Evolution of Individuality (Princeton, NJ: Princeton University Press).CrossRefGoogle Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22, 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2001). Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. Journal of Theoretical Biology, 210, 4765.CrossRefGoogle ScholarPubMed
Douglas, P. M. & Dillin, A. (2014). The disposable soma theory of aging in reverse. Cell Research, 24, 78.CrossRefGoogle ScholarPubMed
Drenos, F. & Kirkwood, T. B. L. (2005). Modelling the disposable soma theory of ageing. Mechanisms of Ageing and Development, 126, 99103.CrossRefGoogle ScholarPubMed
Ermolaeva, M. A., Segref, A., Dakhovnik, A., et al. (2013). DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature, 501, 416–20.CrossRefGoogle ScholarPubMed
Finch, C. E. (1990). Longevity, Senescence and the Genome (University of Chicago Press).Google Scholar
Flatt, T., Amdam, G. V., Kirkwood, T. B. L. & Omholt, S. W. (2013). Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Quarterly Review of Biology, 88, 185218.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harrison, D. E. & Archer, J. R. (1989). Natural selection for extended longevity from food restriction. Growth Development and Aging, 53, 3.Google ScholarPubMed
Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays, 10, 125–7.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proceedings of the National Academy of Sciences USA, 71, 4135–9.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kapahi, P., Boulton, M. E. & Kirkwood, T. B. L. (1999). Positive correlation between mammalian life span and cellular resistance to stress. Free Radicals in Biology and Medicine, 26, 495500.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. (1980). Error propagation in intracellular information transfer. Journal of Theoretical Biology, 82, 363–82.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1981). Repair and its evolution: survival vs reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use, ed. Townsend, C. R. & Calow, P., pp. 165–89 (Oxford, UK: Blackwell Scientific).Google Scholar
Kirkwood, T. B. L. (2005). Asymmetry and the origins of ageing. Mechanisms of Ageing and Development, 126, 533–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2011). Systems biology of ageing and longevity. Philosophical Transactions of the Royal Society of London Series B, 366, 6470.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Cremer, T. (1982). Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Human Genetics, 60, 101–21.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Holliday, R. (1975). The stability of the translation apparatus. Journal of Molecular Biology, 97, 257–65.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, R. (1979). The evolution of aging and longevity. Proceedings of the Royal Society of London Series B, 205, 531–46.Google Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society London, B332, 1524.Google Scholar
Kirkwood, T. B. L., Rosenberger, R. F. & Galas, D. J. (1986). Accuracy in Molecular Processes: Its Control and Relevance to Living Systems (London: Chapman & Hall).CrossRefGoogle Scholar
Kowald, A. & Kirkwood, T. B. L. (1996). A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutation Research, 316, 209–36.Google ScholarPubMed
Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics, 162, 7387.CrossRefGoogle ScholarPubMed
Luckinbill, L. S., Arking, R., Clare, M. J., et al. (1984). Selection of delayed senescence in Drosophila melanogaster. Evolution, 38, 9961003.CrossRefGoogle ScholarPubMed
Martínez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: H.K. Lewis)(reprinted in Medawar, P. B. (1957). The Uniqueness of the Individual. (London: Methuen)).Google Scholar
Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–95.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proceedings of the National Academy of Sciences USA, 49, 517–21.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1970). The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proceedings of the National Academy of Sciences USA, 67, 1476.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1973). Ageing of clones of mammalian cells. Nature, 243, 441–5.CrossRefGoogle ScholarPubMed
Roper, C., Pignatelli, P. & Partridge, L. (1993). Evolutionary effects of selection on age at reproduction in larval and adult Drosophila melanogaster. Evolution, 47, 445–55.Google ScholarPubMed
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–10.CrossRefGoogle ScholarPubMed
Rosenberger, R. F. (1991). Senescence and the accumulation of abnormal proteins. Mutation Research, 256, 255–62.Google ScholarPubMed
Saretzki, G., Armstrong, L., Leake, A., et al. (2004). Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells, 22, 962–71.CrossRefGoogle ScholarPubMed
Saretzki, G., Walter, T., Atkinson, S., et al. (2008). Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells, 26, 455–64.CrossRefGoogle ScholarPubMed
