Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T05:20:45.165Z Has data issue: false hasContentIssue false

Part III - Related behaviors and other factors influencing escape

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 263 - 404
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barbour, M. A. & Clark, R. W. (2012). Ground squirrel tail-flag displays alter both predatory strike and ambush site selection behaviours of rattlesnakes. Proceedings of the Royal Society B: Biological Sciences, 279, 38273833.Google Scholar
Beauchamp, G. (2008). What is the magnitude of the group-size effect on vigilance? Behavioral Ecology, 19, 13611368.Google Scholar
Beauchamp, G. (2009a). How does food density influence vigilance in birds and mammals? Animal Behaviour, 78, 223231.Google Scholar
Beauchamp, G. (2009b). Sleeping gulls monitor the vigilance behaviour of their neighbours. Biology Letters, 5, 911.Google Scholar
Beauchamp, G. (2011). Collective waves of sleep in gulls (Larus spp.). Ethology, 117, 326331.Google Scholar
Beauchamp, G., Alexander, P. & Jovani, R. (2012). Consistent waves of collective vigilance in groups using public information about predation risk. Behavioral Ecology, 23, 368374.Google Scholar
Beauchamp, G. & Ruxton, G. D. (2012). Changes in anti-predator vigilance over time caused by a war of attrition between predator and prey. Behavioral Ecology, 23, 368374.Google Scholar
Bednekoff, P. A. & Lima, S. L. (2005). Testing for peripheral vigilance: do birds value what they see when not overtly vigilant? Animal Behaviour, 69, 11651171.Google Scholar
Bergstrom, C. T. & Lachmann, M. (2001). Alarm calls as costly signals of antipredator vigilance: The watchful babbler game. Animal Behaviour, 61, 535543.Google Scholar
Blanchard, P. & Fritz, H. (2007). Induced or routine vigilance while foraging. Oikos, 116, 16031608.Google Scholar
Blumstein, D. T. & Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity: A comparative test with ground-dwelling sciurid alarm calls. American Naturalist, 150, 179200.Google Scholar
Blumstein, D. T., Verneyre, L. & Daniel, J. C. (2004). Reliability and the adaptive utility of discrimination among alarm callers. Proceedings of the Royal Society of London – Series B: Biological Sciences, 271, 18511857.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. (2011). Principles of Animal Communication, 2nd edn. Sunderland: Sinauer.Google Scholar
Brown, G. E. & Dreier, V. M. (2002). Predator inspection behaviour and attack cone avoidance in a characin fish: The effects of predator diet and prey experience. Animal Behaviour, 63, 11751181.Google Scholar
Caraco, T. (1979). Time budgeting and group size: A theory. Ecology, 60, 611617.Google Scholar
Caro, T. M. (1986). The functions of stotting in Thomson’s gazelles: Some tests of the predictions. Animal Behaviour, 34, 663684.Google Scholar
Caro, T. M. (1994). Ungulate antipredator behaviour: Preliminary and comparative data from African bovids. Behaviour, 128, 189228.Google Scholar
Caro, T. M. (2005). Antipredator Defenses in Birds and Mammals. Chicago, IL: University of Chicago Press.Google Scholar
Caro, T. M., Lombardo, L., Goldizen, A. W. & Kelly, M. (1995). Tail-flagging and other antipredator signals in white-tailed deer: New data and synthesis. Behavioral Ecology, 6, 442450.Google Scholar
Caro, T. M., Graham, C. M., Stoner, C. J. & Vargas, J. K. (2004). Adaptive significance of antipredator behaviour in artiodactyls. Animal Behaviour, 67, 205228.Google Scholar
Carter, A. J., Pays, O. & Goldizen, A. W. (2009). Individual variation in the relationship between vigilance and group size in eastern grey kangaroos. Behavioral Ecology & Sociobiology, 64, 237245.Google Scholar
Cooper, W. E. (2010). Timing during predatorprey encounters, duration and directedness of a putative pursuit-deterrent signal by the zebra-tailed lizard, Callisaurus draconoides. Behaviour, 147, 16751691.Google Scholar
Cresswell, W., Hilton, G. M. & Ruxton, G. D. (2000). Evidence for a rule governing the avoidance of superfluous escape flights. Proceedings of the Royal Society B: Biological Sciences, 267, 733737.Google Scholar
Croft, D., James, R., Thomas, P. et al. (2006). Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 59, 644650.Google Scholar
Curio, E. (1978). The adaptive significance of avian mobbing: I. Teleonomic hypothesess and predictions. Zeitscrift fur Tierpsychologie, 48, 175183.Google Scholar
Devereux, C. L., Whittingham, M. J., Fernández-Juricic, E., Vickery, J. A. & Krebs, J. R. (2006). Predator detection and avoidance by starlings under differing scenarios of predation risk. Behavioral Ecology, 17, 303309.Google Scholar
Dimond, S. & Lazarus, J. (1974). The problem of vigilance in animal life. Brain, Behavior and Evolution, 9, 6079.Google Scholar
Evans, C. S., Evans, L. & Marler, P. (1993). On the meaning of alarm calls: Functional reference in an avian vocal system. Animal Behaviour, 46, 2338.Google Scholar
Favreau, F.-R., Goldizen, A. W. & Pays, O. (2010). Interactions among social monitoring, anti-predator vigilance and group size in eastern grey kangaroos. Proceedings of the Royal Society B: Biological Sciences, 277, 20892095.Google Scholar
Fernández-Juricic, E., Erichsen, J. T. & Kacelnik, A. (2004). Visual perception and social foraging in birds. Trends in Ecology & Evolution, 19, 2531.Google Scholar
Fernández-Juricic, E., Gall, M. D., Dolan, T., Tisdale, V. & Martin, G. R. (2008). The visual fields of two ground-foraging birds, House Finches and House Sparrows, allow for simultaneous foraging and anti-predator vigilance. Ibis, 150, 779787.Google Scholar
FitzGibbon, C. D. (1994). The costs and benefits of predator inspection behaviour in Thomson’s gazelles. Behavioral Ecology & Sociobiology, 34, 139148.Google Scholar
FitzGibbon, C. D. & Fanshawe, J. (1988). Stotting in Thomson’s gazelles: An honest signal of condition. Behavioral Ecology & Sociobiology, 23, 6974.Google Scholar
Fortin, D., Boyce, M. S., Merrill, E. H. & Fryxell, J. M. (2004). Foraging costs of vigilance in large mammalian herbivores. Oikos, 107, 172180.Google Scholar
Ge, C., Beauchamp, G. & Li, Z. (2011). Coordination and synchronisation of anti-predation vigilance in two crane species. Plos One, 6, e26447.Google Scholar
Godin, J.-G. J. & Davis, S. A. (1995). Who dares, benefits: Predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proceedings of the Royal Society of London. Series B: Biological Sciences, 259, 193200.Google Scholar
Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C. & Ruxton, G. D. (2010). Interspecific information transfer influences animal community structure. Trends in Ecology & Evolution, 25, 354361.Google Scholar
Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical Biology, 144, 517546.Google Scholar
Griesser, M. (2008). Referential calls signal predator behaviour in a group living bird. Current Biology, 18, 6973.Google Scholar
Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295311.Google Scholar
Kaby, U. & Lind, J. (2003). What limits predator detection in blue tits (Parus caeruleus): Posture, task or orientation? Behavioral Ecology & Sociobiology, 54, 534538.Google Scholar
Kenward, R. E. (1978). Hawks and doves: Factors affecting success and selection in goshawk attacks on woodpigeons. Journal of Animal Ecology, 47, 449460.Google Scholar
Külling, D. & Milinski, M. (1992). Size-dependent predation risk and partner quality in predator inspection of sticklebacks. Animal Behaviour, 44, 949955.Google Scholar
Landeau, L. & Terborgh, J. (1986). Oddity and the “confusion effect” in predation. Animal Behaviour, 34, 13721380.Google Scholar
Leger, D. W., Owings, D. H. & Gelfand, D. L. (1980). Single-note vocalizations of California ground squirrels: Graded signals and situation-specificity of predator and socially evoked calls. Zeitscrift fur Tierpsychologie, 52, 227246.Google Scholar
Lima, S. L. (1988). Vigilance during the initiation of daily feeding in dark-eyed juncos. Oikos, 53, 1216.Google Scholar
Lima, S. L. (1992). Strong preferences for apparently dangerous habitats? A consequence of differential escape from predators. Oikos, 64, 597600.Google Scholar
Lima, S. L. (1995). Collective detection of predatory attack by social foragers: Fraught with ambiguity? Animal Behaviour, 50, 10971108.Google Scholar
Lima, S. L. & Bednekoff, P. A. (1999). Back to the basics of antipredatory vigilance: can nonvigilant animals detect attack? Animal Behaviour, 58, 537543.Google Scholar
Lima, S. L., Rattenborg, N. C., Lesku, J. A. & Amlaner, C. J. (2005). Sleeping under the risk of predation. Animal Behaviour, 70, 723736.Google Scholar