Savageau, M. A. & Freter, R. R. (1979). On the evolution of accuracy and cost of proofreading tRNA aminoacylation. Proceedings of the National Academy of Sciences USA, 76, 4507–10.CrossRefGoogle ScholarPubMed
Shanley, D. P. & Kirkwood, T. B. (2000). Calorie restriction and aging: a life-history analysis. Evolution 54, 740–50.Google ScholarPubMed
Sozou, P. D. & Kirkwood, T. B. L. (2001). A stochastic network model of cell replicative senescence based on telomere shortening, oxidative stress and somatic mutations in nuclear and mitochondrial DNA. Journal of Theoretical Biology, 213, 573–86.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (Oxford University Press).Google Scholar
Stewart, E. J., Madden, R., Paul, G. & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.CrossRefGoogle Scholar
Townsend, C. R. & Calow, P. (1981). Physiological Ecology: An Evolutionary Approach to Resource Use (Oxford, UK: Blackwell Scientific).Google Scholar
Vilchez, D., Simic, M. S. & Dillin, A. (2014a). Proteostasis and aging of stem cells. Trends in Cell Biology, 24, 161–70.CrossRefGoogle ScholarPubMed
Vilchez, D., Saez, I. & Dillin, A. (2014b). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications, 5, 5659.CrossRefGoogle ScholarPubMed
Wachter, K. W, Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences USA, 110, 10141–8.CrossRefGoogle ScholarPubMed
Wachter, K. W, Steinsaltz, D. & Evans, S. N. (2014). Evolutionary shaping of demographic schedules. Proceedings of the National Academy of Sciences USA, 111, 10846–53.CrossRefGoogle ScholarPubMed
Weismann, A. (1891). Essays upon Heredity and Kindred Biological Problems, Vol. 1 (2nd edn.) (Oxford, UK: Clarendon Press).Google Scholar
Westendorp, R. G. J. & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396, 743–6.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zwaan, B. J., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection of lifespan in Drosophila melanogaster. Evolution, 49, 649–59.CrossRefGoogle ScholarPubMed

References

Abrams, P. A. & Ludwig, D. (1995). Optimality theory, Gompertz’ law, and the disposable soma theory of senescence. Evolution, 49, 1055–66.CrossRefGoogle ScholarPubMed
Ackerman, M., Schauerte, A., Stearns, S. C. & Jenal, U. (2007). Experimental evolution of ageing in a bacterium. BMC Evolutionary Biology, 7, 126.CrossRefGoogle Scholar
Baudisch, A. (2005). Hamilton’s indicators of the force of selection. Proceedings of the National Academy of Science of the United States of America, 102(23), 8263–8.Google ScholarPubMed
Baudisch, A. (2008). Inevitable Ageing? Contributions to Evolutionary-Demographic Theory (Berlin: Springer).Google Scholar
Bell, G. (1984). Evolutionary and non-evolutionary theories of senescence. American Naturalist, 124, 600–3.CrossRefGoogle Scholar
Carey, J. R., Liedo, P., Orozdo, D. & Vaupel, J. W. (1992). Slowing of mortality rates at older ages in large medfly cohorts. Science, 258, 447–61.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1970). Selection in populations with overlapping generations: I. The use of Malthusian parameters in population genetics. Theoretical Population Biology, 1, 352–70.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1980). Evolution in Age-Structured Populations (New York: Cambridge University Press).Google Scholar
Charlesworth, B. (2001). Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. Journal of Theoretical Biology, 210, 4765.CrossRefGoogle ScholarPubMed
Charlesworth, B. & Hughes, K. A. (1996). Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proceedings of the National Academy of Science of the United States of America, 93(12), 6140–5.Google Scholar
Chippindale, A. K., Alipaz, J. A., Chen, H.-W. & Rose, M. R. (1997). Experimental evolution of accelerated development in Drosophila: 1. Larval development speed and survival. Evolution, 51, 1536–51.CrossRefGoogle Scholar
Cochran, G. & Harpending, H. (2009). The 10,000 Year Explosion: How Civilization Accelerated Human Evolution (New York: Basic Books).Google Scholar
Comfort, A. (1979). The Biology of Senescence (Edinburgh: Churchill Livingstone).Google Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22(4), 173–4.CrossRefGoogle ScholarPubMed
Curtsinger, J. W., Fukui, H. H., Townsend, D. R. & Vaupel, J. W. (1992). Demography of genotypes: failure of limited life span. Science, 258, 461–3.CrossRefGoogle ScholarPubMed
David, R. H. & Bryant, E. H. (2000). The evolution of senescence under curtailed life span in laboratory populations of Musca domestica (the housefly). Heredity, 85, 115–21.Google Scholar
De Grey, A. & Rae, M. (2007). Ending Ageing: The Rejuvenation Breakthroughs that Could Reverse Human Ageing in Our Lifetime (New York: St Martin’s Press).Google Scholar
Finch, C. E. (1998). Variations in senescence and longevity include the possibility of negligible senescence. Journals of Gerontology: Medical Science, 53A(4), B235–9.Google Scholar
Finch, C. E. (2009). Update on slow ageing and negligible senescence: a mini-review. Gerontology, 55(3), 307–13.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford University Press).CrossRefGoogle Scholar
Forsberg, L. A., Rasi, C., Razzaghian, H. R., et al. (2012). Age-related somatic structural changes in the nuclear genome of human blood cells. American Journal of Human Genetics, 90, 217–28.CrossRefGoogle ScholarPubMed
Greenwood, M. & Irwin, J. O. (1939). The biostatistics of senility. Human Biology, 11, 123.Google Scholar
Haldane, J. B. S. (1927). A mathematical theory of natural and artificial selection, part IV. Proceedings of the Cambridge Philosophical Society, 23, 607–15.Google Scholar
Haldane, J. B. S. (1941). New Paths in Genetics (London: Allen & Unwin).Google Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Creevy, K. E. & Promislow, D. E. L. (2013). Reproductive capability is associated with lifespan and cause of death in companion dogs. PLOS One, doi: 10.1371/journal.pone.0061082.CrossRefGoogle Scholar
Jazwinski, S. M. (1990). Ageing and senescence of the budding yeast Saccharomyces cerevisiae. Molecular Microbiology, 4(3), 337–43.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero‐Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. & Cremer, T. (1982). Cytogerontology since 1881: a reappraisal of August Weissmann and a review of modern progress. Human Genetics, 60, 101–21.CrossRefGoogle Scholar
Le Bourg, E. & Moreau, M. (2014). Individual late-life fecundity plateaus do exist in Drosophila melanogaster and are very common at old age. Experimental Gerontology, doi: 10.1016/j.exger.2014.04.001.CrossRefGoogle Scholar
Luckinbill, L. S., Arking, R., Clare, M., et al. (1984). Selection for delayed senescence in Drosophila melanogaster. Evolution, 38, 9961003.CrossRefGoogle ScholarPubMed
Martinez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2010). Evolutionary demography and quantitative genetics: age-specific survival as a threshold trait. Proceedings of the Royal Society of London Series B: Biological Sciences, 278, 144–51.Google ScholarPubMed
Medawar, P. B. (1946). Old age and natural death. Modern Quarterly, 1, 3056.Google Scholar
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Mueller, L. D., Drapeau, M. D., Adams, C. S., et al. (2003). Statistical tests of demographic heterogeneity theories. Experimental Gerontology, 38, 373–86.CrossRefGoogle ScholarPubMed
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2005). Population dynamics, life history and demography: lessons from Drosophila. In Advances in Ecological Research: Population Dynamics and Laboratory Ecology, Ed. Yiqi, L. (New York: Academic Press).Google Scholar
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2007). An evolutionary heterogeneity model of late-life fecundity in Drosophila. Biogerontology, 8, 147–61.CrossRefGoogle ScholarPubMed
Mueller, L. D., Rauser, C. L. & Rose, M. R. (2011). Does Aging Stop? (New York: Oxford University Press).CrossRefGoogle Scholar
Mueller, L. D. & Rose, M. R. (1996). Evolutionary theory predicts late-life mortality plateaus. Proceedings of the National Academy of Sciences of the United States of America, 93, 15249–53.Google ScholarPubMed
Nagai, J., Lin, C. & Sabour, M. P. (1995). Lines of mice selected for reproductive longevity. Growth, Development, and Ageing, 59(3), 7991.Google ScholarPubMed
Nesse, R. M. (1988). Life table tests of evolutionary theories of senescence. Experimental Gerontology, 23, 445–53.CrossRefGoogle ScholarPubMed
Norton, H. T. J. (1928). Natural selection and Mendelian variation. Proceedings of the London Mathematical Society, 28, 145.CrossRefGoogle Scholar
Partridge, L. & Fowler, K. (1992). Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution, 46, 7691.CrossRefGoogle ScholarPubMed
Pearl, R., Miner, J. R. & Parker, S. L. (1927). Experimental studies on the duration of life: XI. Density of population and life duration in Drosophila. American Naturalist, 61, 289317.CrossRefGoogle Scholar
Polosak, J., Roszkowska-Gancarz, M., Kurylowicz, A., et al. (2010). Decreased expression and the Lys751Gln polymorphism of the XPD gene are associated with extreme longevity. Biogerontology, 11, 287–97.CrossRefGoogle ScholarPubMed
Phung, K. H, Rose, M. R. & Mueller, L. D. (In preparation). Transient age-specific adaptation to a novel environment.Google Scholar
Pletcher, S. D. & Curtsinger, J. W. (1998). Mortality plateaus and the evolution of senescence: why are old-age mortality rates so low? Evolution, 52, 454–64.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45, 1869–87.CrossRefGoogle ScholarPubMed
Promislow, D. E. L, Tatar, M., Khazaeli, A. & Curtsinger, J. W. (1996). Age-specific patterns of genetic variance in Drosophila melanogaster: I. Mortality. Genetics, 143, 839–48.CrossRefGoogle ScholarPubMed