Loughry, W. J. & McDonough, C. M. (1988). Calling and vigilance in California ground squirrels: A test of the tonic communication hypothesis. Animal Behaviour, 36, 15331540.Google Scholar
Magurran, A. E. (1986). Predator inspection behaviour in minnow shoals: Differences between populations and individuals. Behavioral Ecology & Sociobiology, 19, 267273.Google Scholar
Magurran, A. E. (1990). The adaptive significance of schooling as antipredator defence in fish. Annals Zoologi Fennici, 27, 5166.Google Scholar
Manser, M. B., Seyfarth, R. M. & Cheney, D. L.(2002). Suricate alarm calls signal predator class and urgency. Trends in Cognitive Sciences, 6, 5557.Google Scholar
Mathot, K. J., van den Hout, P. J., Piersma, T. et al. (2011). Disentangling the roles of frequency vs. state-dependence in generating individual differences in behavioural plasticity. Ecology Letters, 14, 12541262.Google Scholar
McNamara, J. M. & Houston, A. I. (1992). Evolutionarily stable levels of vigilance as a function of group size. Animal Behaviour, 43, 641658.Google Scholar
Michelena, P. & Deneubourg, J.-L. (2011). How group size affects vigilance dynamics and time allocation patterns: The key role of imitation and tempo. Plos One, 6, e18631.Google Scholar
Milinski, M. (1987). Tit-for-tat in sticklebacks and the evolution of cooperation. Nature, 325, 433437.Google Scholar
Milinski, M., Lüthi, J. H., Eggler, R. & Parker, G. A. (1997). Cooperation under predation risk: Experiments on costs and benefits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 831837.Google Scholar
Murphy, T. G. (2006). Predator-elicited visual signal: Why the turquoise-browed motmot wag-displays its racketed tail. Behavioral Ecology, 17, 547553.Google Scholar
Murphy, T. G. (2007). Dishonest “preemptive” pursuit-deterrent signal? Why the turquoise-browed motmot wags its tail before feeding nestlings. Animal Behaviour, 73, 965970.Google Scholar
Neill, S. R. S. J. & Cullen, J. M. (1974). Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. Journal of Zoology, 172, 549569.Google Scholar
Öst, M. & Tierala, T. (2011). Synchronized vigilance while feeding in common eider brood-rearing coalitions. Behavioral Ecology, 22, 378384.Google Scholar
Owens, N. W. & Goss-Custard, J. D. (1976). The adaptive significance of alarm calls given by shorebirds on their winter feeding grounds. Evolution, 30, 397398.Google Scholar
Pays, O., Beauchamp, G., Carter, A. J. & Goldizen, A. W. (2013). Foraging in groups allows collective predator detection in a mammal species without alarm calls. Behavioral Ecology, 24, 12291236.Google Scholar
Pays, O., Sirot, E. & Fritz, H. (2012). Collective vigilance in the Greater Kudu: Towards a better understanding of synchronization patterns. Ethology, 118, 19.Google Scholar
Périquet, S., Valeix, M., Loveridge, A. J. et al. (2010). Individual vigilance of African herbivores while drinking: the role of immediate predation risk and context. Animal Behaviour, 79, 665671.Google Scholar
Pitcher, T. J., Green, D. A. & Magurran, A. E. (1986). Dicing with death: Predator inspection behaviour in minnow shoals. Journal of Fish Biology, 28, 439448.Google Scholar
Pravosudov, V. V. & Grubb, T. C.(1998). Body mass, ambient temperature, time of day, and vigilance in tufted titmice. Auk, 115, 221223.Google Scholar
Pulliam, H. R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38, 419422.Google Scholar
Quinn, J. L., Whittingham, M. J., Butler, S. J. & Cresswell, W. (2006). Noise, predation risk compensation and vigilance in the chaffinch Fringilla coelebs. Journal of Avian Biology, 37, 601608.Google Scholar
Rattenborg, N. C., Lima, S. L. & Amlaner, C. J. (1999). Half-awake to the risk of predation. Nature, 397, 397398.Google Scholar
Reale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291318.Google Scholar
Ridgway, S., Carder, D., Finneran, J. et al. (2006). Dolphin continuous auditory vigilance for five days. Journal of Experimental Biology, 209, 36213628.Google Scholar
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford: Oxford University Press.Google Scholar
Seyfarth, R. M., Cheney, D. L. & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094.Google Scholar
Shelley, E. L. & Blumstein, D. T. (2005). The evolution of vocal alarm communication in rodents. Behavioral Ecology, 16, 169177.Google Scholar
Sherman, P. W. (1985). Alarm calls of Belding’s ground squirrels to aerial predators: Nepotism or self-preservation? Behavioral Ecology and Sociobiology, 17, 313323.Google Scholar
Shultz, S., Faurie, C. & Noë, R. (2003). Behavioural responses of Diana monkeys to male long-distance calls: Changes in ranging, association patterns and activity. Behavioral Ecology and Sociobiology, 53, 238245.Google Scholar
Sirot, E. & Pays, O. (2011). On the dynamics of predation risk perception for a vigilant forager. Journal of theoretical Biology, 276, 17.Google Scholar
Sirot, E. & Touzalin, F. (2009). Coordination and synchronization of vigilance in groups of prey: The role of collective detection and predators’ preference for stragglers. American Naturalist, 173, 4759.Google Scholar
Stang, A. T. & McRae, S. B. (2009). Why some rails have white tails: The evolution of white undertail plumage and anti-predator signaling. Evolutionary Ecology, 23, 943961.Google Scholar
Tan, K., Wang, Z., Li, H. et al. (2012). An “I see you” prey–predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina. Animal Behaviour, 83, 879882.Google Scholar
Templeton, C. N., Greene, E. & Davis, K. (2005). Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science, 308, 19341937.Google Scholar
Thomas, P. O. R., Croft, D. P., Morrell, L. J. et al. (2008). Does defection during predator inspection affect social structure in wild shoals of guppies? Animal Behaviour, 75, 4353.Google Scholar
Tosh, C. R., Jackson, A. L. & Ruxton, G. D. (2006). The confusion effect in predatory neural networks. American Naturalist, 167, E52E65.Google Scholar
Vega-Redondo, F. & Hasson, O.(1993). A game-theoretic model of predator–prey signaling. Journal of Theoretical Biology, 162, 309319.Google Scholar
Wallace, D. J., Greenberg, D. S., Sawinski, J. et al. (2013). Rats maintain an overhead binocular field at the expense of constant fusion. Nature, 498, 6569.Google Scholar
Wilson, D. R. & Evans, C. S. (2012). Fowl communicate the size, speed and proximity of avian stimuli through graded structure in referential alarm calls. Animal Behaviour, 83, 535544.Google Scholar
Zahavi, A. & Zahavi, A. (1997). The Handicap Principle: A Missing Piece of Darwin’s Puzzle. Oxford: Oxford University Press.Google Scholar
Zuberbühler, K. (2009). Survivor signals: The biology and psychology of animal alarm calling. Advances in the Study of Behavior, 40, 277322.Google Scholar
Zuberbühler, K., Noë, R. & Seyfarth, R. M. (1997). Diana monkey long-distance calls: Messages for conspecifics and predators. Animal Behaviour, 53, 589604.Google Scholar

References

Adams, B. (1985). The thermal-dependence of muscle membrane constants in 2 iguanid lizards (Dipsosaurus dorsalis, Sceloporus occidentalis). Federation Proceedings, 44, 13771377.Google Scholar
Aerts, P., Van Damme, R., Vanhooydonck, B., Zaaf, A. & Herrel, A. (2000). Lizard locomotion: How morphology meets ecology. Netherlands Journal of Zoology, 50, 261277.Google Scholar
Alexander, R. M. (1977). Allometry of the limbs of antelopes (Bovidae). Journal of Zoology, 183, 125146.Google Scholar
Allen, V., Elsey, R. M., Jones, N., Wright, J. & Hutchinson, J. R. (2010). Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis. Journal of Anatomy, 216, 423445.Google Scholar
Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347361.Google Scholar
Astley, H. C., Abbott, E. M., Azizi, E., Marsh, R. L. & Roberts, T. J. (2013). Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County. Journal of Experimental Biology, 216, 39473953.Google Scholar
Autumn, K. & Peattie, A. M. (2002). Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 42, 10811090.Google Scholar
Autumn, K., Liang, Y. A., Hsieh, S. T., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681685.Google Scholar
Autumn, K., Hsieh, S. T., Dudek, D. M., et al. (2006). Dynamics of geckos running vertically. Journal of Experimental Biology, 209, 260272.Google Scholar
Bauer, A. M. & Russell, A. P. (1991). Pedal specializations in dune-dwelling geckos. Journal of Arid Environments, 20, 4362.Google Scholar
Beck, R. C. (1978). Motivation: Theories and Principles. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar
Bellairs, A. d. A. (1970). The Life of Reptiles. New York: Universe Books.Google Scholar