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Rauser, C. L., Abdel-Aal, Y., Sheih, J. A., et al. (2005). Lifelong heterogeneity in fecundity is insufficient to explain late-life fecundity plateaus in Drosophila melanogaster. Experimental Gerontology, 40(8–9), 660–70.CrossRefGoogle ScholarPubMed
Rauser, C. L., Mueller, L. D. & Rose, M. R. (2003). Ageing, fertility and immortality. Experimental Gerontology, 38, 2733.CrossRefGoogle ScholarPubMed
Rauser, C. L., Mueller, L. D. & Rose, M. R. (2006). The evolution of late life. Ageing Research Reviews, 5, 1432.CrossRefGoogle ScholarPubMed
Rauser, C. L., Tierney, J. J., Gunion, S. M., et al. (2006). Evolution of late-life fecundity in Drosophila melanogaster. Journal of Evolutionary Biology, 19, 289301.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2008). The evolution of senescence from a comparative perspective. Functional Ecology, 22, 379–92.CrossRefGoogle Scholar
Rogina, B., Wolverton, T., Bross, T. G., et al. (2007). Distinct biological epochs in the reproductive life of female Drosophila melanogaster. Mechanisms of Aging and Development, 128, 477–85.CrossRefGoogle ScholarPubMed
Rose, M. R. (1982) Antagonistic pleiotropy, dominance, and genetic variation. Heredity, 48, 6378.CrossRefGoogle Scholar
Rose, M. R. (1983). Further models of selection with antagonistic pleiotropy. In Population Biology, ed. Freedman, H. I. and Strobeck, C. (pp. 4753)(Berlin: Springer).CrossRefGoogle Scholar
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–10.CrossRefGoogle ScholarPubMed
Rose, M. R. (1985). Life-history evolution with antagonistic pleiotropy and overlapping generations. Theoretical Population Biology, 28, 342–58.CrossRefGoogle Scholar
Rose, M. R. (1991). Evolutionary Biology of Ageing (New York: Oxford University Press).Google Scholar
Rose, M. R. & Burke, M. K. (2011). Genomic Croesus: experimental evolutionary genetics of ageing. Experimental Gerontology, 46, 397403.CrossRefGoogle Scholar
Rose, M. R. & Charlesworth, B. (1980). A test of evolutionary theories of senescence. Nature, 287, 141–2.CrossRefGoogle ScholarPubMed
Rose, M. R. & Charlesworth, B. (1981). Genetics of life-history in Drosophila melanogaster: I. Sib analysis of adult females. Genetics, 97, 173–85.Google ScholarPubMed
Rose, M. R., Drapeau, M. D., Yazdi, P. G., et al. (2002). Evolution of late-life mortality in Drosophila melanogaster. Evolution, 56, 1982–91.Google ScholarPubMed
Rose, M. R., Passananti, H. B. & Matos, M. (eds.) (2004). Methuselah Flies: A Case Study in the Evolution of Ageing (Singapore: World Scientific Publishing).CrossRefGoogle Scholar
Santos, J., Pascual, M., Simões, P., et al. (2012). From nature to the lab: the impact of founder effects on adaptation. Journal of Evolutionary Biology, 25, 2607–22.CrossRefGoogle Scholar
Santos, J., Pascual, M., Simões, P., et al. (2013). Fast evolutionary genetic differentiation during experimental colonizations. Journal of Genetics, 92, 183–94.CrossRefGoogle ScholarPubMed
Service, P. M., Hutchinson, E. W. & Rose, M. R. (1988). Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution, 42, 708–16.CrossRefGoogle ScholarPubMed
Shahrestani, P., Tran, X. & Mueller, L. D. (2012a). Physiological decline prior to death in Drosophila melanogaster. Biogerontology, 13, 537–45.CrossRefGoogle ScholarPubMed
Shahrestani, P., Tran, X. & Mueller, L. D. (2012b). Patterns of male fitness conform to predictions of evolutionary models of late life. Journal of Evolutionary Biology, 25(6), 1060–5.CrossRefGoogle ScholarPubMed
Shaw, F. H., Promislow, D. E. L, Tata, R. M., et al. (1999). Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics, 152, 553–66.CrossRefGoogle ScholarPubMed
Sokal, R. R. (1970). Senescence and genetic load: evidence from Tribolium. Science, 167, 1733–4.CrossRefGoogle ScholarPubMed
Steinsaltz, D. & Evans, S. N. (2004). Markov mortality models: implications of quasistationarity and varying initial conditions. Theoretical Population Biology, 65: 319–37.CrossRefGoogle Scholar
Steinsaltz, D., Evans, S. N. & Wachter, K. W. (2005). A generalized model of mutation-selection balance with applications to ageing. Advanced Applied Mathematics, 35, 1633.CrossRefGoogle Scholar
Tatar, M., Promislow, D. E. L, Khazaeli, A. & Curtsinger, J. W. (1996). Age specific patterns of genetic variance in Drosophila melanogaster: II. Fecundity and its genetic correlation with agespecific mortality. Genetics, 143, 849–58.CrossRefGoogle ScholarPubMed
Vaupel, J. W., Manton, K. G. & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–54.CrossRefGoogle ScholarPubMed
Wachter, K. W. (1999). Evolutionary demographic models for mortality plateaus. Proceedings National Academy of Sciences of the United States of America, 96, 10544–7.CrossRefGoogle ScholarPubMed
Wachter, K. W., Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences of the United States of America. 110(25), 10141–6.Google ScholarPubMed
Wattiaux, J. M. (1968a). Cumulative parental age effects in Drosophila subobscura. Evolution, 22, 406–21.CrossRefGoogle ScholarPubMed
Wattiaux, J. M. (1968b). Parental age effects in Drosophila pseudobscura. Experimental Gerontology, 3, 5561.CrossRefGoogle Scholar
Weismann, A. (1891). On Heredity (Oxford: Clarendon Press).Google Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zajitschek, F., Jin, T., Colchero, F. & Maklakov, A. A. (2013) Ageing differently: diet- and sex-dependent late-life mortality patterns in Drosophila melanogaster. Journal of Gerontology, 69(6), 6674.Google ScholarPubMed

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 877–87.CrossRefGoogle Scholar
Allen, L. J. S. (1989). A density-dependent Leslie matrix model. Mathematical Biosciences, 95, 179–87.CrossRefGoogle ScholarPubMed
Baudisch, A. (2008). Inevitable Aging? Contributions to Evolutionary-Demographic Theory (Berlin: Springer Science and Business Media).Google Scholar
Brass, W. (1960). The graduation of fertility distributions by polynomial functions. Population Studies, 14(2), 148–62.CrossRefGoogle Scholar
Caswell, H. (1978). A general formula for the sensitivity of population growth rate to changes in life history parameters. Theoretical Population Biology, 14(2), 215–30.CrossRefGoogle ScholarPubMed
Caswell, H. (2001). Matrix Population Models (2nd edn.) (Sunderland, MA: Sinauer Associates).Google Scholar
Caswell, H. (2006). Applications of Markov chains in demography. In MAM2006: Markov Anniversary Meeting (pp. 319–34) (Raleigh, NC: Boson Books).Google Scholar
Caswell, H. (2007a). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22(4), 173–4.CrossRefGoogle ScholarPubMed
Caswell, H. (2007b). Sensitivity analysis of transient population dynamics. Ecology Letters, 10(1), 115.CrossRefGoogle ScholarPubMed
Caswell, H. (2008). Perturbation analysis of non-linear matrix population models. Demographic Research, 18(3), 59116.CrossRefGoogle Scholar
Caswell, H. (2009). Stage, age and individual stochasticity in demography. Oikos 118(12), 1763–82.CrossRefGoogle Scholar
Caswell, H. (2010). Reproductive value, the stable stage distribution, and the sensitivity of the population growth rate to changes in vital rates. Demographic Research, 23, 531–48.CrossRefGoogle Scholar
Caswell, H. (2012). Matrix models and sensitivity analysis of populations classified by age and stage: a vec-permutation matrix approach. Theoretical Ecology, 5(3), 403–17.CrossRefGoogle Scholar
Caswell, H. & Shyu, E. (2012). Sensitivity analysis of periodic matrix population models. Theoretical Population Biology, 82(4), 329–39.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1994). Evolution in Age-Structured Populations (2nd edn.) (Cambridge University Press).CrossRefGoogle Scholar
Charlesworth, B. (2000). Fisher, Medawar, Hamilton and the evolution of aging. Genetics, 156(3), 927–31.CrossRefGoogle ScholarPubMed
Chen, J., Lewis, E. E., Carey, J. R., et al. (2006). The ecology and biodemography of Caenorhabditis elegans. Experimental Gerontology, 41, 1059–65.CrossRefGoogle ScholarPubMed
Dieckmann, U. & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology, 34(5–6), 579612.CrossRefGoogle ScholarPubMed
Diekmann, O. (2004). A beginner’s guide to adaptive dynamics. Polish Academy of Sciences, Banach Center Publications, 63, 4786.Google Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (revised 1956) (Oxford University Press).CrossRefGoogle Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12(1), 1245.CrossRefGoogle ScholarPubMed
Human Fertility Database. Max Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria). Available at www.humanfertility.orgGoogle Scholar
Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.deGoogle Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505(7482), 169–73.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1990). The disposable soma theory of aging. In Genetic Effects on Aging, Vol. II (pp. 919), ed. Harrison, D. E. (Caldwell, NJ: Telford Press).Google Scholar
Kirkwood, T. B. L. & Holliday, R. (1986). Ageing as a consequence of natural selection. In The Biology of Human Ageing (pp. 116), ed. Bittles, A. H. & Collins, A. J. (Cambridge University Press).Google Scholar
Lande, R. (1982). A quantitative genetic theory of life history evolution. Ecology, 63(3), 607–15.CrossRefGoogle Scholar
Lee, R. D. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9637–42.Google Scholar
Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33, 183212.CrossRefGoogle ScholarPubMed
Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika, 35, 213–45.CrossRefGoogle Scholar
Liu, L. & Cohen, J. E. (1987). Equilibrium and local stability in a logistic matrix model for age-structured populations. Journal of Mathematical Biology, 25, 7388.CrossRefGoogle Scholar