Bellairs, A. d. A. & Bryant, S. V. (1985). Autotomy and regeneration in reptiles. In Gans, C. & Billett, F. (eds.) Biology of the Reptilia. New York: John Wiley and Sons, 15, 301410.Google Scholar
Bennett, A. F. & Huey, R. B. (1990). Studying the evolution of physiological performance. In Futuyma, D. J. & Antonovics, J. (eds.) Oxford Surveys in Evolutionary Biology, Vol. 6. Oxford: Oxford University Press, pp. 251284.Google Scholar
Bergmann, P. J., Meyers, J. J. & Irschick, D. J. (2009). Directional evolution of stockiness coevolves with ecology and locomotion in lizards. Evolution, 63, 215.Google Scholar
Biewener, A. A. (1998). Muscle function in vivo: A comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. American Zoologist, 38, 703717.Google Scholar
Biewener, A. A. & Roberts, T. J. (2000). Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exercise and Sport Sciences Reviews, 28, 99107.Google Scholar
Birn-Jeffery, A. & Higham, T. E. (2014). The scaling of uphill and downhill locomotion in legged animals. Integrative and Comparative Biology, 54, 11591172.Google Scholar
Bonine, K. E. & Garland, T. Jr. (1999). Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. Journal of Zoology, 248, 255265.Google Scholar
Bonine, K. E., Gleeson, T. T. & Garland, T. Jr. (2001). Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). Journal of Morphology, 250, 265280.Google Scholar
Bonine, K. E., Gleeson, T. T. & Garland, T. Jr. (2005). Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. Journal of Experimental Biology, 208, 45294547.Google Scholar
Brainerd, E. L. & Owerkowicz, T. (2006). Functional morphology and evolution of aspiration breathing in tetrapods. Respiratory Physiology & Neurobiology, 154, 7388.Google Scholar
Brainerd, E. L. & Patek, S. N. (1998). Vertebral column morphology, C-start curvature, and the evolution of mechanical defenses in tetraodontiform fishes. Copeia, 1998, 971984.Google Scholar
Brodie, E. D. III. (1989). Behavioral modification as a means of reducing the cost of reproduction. American Naturalist, 134, 225238.Google Scholar
Bulova, S. J. (1994). Ecological correlates of population and individual variation in antipredator behavior of two species of desert lizards. Copeia, 1994, 980992.Google Scholar
Careau, V. & Garland, T. Jr. (2012). Performance, personality, and energetics: Correlation, causation, and mechanism. Physiological and Biochemical Zoology, 85, 543571.Google Scholar
Careau, V., Wolak, M. E., Carter, P. A. & Garland, T. Jr. (2013). Limits to behavioral evolution: The quantitative genetics of a complex trait under directional selection. Evolution, 67, 31023119.Google Scholar
Carothers, J. H. (1986). An experimental confirmation of morphological adaptation: Toe fringes in the sand-dwelling lizard Uma scoparia. Evolution, 40, 871874.Google Scholar
Carrier, D. R. (1991). Conflict in the hypaxial musculo-skeletal system: Documenting an evolutionary constraint. American Zoologist, 31, 644654.Google Scholar
Carrier, D. R. (1996). Ontogenetic limits on locomotor performance. Physiological Zoology, 69, 467488.Google Scholar
Cartmill, M. (1985). Climbing. In Hildebrand, M., Bramble, D. M., Liem, K. F. & Wake, D. B. (eds.) Functional Vertebrate Morphology. Cambridge: Harvard University Press, pp. 7388.Google Scholar
Christian, A. & Garland, T. Jr. (1996). Scaling of limb proportions in monitor lizards (Squamata: Varanidae). Journal of Herpetology, 30, 219230.Google Scholar
Clark, D. R. Jr. (1971). The strategy of tail-autotomy in the ground skink, Lygosoma laterale. Journal of Experimental Zoology, 176, 295302.Google Scholar
Clemente, C. J., Withers, P. C., Thompson, G., & Loyd, D. (2013). Lizard tricks: Overcoming conflicting requirements of speed versus climbing ability by altering biomechanics of the lizard stride. Journal of Experimental Biology, 216, 38543862.Google Scholar
Collar, D. C., Schulte, J. A. II, & Losos, J. B. (2011). Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution, 65, 26642680.Google Scholar
Collins, C. E., Russell, A. P. & Higham, T. E. (2015). Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko, Rhoptropus afer. Functional Ecology. 29, 6677.Google Scholar
Collins, C. E., Self, J. D., Anderson, R. A. & McBrayer, L. D. (2013). Rock-dwelling lizards exhibit less sensitivity of sprint speed to increases in substrate rugosity. Zoology, 116, 151158.Google Scholar
Coombs, W. P. Jr. (1978). Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review of Biology, 53, 393418.Google Scholar
Cooper, W. E. Jr. (2000). Effect of temperature on escape behaviour by an ectothermic vertebrate, the keeled earless lizard (Holbrookia propinqua). Behaviour, 137, 12991315.Google Scholar
Cooper, W. E. Jr. (2008). Visual monitoring of predators: Occurrence, cost and benefit for escape. Animal Behaviour, 76, 13651372.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1991). Influence of detectability and ability to escape on natural selection of conspicuous autonomous defenses. Canadian Journal of Zoology, 69, 757764.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2007). Beyond optimal escape theory: Microhabitats as well as predation risk affect escape and refuge use by the phrynosomatid lizard Sceloporus virgatus. Behaviour, 144, 12351254.Google Scholar
Cooper, W. E. Jr., Vitt, L. J., Hedges, R. & Huey, R. B. (1990). Locomotor impairment and defense in gravid lizards (Eumeces laticeps): Behavioral shift in activity may offset costs of reproduction in an active forager. Behavioral Ecology and Sociobiology, 27, 153157.Google Scholar
Cooper, W. E. Jr., Pyron, R. A. & Garland, T. Jr. (2014). Island tameness: Living on islands reduces flight initiation distance. Proceedings of the Royal Society B, 281, 20133019.Google Scholar
Crowley, S. R. (1985a). Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia, 66, 219225.Google Scholar
Crowley, S. R. (1985b). Insensitivity to desiccation of sprint running performance in the lizard, Sceloporus undulatus. Journal of Herpetology, 19, 171174.Google Scholar
Crowley, S. R. & Pietruszka, R. D. (1983). Aggressiveness and vocalization in the leopard lizard. (Gambelia wislizennii): The influence of temperature. Animal Behaviour, 31, 10551060.Google Scholar
Daley, M. A. & Biewener, A. A. (2003). Muscle force-length dynamics during level versus incline locomotion: A comparison of in vivo performance of two guinea fowl ankle extensors. Journal of Experimental Biology, 206, 29412958.Google Scholar
Daniels, C. B. (1983). Running: An escape strategy enhanced by autotomy. Herpetologica, 39, 162165.Google Scholar
Daniels, C. B., Flaherty, S. P. & Simbotwe, M. P. (1986). Tail size and effectiveness of autotomy in a lizard. Journal of Herpetology, 20, 9396.Google Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., et al. (2000). How animals move: An integrative view. Science, 288, 100106.Google Scholar
Djawdan, M. (1993). Locomotor performance of bipedal and quadrupedal heteromyid rodents. Functional Ecology, 7, 195202.Google Scholar
Farley, C. & Emshwiller, M. (1996). Efficiency of uphill locomotion in nocturnal and diurnal lizards. Journal of Experimental Biology, 199, 587592.Google Scholar
Farmer, C. G. & Carrier, D. R. (2000a). Pelvic aspiration in the American alligator (Alligator mississippiensis). Journal of Experimental Biology, 203, 16791687.Google Scholar
Farmer, C. G. & Carrier, D. R. (2000b). Ventilation and gas exchange during treadmill locomotion in the American alligator (Alligator mississippiensis). Journal of Experimental Biology, 203, 16711678.Google Scholar
Feder, M. E., Garland, T. Jr., Marden, J. H. & Zera, A. J. (2010). Locomotion in response to shifting climate zones: Not so fast. Annual Review of Physiology, 72, 167190.Google Scholar
Fitts, R. H., McDonald, K. S. & Schluter, J. M. (1991). The determinants of skeletal muscle force and power: Their adaptability with changes in activity pattern. Journal of Biomechanics, 24, 111122.Google Scholar
Foster, K. L. & Higham, T. E. (2012). How fore- and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. Journal of Experimental Biology, 215, 22882300.Google Scholar
Foster, K. L. & Higham, T. E. (2014). Context-dependent changes in motor control and kinematics during locomotion: Modulation and decoupling. Proceedings of the Royal Society B, 281, 20133331.Google Scholar
Gans, C. & de Vree, F. (1987). Functional bases of fiber length and angulation in muscle. Journal of Morphology, 192, 6385.Google Scholar
Garland, T. Jr. (1985). Ontogenetic and individual variation in size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis. Journal of Zoology, 207, 425439.Google Scholar