Medawar, P. (1952). An Unsolved Problem in Biology (London: Lewis).Google Scholar
Metz, J. A. J. (2008). Fitness. In Encyclopedia of Ecology, Vol. 2 (pp. 15991612) (Amsterdam: Elsevier).CrossRefGoogle Scholar
Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. (1992). How should we define ‘fitness’ for general ecological scenarios? Trends in Ecology and Evolution, 7(6), 198202.CrossRefGoogle ScholarPubMed
Price, G. R. (1970). Selection and covariance. Nature, 227, 520–1.CrossRefGoogle ScholarPubMed
Rabinovitch, J. E. (1969). The applicability of some population growth models to a single-species laboratory population. Annals of the Entomological Society of America, 62(2), 437–42.Google Scholar
Reznick, D., Bryant, M. & Holmes, D. (2006). The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biology, 4(1), e7.CrossRefGoogle ScholarPubMed
Reznick, D. N., Bryant, M. J., Roff, D., et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431(7012), 1095–9.CrossRefGoogle ScholarPubMed
Robertson, A. (1968). The spectrum of genetic variation. In Population Biology and Evolution, ed. Lewontin, R. C. (pp. 516 ) (Syracuse University Press).Google Scholar
Rose, M. R. (1990). Evolutionary Biology of Aging (Oxford University Press).CrossRefGoogle Scholar
Shyu, E. & Caswell, H. (2014). Calculating second derivatives of population growth rates for ecology and evolution. Methods in Ecology and Evolution, 5, 473–82.CrossRefGoogle ScholarPubMed
Silvertown, J. (2013). The Long and the Short of It: The Science of Life Span and Ageing (University of Chicago Press).CrossRefGoogle Scholar
Smith, M., Caswell, H. & Mettler-Cherry, P. (2005). Stochastic flood and precipitation regimes and the population dynamics of a threatened floodplain plant. Ecological Applications, 15(3), 1036–52.CrossRefGoogle Scholar
Tuljapurkar, S. (1990). Population dynamics in variable environments. in Lecture Notes in Biomathematics, no. 85 (New York: Springer-Verlag).Google Scholar
Wachter, K. W., Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10141–6.Google ScholarPubMed
Wachter, K. W. & Finch, C. E. (1997). Between Zeus and the Salmon: The Biodemography of Longevity (Washington, DC: National Academies Press).Google Scholar
Wachter, K. W., Steinsaltz, D. & Evans, S. N. (2014). Evolutionary shaping of demographic schedules. Proceedings of the National Academy of Sciences of the United States of America, 111(Suppl. 3), 10846–53.Google ScholarPubMed
Wensink, M. J., Caswell, H., & Baudisch, A. (2016). The rarity of survival to old age does not drive the evolution of senescence. Evolutionary Biology. doi 10.1007/s 11692-016-9385-4.Google Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398411.CrossRefGoogle Scholar
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21(8), 458–63.CrossRefGoogle ScholarPubMed
Wright, S. (1937). The distribution of gene frequencies in populations. Proceedings of the National Academy of Sciences of the United States of America, 23(6), 307–20.Google ScholarPubMed

References

Baudisch, A. (2008). Inevitable Aging? Contributions to Evolutionary-Demographic Theory (Berlin: Springer).Google Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101(3), 596606.CrossRefGoogle Scholar
Baudisch, A. & Vaupel, J. W. (2012). Getting to the root of aging. Science, 338(6107), 618–19.CrossRefGoogle Scholar
Bochdanovits, Z. & de Jong, G. (2004). Antagonistic pleiotropy for life-history traits at the gene expression level. Proceedings of the Royal Society Series B: Biological Sciences, 271(Supp. 3), S75–8.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2004). Female post-reproductive life span: a general mammalian trait. Biological Reviews, 79(4), 733–50.CrossRefGoogle Scholar
Cohen, A. A., Martin, L. B., Wingfield, J. C., et al. (2012). Physiological regulatory networks: ecological roles and evolutionary constraints. Trends in Ecology and Evolution, 27(8), 428–35.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Yong, J., et al. (2013). A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mechanisms of Ageing and Development, 134(3–4), 110–17.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Li, Q., et al. (2014). Cross-population validation of statistical distance as a measure of physiological dysregulation during aging. Experimental Gerontology, 57, 203210.CrossRefGoogle ScholarPubMed
Cohen, A. A., Poirier, R., Dusseault-Bélanger, F., et al. (2015). Detection of a novel, integrative aging process suggests complex physiological integration. PloS one, 10(3), p.e0116489.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2016). Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology, 17(1), 205220.CrossRefGoogle ScholarPubMed
Comfort, A. (1979). The Biology of Senescence (Edinburgh: Churchill Livingstone).Google Scholar
Csermely, P. & Sőti, C. (2006). Cellular networks and the aging process. Archives of Physiology and Biochemistry, 112(2), 60–4.CrossRefGoogle ScholarPubMed
de Magalhães, J. P., Curado, J. & Church, G. M. (2009). Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics, 25(7), 875–81.CrossRefGoogle ScholarPubMed
de Magalhães, J. P. & Toussaint, O. (2004). How bioinformatics can help reverse engineer human aging. Ageing Research Reviews, 3(2), 125–41.Google ScholarPubMed
Ferrucci, L. (2005). An exciting thought. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(1), 56.CrossRefGoogle Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Flatt, T., Amdam, G. V., Kirkwood, T. B. L. & Omholt, S. W. (2013). Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Quarterly Review of Biology, 88(3), 185218.CrossRefGoogle ScholarPubMed
Fried, L. P., Hadley, E. C., Walston, J. D., et al. (2005). From bedside to bench: research agenda for frailty. Science of Aging Knowledge Environment, 2005(31): 24.CrossRefGoogle ScholarPubMed
Fried, L. P., Xue, Q.-L., Cappola, A. R., et al. (2009). Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64(10), 1049–57.Google ScholarPubMed
Froy, H., Phillips, R. A., Wood, A. G., et al. (2013). Age-related variation in reproductive traits in the wandering albatross: evidence for terminal improvement following senescence. Ecology Letters, 16(5), 642–9.CrossRefGoogle ScholarPubMed
Ganz, T. (2003). Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood, 102(3), 783–8.CrossRefGoogle ScholarPubMed
Gems, D. & McElwee, J. J. (2005). Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mechanisms of Ageing and Development, 126(3), 381–7.CrossRefGoogle ScholarPubMed
Guarente, L. & Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408(6809), 255–62.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Soltow, Q. A. Li, S., et al. (2014). Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell.CrossRefGoogle Scholar
Holland, J. H. (1992). Complex adaptive systems. Daedalus, 1730.Google Scholar
Holzenberger, M., Dupont, J., Ducos, B., et al. (2003). IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature, 421, 182–7.CrossRefGoogle ScholarPubMed
Horvitz, C. C. & Tuljapurkar, S. (2008). Stage dynamics, period survival, and mortality plateaus. American Naturalist, 172(2), 203–15.CrossRefGoogle ScholarPubMed
Hughes, K. A., Alipaz, J. A., Drnevich, J. M. & Reynolds, R. M. (2002). A test of evolutionary theories of aging. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14286–91.Google ScholarPubMed
Hughes, K. A. & Reynolds, R. M. (2005). Evolutionary and mechanistic theories of aging. Annual Review of Entomology, 50(1), 421–45.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505(7482): 169–73.CrossRefGoogle ScholarPubMed
Kier, L. & Witten, T. (2005). Cellular automata models of complex biochemical systems. In Complexity in Chemistry, Biology, and Ecology, ed. Bonchev, D. & Rouvray, D. (pp. 237301) (New York: Springer).CrossRefGoogle Scholar
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1981). Repair and its evolution: survival versus reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use, ed. Townsend, C. R. & Calow, P. (pp. 165–89) (Oxford, Blackwell Scientific).Google Scholar
Kirkwood, T. B. L. (1985). Comparative and evolutionary aspects of longevity. In Handbook of the Biology of Aging, ed. Finch, C. E. & Schneider, E. L. (pp. 2744) (New York, Van Nostrand Rheinhold).Google Scholar
Kirkwood, T. B. L. (1992). Comparative life spans of species: why do species have the life spans they do? American Journal of Clinical Nutrition, 55, 1191S–5S.CrossRefGoogle Scholar
Kirkwood, T. B. L. (2002). Evolution of ageing. Mechanisms of Ageing and Development, 123(7), 737–45.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2005). Understanding the Odd Science of Aging. Cell, 120(4), 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2008). A systematic look at an old problem. Nature, 451, 644–7.CrossRefGoogle Scholar
Kirkwood, T. B. L. (2011). Systems biology of ageing and longevity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561), 6470.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L., Boys, R. J., Gillespie, C. S., et al. (2003). Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology, 4(3), 243–9.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London, B205, 531–46.Google Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society of London Series B, 332, 1524.Google ScholarPubMed
Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560), 1662–4.CrossRefGoogle ScholarPubMed
Kowald, A. & Kirkwood, T. B. L. (1996). A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutation Research/DNAging, 316(5–6), 209–36.CrossRefGoogle ScholarPubMed
Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43(3), 332–47.CrossRefGoogle ScholarPubMed
Lipsitz, L. A. (2004). Physiological complexity, aging, and the path to frailty. Science of Aging Knowledge Environment, 2004(16), 16.CrossRefGoogle ScholarPubMed