Garland, T. Jr. (1993). Locomotor performance and activity metabolism of Cnemidophorus tigris in relation to natural behaviors. In Wright, J. W. & Vitt, L. J. (eds.) Biology of Whiptail Lizards (Genus Cnemidophorus). Norman: Oklahoma Museum of Natural History, pp. 163210.Google Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Vitt, L. J. & Pianka, E. R. (eds.) Lizard Ecology: Historical and Experimental Perspectives. Princeton: Princeton University Press, pp. 237259.Google Scholar
Garland, T. Jr. (2014). Quick guide: Trade-offs. Current Biology, 24, R60R61.Google Scholar
Garland, T. Jr. & Adolph, S. C. (1991). Physiological differentiation of vertebrate populations. Annual Review of Ecology and Systematics, 22, 193228.Google Scholar
Garland, T. Jr. & Else, P. L. (1987). Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 252, R439R449.Google Scholar
Garland, T. Jr. & Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, 229, 133151.Google Scholar
Garland, T. Jr. & Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Wainwright, P. C. & Reilly, S. M. (eds.) Ecological Morphology: Integrative Organismal Biology. Chicago: University of Chicago Press, pp. 240302.Google Scholar
Garland, T. Jr., Kelly, S. A., Malisch, J. L. et al. (2011). How to run far: Multiple solutions and sex-specific responses to selective breeding for high voluntary activity levels. Proceedings of the Royal Society B: Biological Sciences, 278, 574581.Google Scholar
Gilbert, E. A. B., Payne, S. L. & Vickaryous, M. K. (2013). The anatomy and histology of caudal autotomy and regeneration in lizards. Physiological & Biochemical Zoology, 86, 631644.Google Scholar
Gillis, G. B., Bonvini, L. A. & Irschick, D. J. (2009). Losing stability: Tail loss and jumping in the arboreal lizard Anolis carolinensis. Journal of Experimental Biology, 212, 604609.Google Scholar
Gillis, G. B., Kuo, C.-Y. & Irschick, D. J. (2013). The impact of tail loss on stability during jumping in green anoles (Anolis carolinensis). Physiological & Biochemical Zoology, 86, 680689.Google Scholar
Gilman, C. A. & Irschick, D. J. (2013). Foils of flexion: The effects of perch compliance on lizard locomotion and perch choice in the wild. Functional Ecology, 27, 374381.Google Scholar
Gilman, C. A., Bartlett, M. D., Gillis, G. B. & Irschick, D. J. (2012). Total recoil: Perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis). Journal of Experimental Biology, 215, 220226.Google Scholar
Glasheen, J. W. & McMahon, T. A. (1996). Size-dependence of water-running ability in basilisk lizards (Basiliscus basiliscus). Journal of Experimental Biology, 199, 26112618.Google Scholar
Gleeson, T. T. & Harrison, J. M. (1988). Muscle composition and its relation to sprint running in the lizard Dipsosaurus dorsalis. American Journal of Physiology, 255, R470R477.Google Scholar
Goodman, B. A. (2007). Divergent morphologies, performance, and escape behaviour in two tropical rock-using lizards (Reptilia: Scincidae). Biological Journal of the Linnean Society, 91, 8598.Google Scholar
Goodman, B. A. (2009). Nowhere to run: The role of habitat openness and refuge use in defining patterns of morphological and performance evolution in tropical lizards. Journal of Evolutionary Biology, 22, 15351544.Google Scholar
Goodman, B. A., Miles, D. B. & Schwarzkopf, L. (2008). Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology, 89, 34623471.Google Scholar
Hansen, W. R. & Autumn, K. (2005). Evidence for self-cleaning in Gecko setae. Proceedings of the National Academy of Sciences, 102, 385389.Google Scholar
Haxton, H. A. (1944). Absolute muscle force in the ankle flexors of man. Journal of Physiology, 103, 267273.Google Scholar
Herrel, A., James, R. S. & Van Damme, R. (2007). Fight versus flight: Physiological basis for temperature-dependent behavioral shifts in lizards. Journal of Experimental Biology, 210, 17621767.Google Scholar
Herrel, A., Vanhooydonck, B., Porck, J. & Irschick, D. J. (2008). Anatomical basis of differences in locomotor behavior in Anolis lizards: A comparison between two ecomorphs. Bulletin of the Museum of Comparative Zoology, 159, 213238.Google Scholar
Hertz, P. E., Huey, R. B. & Nevo, E. (1982). Fight versus flight: Body temperature influences defensive responses of lizards. Animal Behaviour, 30, 676679.Google Scholar
Hertz, P. E., Huey, R. B. & Garland, T. Jr. (1988). Time budgets, thermoregulation, and maximal locomotor performance: Are reptiles olympians or boy scouts? American Zoologist, 28, 927938.Google Scholar
Herzog, W. (2000). Muscle properties and coordination during voluntary movement. Journal of Sports Science, 18, 141152.Google Scholar
Higham, T. E. & Anderson, C. V. (2013). Function and adaptation. In Tolley, K. A. & Herrel, A. (eds.) The Biology of Chameleons. Berkeley: University of California Press, pp. 6383.Google Scholar
Higham, T. E. & Irschick, D. J. (2013). Springs, steroids, and slingshots: The roles of enhancers and constraints in animal movement. Journal of Comparative Physiology B, 183, 583595.Google Scholar
Higham, T. E. & Jayne, B. C. (2004a). In vivo muscle activity in the hindlimb of the arboreal lizard, Chamaeleo calyptratus: General patterns and the effects of incline. Journal of Experimental Biology, 207, 249261.Google Scholar
Higham, T. E. & Jayne, B. C. (2004b). Locomotion of lizards on inclines and perches: Hindlimb kinematics of an arboreal specialist and a terrestrial generalist. Journal of Experimental Biology, 207, 233248.Google Scholar
Higham, T. E. & Russell, A. P. (2010). Flip, flop and fly: Modulated motor control and highly variable movement patterns of autotomized gecko tails. Biology Letters, 6, 7073.Google Scholar
Higham, T. E. & Russell, A. P. (2012). Time-varying motor control of autotomized leopard gecko tails: Multiple inputs and behavioral modulation. Journal of Experimental Biology, 215, 435441.Google Scholar
Higham, T. E., Davenport, M. S. & Jayne, B. C. (2001). Maneuvering in an arboreal habitat: The effects of turning angle on the locomotion of three sympatric ecomorphs of Anolis lizards. Journal of Experimental Biology, 204, 41414155.Google Scholar
Higham, T. E., Korchari, P. G. & McBrayer, L. M. (2011a). How muscles define maximum locomotor performance in lizards: An analysis using stance and swing phase muscles. Journal of Experimental Biology, 214, 16851691.Google Scholar
Higham, T. E., Korchari, P. G. & McBrayer, L. M. (2011b). How to climb a tree: Lizards accelerate faster, but pause more, when escaping on vertical surfaces. Biological Journal of the Linnean Society, 102, 8390.Google Scholar
Higham, T. E., Lipsett, K. R., Syme, D. A. & Russell, A. P. (2013a). Controlled chaos: Three-dimensional kinematics, fiber histochemistry and muscle contractile dynamics of autotomized lizard tails. Physiological and Biochemical Zoology, 86, 611630.Google Scholar
Higham, T. E., Russell, A. P. & Zani, P. A. (2013b). Integrative biology of tail autotomy in lizards. Physiological and Biochemical Zoology, 86, 603610.Google Scholar
Hildebrand, M. (1985). Walking and running. In Hildebrand, M., Bramble, D. M., Liem, K.F. & Wake, D. B. (eds.) Functional Vertebrate Morphology. Cambridge: Harvard University Press, pp. 3857.Google Scholar
Howland, H. C. (1974). Optimal strategies for predator avoidance: The relative importance of speed and manoeuvrability. Journal of Theoretical Biology, 47, 333350.Google Scholar
Hsieh, S. T. & Lauder, G. V. (2004). Running on water: Three-dimensional force generation by basilisk lizards. Proceedings of the National Academy of Sciences, 101, 1678416788.Google Scholar
Huey, R. B. & Dunham, A. E. (1987). Repeatability of locomotor performance in natural populations of the lizard Sceloporus merriami. Evolution, 41, 11161120.Google Scholar
Huey, R. B. & Hertz, P. E. (1984). Effects of body size and slope on acceleration of a lizard (Stellio stellio). Journal of Experimental Biology, 110, 113123.Google Scholar
Huey, R. B., Dunham, A. E., Overall, K. L. & Newman, R. A. (1990). Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami. Physiological Zoology, 63, 845872.Google Scholar
Husak, J. F. (2006a). Does speed help you survive? A test with collared lizards of different ages. Functional Ecology, 20, 174179.Google Scholar
Husak, J. F. (2006b). Does survival depend on how fast you can run or how fast you do run? Functional Ecology, 20, 10801086.Google Scholar
Husak, J. F. (2006c). Do female collared lizards change field use of maximal sprint speed capacity when gravid? Oecologia, 150, 339343.Google Scholar
Husak, J. F. & Fox, S. F. (2006). Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): Compensation and sexual selection. Evolution, 60, 18881895.Google Scholar
Husak, J. F. & Fox, S. F. (2008). Sexual selection on locomotor performance. Evolutionary Ecology Research, 10, 213228.Google Scholar
Husak, J. F., Irschick, D. J., Meyers, J. J., Lailvaux, S. P. & Moore, I. T. (2007). Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Hormones and Behavior, 52, 360367.Google Scholar
Iraeta, P., Monasterio, C., Salvador, A. & Díaz, J. A. (2011). Sexual dimorphism and interpopulation differences in lizard hind limb length: Locomotor performance or chemical signalling? Biological Journal of the Linnean Society, 104, 318329.Google Scholar
Irschick, D. J. (2000). Effects of behaviour and ontogeny on the locomotor performance of a West Indian lizard, Anolis lineatopus. Functional Ecology, 14, 438444.Google Scholar
Irschick, D. J. (2003). Measuring performance in nature: implications for studies of fitness within populations. Integrative and Comparative Biology, 43, 396407.Google Scholar
Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics, 32, 367396.Google Scholar
Irschick, D. J. & Jayne, B. C. (1999). A field study of the effects of incline on the escape locomotion of a bipedal lizard, Callisaurus draconoides. Physiological & Biochemical Zoology, 72, 4456.Google Scholar
Irschick, D. J. & Losos, J. B. (1998). A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution, 52, 219226.Google Scholar
Irschick, D. J. & Losos, J. B. (1999). Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. American Naturalist, 154, 293305.Google Scholar
Irschick, D. J., Vanhooydonck, B., Herrel, A. & Andronescu, A. (2003). Effects of loading and size on maximum power output and gait characteristics in geckos. Journal of Experimental Biology, 206, 39233934.Google Scholar
Irschick, D. J., Herrel, A., Vanhooydonck, B., Huyghe, K. & van Damme, R. (2005). Locomotor compensation creates a mismatch between laboratory and field estimates of escape speed in lizards: A cautionary tale for performance-to-fitness studies. Evolution, 59, 15791587.Google Scholar
Jaksić, F. M. & Núñez, H. (1979). Escaping behavior and morphological correlates in two Liolaemus species of central Chile (Lacertilia: Iguanidae). Oecologia, 42, 119122.Google Scholar
James, R. S. (2013). A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. Journal of Comparative Physiology B, 183, 723733.Google Scholar
Jayne, B. C. & Daggy, M. W. (2000). The effects of temperature on the burial performance and axial motor pattern of the sand-swimming of the Mojave fringe-toed lizard Uma scoparia. Journal of Experimental Biology, 203, 12411252.Google Scholar
Jayne, B. C. & Ellis, R. V. (1998). How inclines affect the escape behaviour of a dune-dwelling lizard, Uma scoparia. Animal Behavior, 55, 11151130.Google Scholar
Jayne, B. C. & Irschick, D. J. (1999). Effects of incline and speed on the three-dimensional hindlimb kinematics of a generalized iguanian lizard (Dipsosaurus dorsalis). Journal of Experimental Biology, 202, 143159.Google Scholar
Jayne, B. C. & Irschick, D. J. (2000). A field study of incline use and preferred speeds for the locomotion of lizards. Ecology, 81, 29692983.Google Scholar
John-Alder, H. B., Garland, T. Jr. & Bennett, A. F., (1986). Locomotory capacities, oxygen consumption, and the cost of locomotion of the shingle-back lizard (Trachydosaurus rugosus). Physiological Zoology, 59, 523531.Google Scholar
Klukowski, M., Jenkinson, N. M. & Nelson, C. E. (1998). Effects of testosterone on locomotor performance and growth in field-active northern fence lizards, Sceloporus undulatus hyacinthinus. Physiological Zoology, 71, 506514.Google Scholar
Kohlsdorf, T. & Navas, C. (2012). Evolution of form and function: Morphophysiological relationships and locomotor performance in tropidurine lizards. Journal of Zoology, 288, 4149.Google Scholar
Lailvaux, S. P. (2007). Interactive effects of sex and temperature on locomotion in reptiles. Integrative and Comparative Biology, 47, 189199.Google Scholar
Lailvaux, S. P., Alexander, G. J. & Whiting, M. J. (2003). Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi. Physiological & Biochemical Zoology, 76, 511521.Google Scholar
Lamb, T. & Aaron, M. B. (2006). Footprints in the sand: Independent reduction of subdigital lamellae in the Namib-Kalahari burrowing geckos. Proceedings of the Royal Society, B., 273, 855864.Google Scholar
Le Galliard, J. F., Le Bris, M. & Clobert, J. (2003). Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Functional Ecology, 17, 877885.Google Scholar
Lejeune, T. M., Willems, P. A. & Heglund, N. C. (1998). Mechanics and energetics of human locomotion on sand. Journal of Experimental Biology, 201, 20712080.Google Scholar
Li, C., Hsieh, S. T. & Goldman, D. I. (2012). Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). Journal of Experimental Biology, 215, 32933308.Google Scholar
Lieber, R. L. & Ward, S. R. (2011). Skeletal muscle design to meet functional demands. Philosophical Transactions of the Royal Society B, 366, 14661476.Google Scholar
Loeb, G. E. & Gans, C. (1986). The organization of muscle. In Electromyography for Experimentalists. London: University of Chicago Press, pp. 2543.Google Scholar
Losos, J. B. & Irschick, D. J. (1996). The effect of perch diameter on escape behaviour of Anolis lizards: Laboratory predictions and field tests. Animal Behaviour, 51, 593602.Google Scholar
Losos, J. B. & Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. Journal of Experimental Biology, 145, 2330.Google Scholar
Luke, C. (1986). Convergent evolution of lizard toe fringes. Biological Journal of the Linnean Society, 27, 116.Google Scholar
Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I.(2009). Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard. Science, 325, 314318.Google Scholar
Marsh, R. L. & Bennett, A. F. (1986a). Thermal-dependence of contractile properties of skeletal-muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force-velocity curves. Journal of Experimental Biology, 126, 6377.Google Scholar
Marsh, R. L. & Bennett, A. F. (1986b). Thermal-dependence of sprint performance of the lizard Sceloporus occidentalis. Journal of Experimental Biology, 126, 7987.Google Scholar
Mattingly, W. B. & Jayne, B. C. (2005). The choice of arboreal escape paths and its consequences for the locomotor behaviour of four species of Anolis lizards. Animal Behaviour, 70, 12391250.Google Scholar
McElroy, E. & Bergmann, P. J. (2013). Tail autotomy, tail size and locomotor performance in lizards. Physiological & Biochemical Zoology, 86, 669679.Google Scholar
McElroy, E. J. & McBrayer, L. D. (2010). Getting up to speed: Acceleration strategies in the Florida scrub lizard, Sceloporus woodi. Physiological & Biochemical Zoology, 83, 643653.Google Scholar
McElroy, E. J., Meyers, J. J., Reilly, S. M. & Irschick, D. J. (2007). Dissecting the effects of behaviour and habitat on the locomotion of a lizard (Urosaurus ornatus). Animal Behaviour, 73, 359365.Google Scholar
McGuire, J. A. (2003). Allometric prediction of locomotor performance: An example from Southeast Asian flying lizards. American Naturalist, 161, 337349.Google Scholar
Melville, J. (2008). Evolutionary correlations between microhabitat specialisation and locomotor capabilities in the lizard genus Niveoscincus. Australian Journal of Zoology, 55, 351355.Google Scholar
Melville, J. & Swain, R. (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae : Lygosominae). Biological Journal of the Linnean Society, 70, 667683.Google Scholar
O’Connor, J. L., McBrayer, L. M., Higham, T. E. et al. (2011). Effects of training and testosterone on muscle fiber types and locomotor performance in male six-lined racerunners (Aspidoscelis sexlineata). Physiological and Biochemical Zoology, 84, 394405.Google Scholar
Payne, R. C., Crompton, R. H., Isler, K., et al. (2006). Morphological analysis of the hindlimb in apes and humans. II. Moment arms. Journal of Anatomy, 208, 725742.Google Scholar
Peterson, J. A. (1984). The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology, 202, 142.Google Scholar
Pianka, E. R. & Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley, CA: University of California Press.Google Scholar
Preuschoft, H. (2002). What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Zeitschrift fur Morphologie und Anthropologie, 83, 171188.Google Scholar
Rand, A. S. (1964). Ecological distribution in anoline lizards of Puerto Rico. Ecology, 45, 745752.Google Scholar
Rassier, D. E., MacIntosh, B. R. & Herzog, W. (1999). Length dependence of active force production in skeletal muscle. Journal of Applied Physiology, 86, 14451457.Google Scholar