Martı́nez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33(3), 217–25.CrossRefGoogle ScholarPubMed
McEwen, B. S. & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43(1), 215.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London, Lewis).Google Scholar
Medvedev, Z. A. (1990). An attempt at a rational classification of theories of ageing. Biological Reviews, 65(3), 375–98.CrossRefGoogle Scholar
Milot, E., Cohen, A. A., Vézina, F., et al. (2014). A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods in Ecology and Evolution, 5(2), 146–55.CrossRefGoogle Scholar
Moorad, J. A. & Promislow, D. E. (2009). What can genetic variation tell us about the evolution of senescence? Proceedings of the Royal Society of London Series B: Biological Sciences, 276(1665), 2271–8.Google ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2008). A theory of age-dependent mutation and senescence. Genetics, 179(4), 2061–73.CrossRefGoogle ScholarPubMed
Partridge, L. & Gems, D. (2002). Mechanisms of aging: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Peñuelas, J. (2005). Plant physiology: a big issue for trees. Nature, 437(7061), 965–6.CrossRefGoogle ScholarPubMed
Pigliucci, M. & Muller, G. (2010). Evolution – the extended synthesis.CrossRefGoogle Scholar
Promislow, D. E. L. (2004). Protein networks, pleiotropy and the evolution of senescence. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1545), 1225–34.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220(3), 417–37.CrossRefGoogle Scholar
Reed, W. L., Clark, M. E., Parker, P. G., et al. (2006). Physiological effects on demography: a long-term experimental study of testosterones effects on fitness. American Naturalist, 167(5), 667–83.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (1998). Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. American Naturalist, 152(1), 2444.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Jones, O. R., Archer, C. R., et al. (2015). The COMPADRE Plant Matrix Database: an open online repository for plant demography. Journal of Ecology 103(1), 202218.CrossRefGoogle Scholar
Salguero-Gómez, R., Jones, O. R., Archer, C. A., et al. 2016. COMADRE: a global database of animal demography. Journal of Animal Ecology 85, 371384.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101(3), 545–54.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Krey, L. C. & McEwen, B. S. (2002). The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Science of Aging Knowledge Environment, 2002(38), 21.CrossRefGoogle Scholar
Seplaki, C. L., Goldman, N., Weinstein, M. & Lin, Y.-H. (2006). Measurement of cumulative physiological dysregulation in an older population. Demography, 43(1), 165–83.CrossRefGoogle Scholar
Simons, M. J., Koch, W. & Verhulst, S. (2013). Dietary restriction of rodents decreases aging rate without affecting initial mortality rate – a meta-analysis. Aging Cell, 12(3), 410–14.CrossRefGoogle ScholarPubMed
Soltow, Q. A., Jones, D. P. & Promislow, D. E. L. (2010). A network perspective on metabolism and aging. Integrative and Comparative Biology, 50(5), 844–54.CrossRefGoogle ScholarPubMed
Taffett, G. E. (2003). Physiology of aging. In Geriatric Medicine, ed. Cassel, C. K., Leipzig, R. M., Cohen, H. J. et al. (pp. 2735) (New York: Springer).CrossRefGoogle Scholar
Turbill, C. & Ruf, T. (2010). Senescence is more important in the natural lives of long-than short-lived mammals. PLoS ONE, 5(8), e12019.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65(4), 339–51.CrossRefGoogle ScholarPubMed
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proceedings of the Royal Society of London Series B: Biological Sciences, 273(1593), 1443–8.Google ScholarPubMed
Warner, D. A., Miller, D. A., Bronikowski, A. M., & Janzen, F. J. (2016). Decades of field data reveal that turtles senesce in the wild. Proceedings of the National Academy of Sciences, 201600035.CrossRefGoogle Scholar
Weindruch, R. & Sohal, R. S. (1997). Caloric intake and aging. New England Journal of Medicine, 337(14), 986–94.CrossRefGoogle ScholarPubMed
Wensink, M. (2013). Age-specificity and the evolution of senescence: a discussion. Biogerontology, 14(1), 99105.CrossRefGoogle ScholarPubMed
Wensink, M. J., Wrycza, T. F. & Baudisch, A. (2014). No senescence despite declining selection pressure: Hamilton’s result in broader perspective. Journal of Theoretical Biology, 347, 176–81.CrossRefGoogle ScholarPubMed
West, D. B. (2001). Introduction to Graph Theory (Upper Saddle River, NJ: Prentice-Hall).Google Scholar
West, G. B. & Bergman, A. (2009). Toward a systems biology framework for understanding aging and health span. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(2), 205–8.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Xue, H., Xian, B., Dong, D., et al. (2007). A modular network model of aging. Molecular Systems Biology, 3(1).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×