Reilly, S. M. (1998). Sprawling locomotion in the lizard Sceloporus clarkii: speed modulation of motor patterns in a walking trot. Brain, Behavior & Evolution, 52, 126138.Google Scholar
Reilly, S. M. & Delancey, M. J. (1997). Sprawling locomotion in the lizard Sceloporus clarkii: the effects of speed on gait, hindlimb kinematics, and axial bending during walking. Journal of Zoology, 243, 417433.Google Scholar
Revell, L. J., Johnson, M. A., Schulte, J. A. II, Kolbe, J. J. & Losos, J. B. (2007). A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution, 61, 28982912.Google Scholar
Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44, 257267.Google Scholar
Richmond, F. J. R. (1998). Elements of style in neuromuscular architecture. American Zoologist, 38, 729742.Google Scholar
Roberts, T. J., Marsh, R. L., Weyand, P. G. & Taylor, C. R. (1997). Muscular force in running turkeys: the economy of minimizing work. Science, 275, 11131115.Google Scholar
Rome, L. C. & Bennett, A. F. (1990). Influence of temperature on muscle and locomotor performance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 259, R189R190.Google Scholar
Runyon, D. (1992). Guys and Dolls. New York: Penguin Books, Ltd.Google Scholar
Russell, A. P. (1975). A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). Journal of Zoology, 176, 437476.Google Scholar
Russell, A. P. (1986). The morphological basis of weight-bearing in the scansors of the tokay gecko (Reptilia: Sauria). Canadian Journal of Zoology, 64, 948955.Google Scholar
Russell, A. P. & Johnson, M. K. (2007). Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Canadian Journal of Zoology, 85, 12281238.Google Scholar
Russell, A. P. & Johnson, M. K. (2014). Between a rock and a soft place: Microtopography of the locomotor substrate and the morphology of the setal fields of Namibian day geckos (Gekkota: Gekkonidae: Rhoptropus). Acta Zoologica, 95, 295318.Google Scholar
Russell, A. P., Lai, E. K., Powell, G. L. & Higham, T. E. (2014). Density and distribution of cutaneous sensilla on tails of leopard geckos (Eublepharis macularius) in relation to caudal autotomy. Journal of Morphology, 275, 961979.Google Scholar
Sacks, R. D. & Roy, R. R. (1982). Architecture of the hind limb muscles of cats: Functional significance. Journal of Morphology, 173, 185195.Google Scholar
Scales, J. & Butler, M. (2007). Are powerful females powerful enough? Acceleration in gravid green iguanas (Iguana iguana). Integrative and Comparative Biology, 47, 285294.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551566.Google Scholar
Schmidt, A. & Fischer, M. S. (2010). Arboreal locomotion in rats. The challenge of maintaining stability. Journal of Experimental Biology, 213, 36153624.Google Scholar
Sherbrooke, W. C., George, A. & Middendorf, G. A. III. (2001). Blood-squirting variability in horned lizards (Phrynosoma). Copeia, 2001, 11141122.Google Scholar
Shine, R. (2003a). Effects of pregnancy on locomotor performance: An experimental study on lizards. Oecologia, 136, 450456.Google Scholar
Shine, R. (2003b). Locomotor speeds of gravid lizards: Placing “costs of reproduction” within an ecological context. Functional Ecology, 17, 526533.Google Scholar
Sinervo, B. & Losos, J. B.(1991). Walking the tight rope: arboreal sprint performance among Sceloporus occidentalis lizard populations. Ecology, 72, 12251233.Google Scholar
Skelton, T. M., Waran, N. K. & Young, R. J. (1996). Assessment of motivation in the lizard, Chalcides ocellatus. Animal Welfare, 5, 6369.Google Scholar
Smith, D. G. (1997). Ecological factors influencing the antipredator behaviors of the ground skink, Scincella lateralis. Behavioral Ecology, 8, 622629.Google Scholar
Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. (1988). Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evolutionary Ecology, 2, 353369.Google Scholar
Snyder, R. C. (1954). The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. American Journal of Anatomy, 95, 145.Google Scholar
Snyder, R. C. (1962). Adaptations for bipedal locomotion of lizards. American Zoologist, 2, 191203.Google Scholar
Sorci, G., Swallow, J. G., Theodore, G. Jr. & Clobert, J. (1995). Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiological Zoology, 68, 698720.Google Scholar
Spezzano, L. C. & Jayne, B. C. (2004). The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei). Journal of Experimental Biology, 207, 21152131.Google Scholar
Stiller, R. B. & McBrayer, L. D. (2013). The ontogeny of escape behavior, locomotor performance, and the hind limb in Sceloporus woodi. Zoology, 116, 175181.Google Scholar
Taylor, C. R., Caldwell, S. L. & Rowntree, V. J. (1972). Running up and down hills: Some consequences of size. Science, 178, 10961097.Google Scholar
Tian, Y., Pesika, N., Zeng, H. et al. (2006). Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 103, 1932019325.Google Scholar
Toro, E., Herrel, A., Vanhooydonck, B. & Irschick, D. J. (2003). A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Caribbean Anolis lizards. Journal of Experimental Biology, 206, 26412652.Google Scholar
Toro, E., Herrel, A. & Irschick, D. J. (2004). The evolution of jumping performance in Caribbean Anolis lizards: Solutions to biomechanical trade-offs. American Naturalist, 163, 844856.Google Scholar
Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B. & Abdala, V. (2009). The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology, 112, 379392.Google Scholar
Tulli, M. J., Abdala, V. & Cruz, F. B. (2012). Effects of different substrates on the sprint performance of lizards. Journal of Experimental Biology, 215, 774784.Google Scholar
Van Damme, R., Aerts, P. & Vanhooydonck, B. (1998). Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society, 63, 409427.Google Scholar
Vanhooydonck, B., Aerts, P., Irschick, D.J. & Herrel, A. (2006a). Power generation during locomotion in Anolis lizards: An ecomorphological approach. In Herrel, A., Speck, T. & Rowe, N.P. (eds.) Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants. Boca Raton, FL: CRC Press, pp. 253269.Google Scholar
Vanhooydonck, B., Herrel, A. & Irschick, D. J. (2006b). Out on a limb: the differential effect of substrate diameter on acceleration capacity in Anolis lizards. Journal of Experimental Biology, 209, 45154523.Google Scholar
Vanhooydonck, B., Herrel, A., Van Damme, R. & Irschick, D. J. (2006c). The quick and the fast: The evolution of acceleration capacity in Anolis lizards. Evolution, 60, 21372147.Google Scholar
Vanhooydonck, B., James, R. S., Tallis, J., et al. (2014). Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. Proceedings of the Royal Society B: Biological Sciences, 281, 20132677.Google Scholar
Wainwright, P. C. (2007). Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 38, 381401.Google Scholar
Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology, 45, 256262.Google Scholar
Walker, J. A. (2000). Does a rigid body limit maneuverability? Journal of Experimental Biology, 203, 33913396.Google Scholar
Wassersug, R. J. & Sperry, D. G. (1977). The relationship of locomotion to differental predation on Pseudacris triseriata (Anura: Hylidae). Ecology, 58, 830839.Google Scholar
Weinstein, R. B. & Full, R. J. (1999). Intermittent locomotion increases endurance in a gecko. Physiological and Biochemical Zoology, 72, 732739.Google Scholar
Wilson, A. & Lichtwark, G. (2011). The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance. Philosophical Transactions of the Royal Society B, 366, 15401553.Google Scholar
Woakes, A. J. & Foster, W. A. (eds.) (1991). The comparative physiology of exercise. Journal of Experimental Biology, 160, 1340.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. In Rosenblatt, J. S., Beer, C., Busnel, M.-C. & Slater, P. J. B. (eds.) Advances in the Study of Behavior, Vol. 16. pp. 229249.Google Scholar
Zaaf, A., Herrel, A., Aerts, P. & De Vree, F. (1999). Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria). Zoomorphology, 119, 922.Google Scholar
Zamparo, P., Perini, R., Orizio, C., Sacher, M. & Ferretti, G. (1992). The energy cost of walking or running on sand. European Journal of Applied Physiology, 65, 183187.Google Scholar
Zani, P. A. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology, 13, 316325.Google Scholar
Zehr, E. P. & Sale, D. G. (1994). Ballistic movement: muscle activation and neuromuscular adaptation. Canadian Journal of Applied Physiology, 19, 363378.Google Scholar

References

Beauchamp, G. (2014). Social Predation: How Group Living Benefits Predators and Prey. London: Academic Press.Google Scholar
Beauchamp, G. & Ruxton, G. D. (2007). False alarms and the evolution of antipredator vigilance. Animal Behaviour, 74, 11991206.Google Scholar
Bisley, J. W. (2011). The neural basis of visual attention. Journal of Physiology, 589, 4957.Google Scholar
Blackwell, B. F., Fernández-Juricic, E., Seamans, T. W. & Dolan, T. (2009). Avian visual system configuration and behavioural response to object approach. Animal Behaviour, 77, 673684.Google Scholar
Blumstein, D. T. (2010). Flush early and avoid the rush: a general rule of antipredator behavior? Behavioral Ecology, 21, 440442.Google Scholar
Blumstein, D. T., Fernández-Juricic, E., Zollner, P. A. & Garity, S. C. (2005). Inter-specific variation in avian responses to human disturbance. Journal of Applied Ecology, 42, 943953.Google Scholar
Bowmaker, J. K. (1990). Visual pigments of fishes. In Douglas, R. H. & Djamgoz, M. B. A. (eds.) The Visual System of Fish. London: Chapman and Hall, pp. 81104.Google Scholar
Camhi, J. M., Tom, W. & Volman, S. (1978). The escape behavior of the cockroach Periplaneta americana. Journal of Comparative Physiology A, 12, 203212.Google Scholar
Carlile, P. A., Peters, R. A. & Evans, C. S. (2006). Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Animal Behaviour, 72, 553562.Google Scholar
Caro, T. (2005). Antipredator Defenses in Birds and Mammals. Chicago, IL: University of Chicago Press.Google Scholar
Cooper, W. E. Jr. (2008). Visual monitoring of predators: occurrence, cost and benefit for escape. Animal Behaviour, 76, 13651372.Google Scholar
Cooper, W. E. Jr. & Blumstein, D. T. (2014). Novel effects of monitoring predators on costs of fleeing and not fleeing explain flushing early in economic escape theory. Behavioral Ecology, 25, 4452.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967.Google Scholar
Cresswell, W., Quinn, J. L., Whittingham, M. J. & Butler, S. (2003). Good foragers can also be good at detecting predators. Proceedings of the Royal Society of London B, 270, 10691076.Google Scholar
Cresswell, W., Butler, S., Whittingham, M. J. & Quinn, J. L. (2009). Very short delays prior to escape from potential predators may function efficiently as adaptive risk-assessment periods. Behaviour, 146, 795813.Google Scholar
Cronin, T. W. (2005). The visual ecology of predator–prey interactions. In Barbosa, P. & Castellanos, I. (eds.) Ecology of Predator–prey Interactions. Oxford: Oxford University Press, pp. 105138.Google Scholar
Devereux, C. L., Whittingham, M. J., Fernández-Juricic, E., Vickery, J. A. & Krebs, J. R. (2006). Predator detection and avoidance by starlings under differing scenarios of predation risk. Behavioral Ecology, 17, 303309.Google Scholar
Dolan, T. & Fernández-Juricic, E. (2010). Retinal ganglion cell topography of five species of ground-foraging birds. Brain, Behavior and Evolution, 75, 111121.Google Scholar
Dukas, R. (2002). Behavioural and ecological consequences of limited attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 15391547.Google Scholar
Dukas, R. & Kamil, A. C. (2000). The cost of limited attention in blue jays. Behavioral Ecology, 11, 502506.Google Scholar
Dumont, F., Pasquaretta, C., Réale, D., Bogliani, G. & von Hardenberg, A. (2012). Flight initiation distance and starting distance: Biological effect or mathematical artefact? Ethology, 118, 10511062.Google Scholar
Engelage, J. & Bischof, H.-J. (1988). Enucleation enhances ipsilateral flash evoked respones in the ectostriatum of the zebra finch (Taeniopyia guttata castanotis Gould). Experimental Brain Research, 70, 7989.Google Scholar
Fernández-Juricic, E. (2012). Sensory basis of vigilance behavior in birds: Synthesis and future prospects. Behavioural Processes, 89, 143152.Google Scholar
Fernández-Juricic, E. & Schroeder, N. (2003). Do variations in scanning behavior affect tolerance to human disturbance? Applied Animal Behaviour Science, 84, 219234.Google Scholar
Fernández-Juricic, E., Erichsen, J. T. & Kacelnik, A. (2004). Visual perception and social foraging in birds. Trends in Ecology & Evolution, 19, 2531.Google Scholar
Fernández-Juricic, E., Gall, M. D., Dolan, T., Tisdale, V. & Martin, G. R. (2008). The visual fields of two ground-foraging birds, house finches and house sparrows, allow for simultaneous foraging and anti-predator vigilance. Ibis, 150, 779787.Google Scholar
Fernández-Juricic, E., Gall, M. D., Dolan, T. et al. (2011a). Visual systems and vigilance behaviour of two ground-foraging avian prey species: White-crowned sparrows and California towhees. Animal Behaviour, 81, 705713.Google Scholar
Fernández-Juricic, E., Beauchamp, G., Treminio, R. & Hoover, M. (2011b). Making heads turn: Association between head movements during vigilance and perceived predation risk in brown-headed cowbird flocks. Animal Behaviour, 82, 573577.Google Scholar
Goldsmith, T. H. & Butler, B. K. (2005). Color vision of the budgerigar (Melopsittacus undulatus): Hue matches, tetrachromacy, and intensity discrimination. Journal of Comparative Physiology A, 191, 933951.Google Scholar
Green, R., Carr, W. J. & Green, M. (1968). The hawk-goose phenomenon: Further confirmation and a search for the releaser. Journal of Psychology, 69, 271276.Google Scholar
Guillemain, M., Martin, G. R. & Fritz, H. (2002). Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Functional Ecology, 16, 522529.Google Scholar
Hart, N. S. (2001a). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research, 20, 675703.Google Scholar
Hart, N. S. (2001b). Variations in cone photoreceptor abundance and the visual ecology of birds. Journal Of Comparative Physiology A, 187, 685698.Google Scholar
Hart, N., Partridge, J. & Cuthill, I. (1998). Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). Journal of Experimental Biology, 201, 14331446.Google Scholar
Hassenstein, B. & Hustert, R. (1999). Hiding responses of locusts to approaching objects. Journal of Experimental Biology, 202, 17011710.Google Scholar
Hasson, O. (2000). Knowledge, information, biases and signal assemblages. In Espmark, Y., Amundsen, T. & Rosenqvist, G. (eds.) Animal Signals: Signalling and Signal Design in Animal Communication. Trondheim: Tapir Academic Press, pp. 445463.Google Scholar
Healy, K., McNally, L., Ruxton, G. D., Cooper, N. & Jackson, A. L. (2013). Metabolic rate and body size are linked with perception of temporal information. Animal Behaviour, 86, 685696.Google Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In Crescittelli, F. (ed.) Handbook of Sensory Physiology. New York: Springer, pp. 613756.Google Scholar
Jones, K. A., Krebs, J. R. & Whittingham, M. J. (2007). Vigilance in the third dimension: Head movement not scan duration varies in response to different predator models. Animal Behaviour, 74, 11811187.Google Scholar
Kaby, U. & Lind, J. (2003). What limits predator detection in blue tits (Parus caeruleus): Posture, task or orientation? Behavioral Ecology and Sociobiology, 54, 534538.Google Scholar
Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315341.Google Scholar
Kiltie, R. A. (2000). Scaling of visual acuity with body size in mammals and birds. Functional Ecology, 14, 226234.Google Scholar
Krause, J. & Ruxton, G. D. (2002). Living in Groups. Oxford: Oxford University Press.Google Scholar
Land, M. F. (1999). Motion and vision: Why animals move their eyes. Journal of Comparative Physiology A, 185, 341352.Google Scholar
Lappin, J. S., Tadin, D., Nyquist, J. B. & Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. Journal of Vision, 9, 114.Google Scholar
Legge, G. E. (1978). Sustained and transient mechanisms in human vision: Temporal and spatial properties. Vision Research, 18, 6981.Google Scholar
Lima, S. L. (1987). Vigilance while feeding and its relation to the risk of predation. Journal of Theoretical Biology, 124, 303316.Google Scholar
Lima, S. L. & Bednekoff, P. A. (1999). Back to the basics of antipredatory vigilance: Can nonvigilant animals detect attack? Animal Behaviour, 58, 537543.Google Scholar
Lima, S. L. & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619634.Google Scholar
Lima, S. L., Wiebe, K. L. & Dill, L. M. (1987). Protective cover and the use of space by finches: is closer better? Oikos, 50, 225230.Google Scholar
Magal, C., Dangles, O., Caparroy, P. & Casas, J. (2006). Hair canopy of cricket sensory system tuned to predator signals. Journal of Theoretical Biology, 241, 459–66.Google Scholar
Magurran, A. E. & Girling, S. L. (1986). Predator model recognition and response habituation in shoaling minnows. Animal Behaviour, 34, 510518.Google Scholar
Martin, G. R. (2014). The subtlety of simple eyes: The tuning of visual fields to perceptual challenges in birds. Philosophical Transactions of the Royal Society B, 369, 20130040.Google Scholar
McIlwain, J. T. (1996). An Introduction to the Biology of Vision. Cambridge: Cambridge University Press.Google Scholar
Milinski, M. (1990). Information overload and food selection. In Hughes, R. N. (ed.) Behavioural Mechanisms of Food Selection. Berlin: Springer, pp. 721737.Google Scholar
Misslin, R. (2003). The defense system of fear: behavior and neurocircuitry. Clinical Nerophysiology, 33, 5566.Google Scholar
Pettigrew, J. D., Dreher, B., Hopkins, C. S., McCall, M. J. & Brown, M. (1988). Peak density and distributions of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity. Brain, Behavior and Evolution, 32, 3956.Google Scholar
Phelps, S. M. (2007). Sensory ecology and perceptual allocation: New prospects for neural networks. Philosophical Transactions of the Royal Society B, 362, 355367.Google Scholar
Quinn, J. & Cresswell, W. (2005). Escape response delays in wintering redshank, Tringa totanus, flocks: Perceptual limits and economic decisions. Animal Behaviour, 69, 12851292.Google Scholar
Randolet, J., Lucas, J. R. & Fernández-Juricic, E. (2014). Non-redundant social information use in avian flocks with multisensory stimuli. Ethology, 120, 375387.Google Scholar
Regan, D. & Vincent, A. (1995). Visual processing of looming and time to contact throughout the visual field. Vision Research, 35, 18451857.Google Scholar
Roth, T. C. & Lima, S. L. (2007). The predatory behavior of wintering Accipiter hawks: Temporal patterns in activity of predators and prey. Oecologia, 152, 169178.Google Scholar
Schaller, G. B. & Emlen, J. T. (1962). The ontogeny of avoidance behaviour in some precocial birds. Animal Behaviour, 10, 370381.Google Scholar
Schiff, W. (1965). Perception of impending collision: A study of visual directed avoidant behavior. Psychological Monographs, 79, 126.Google Scholar
Tisdale, V. & Fernández-Juricic, E. (2009). Vigilance and predator detection vary between avian species with different visual acuity and coverage. Behavioral Ecology, 20, 936945.Google Scholar
Tyrrell, L. P., Butler, S. R., Yorzinski, J. L. & Fernández-Juricic, E. (2014). A novel system for bi-ocular eye-tracking in vertebrates with laterally placed eyes. Methods in Ecology and Evolution, 5, 10701077.Google Scholar
Von Campenhausen, M. & Kirschfeld, K. (1998). Spectral sensitivity of the accessory optic system of the pigeon. Journal of Comparative Physiology A, 183, 16.Google Scholar
Voss, J. & Bischof, H.-J. (2003). Regulation of ipsilateral visual information within the tectofugal visual system in zebra finches. Journal of Comparative Physiology A, 189, 545553.Google Scholar
Walls, G. L. (1942). The Vertebrate Eye and its Adaptive Radiation. New York: Hafner.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behaviour, 16, 229249.Google Scholar
Yorzinski, J. L. & Platt, M. L. (2014). Selective attention in peacocks during predator detection. Animal Cognition, 17, 767777.Google Scholar
Zani, A. & Proverbio, A. M. (2012). Is that a belt or a snake? Object attentional selection affects the early stages of visual sensory processing. Behavioral and Brain Functions, 8, 6.Google Scholar

References

Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & Mcgregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience Biobehavioral Reviews, 29, 11231144.Google Scholar
Bard, P. (1928). A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. American Journal Physiology, 84, 490410.Google Scholar
Beijamini, V. & Andreatini, R. (2003). Effects of Hypericum perforatum and paroxetine in the mouse defense test battery. Pharmacology Biochemistry and Behavior, 74, 10151024.Google Scholar
Bittencourt, A. S., Carobrez, A. P., Zamprogno, L. P., Tufik, S. & Schenberg, L. C. (2004). Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: Role of N-methyl-D-aspartic acid glutamate receptors. Neuroscience, 125, 7189.Google Scholar
Blanchard, D. C. (1997). Stimulus, environmental and pharmacological control of defensive behaviors. In Bouton, M. & Fanselow, M. S. (eds.) Learning, Motivation and Cognition. The Functional Behaviorism of Robert C. Bolles. Washington DC: American Psychological Association.Google Scholar
Blanchard, R. J. & Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. Journal of Comparative Psychology, 103, 7082.Google Scholar
Blanchard, D. C. & Blanchard, R. J. (2008). Defensive behaviors, fear and anxiety. In Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D. J. (eds.) Handbook of Anxiety and Fear. Amsterdam: Elsevier Academic Press.Google Scholar
Blanchard, R. J., Taukulis, H. K., Rodgers, R. J., Magee, L. K. & Blanchard, D. C. (1993). Yohimbine potentiates active defensive responses to threatening stimuli in Swiss-Webster mice. Pharmacology Biochemistry and Behavior, 44, 673681.Google Scholar
Blanchard, R. J., Kaawaloa, J. N., Hebert, M. A. & Blanchard, D. C. (1999). Cocaine produces panic-like flight responses in mice in the mouse defense test battery. Pharmacology Biochemistry and Behavior, 64, 523528.Google Scholar
Blanchard, D. C., Griebel, G. & Blanchard, R. J. (2001). Mouse defensive behaviors: Pharmacological and behavioral assays for anxiety and panic. Neuroscience and Biobehavioral Reviews, 25, 205218.Google Scholar
Blanchard, D. C., Griebel, G. & Blanchard, R. J. (2003a). The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. European Journal of Pharmacology, 463, 97116.Google Scholar
Blanchard, D. C., Markham, C., Yang, M. et al. (2003b). Failure to produce conditioning with low-dose trimethylthiazoline or cat feces as unconditioned stimuli. Behavioral Neuroscience, 117, 360368.Google Scholar
Blanchard, D. C., Litvin, Y., Pentkowski, N. S. & Blanchard, R. J. (2009). Defense and aggression. In Berntson, G. G. & Cacioppo, J. T. (eds.) Handbook of Neuroscience for the Behavioral Sciences. Hoboken, NJ: John Wiley & Sons.Google Scholar
Blanchard, D. C., Griebel, G., Pobbe, R. & Blanchard, R. J. (2011). Risk assessment as an evolved threat detection and analysis process. Neuroscience Biobehavioral Reviews, 35, 991998.Google Scholar
Borelli, K. G., Ferreira-Netto, C., Coimbra, N. C. & Brandao, M. L. (2005). Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray. Brain Research, 1051, 100111.Google Scholar
Bourin, M., Baker, G. B. & Bradwejn, J. (1998). Neurobiology of panic disorder. Journal of Psychosomatic Research, 44, 163180.Google Scholar
Bovier, P., Broekkamp, C. L. & Lloyd, K. G. (1982). Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region. Brain Research, 248, 313320.Google Scholar
Brandao, M. L., De Aguiar, J. C. & Graeff, F. G. (1982). GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacology Biochemistry and Behavior, 16, 397402.Google Scholar
Cannon, W. B. (1915). Bodily Changes in Pain, Hunger, Fear and Rage. New York, NY: D. Appleton & Company.Google Scholar
Cannon, W. B. (1927). The James-Lange theory of emotion: A critical examination and an alternative theory. American Journal of Psychology, 39, 106124.Google Scholar
Canteras, N. S. (2002). The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacology Biochemistry and Behavior, 71, 481491.Google Scholar
Canteras, N. S. & Graeff, F. G. (2014). Executive and modulatory neural circuits of defensive reactions: Implications for panic disorder. Neuroscience Biobehavioral Reviews, 46, 352364.Google Scholar
Canteras, N. S., Kroon, J. A., Do-Monte, F. H., Pavesi, E. & Carobrez, A. P. (2008). Sensing danger through the olfactory system: The role of the hypothalamic dorsal premammillary nucleus. Neuroscience Biobehavioral Review, 32, 12281235.Google Scholar
Cardoso, S. H., Coimbra, N. C. & Brandao, M. L. (1994). Defensive reactions evoked by activation of NMDA receptors in distinct sites of the inferior colliculus. Behavioral Brain Research, 63, 1724.Google Scholar
Carrasco, G. A. & Van De Kar, L. D. (2003). Neuroendocrine pharmacology of stress. European Journal of Pharmacology, 463, 235272.Google Scholar
Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. (2008). Hypothalamic sites responding to predator threats: The role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. European Journal of Neuroscience, 28, 10031015.Google Scholar
Coimbra, N. C. & Brandao, M. L. (1993). GABAergic nigro-collicular pathways modulate the defensive behaviour elicited by midbrain tectum stimulation. Behavioral Brain Research, 59, 131139.Google Scholar
Cox, B. J., Norton, G. R., Swinson, R. P. & Endler, N. S. (1990). Substance abuse and panic-related anxiety: A critical review. Behavioral Research and Therapy, 28, 385393.Google Scholar
De Bortoli, V. C., Nogueira, R. L. & Zangrossi, H. Jr. (2006). Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology, 183, 422428.Google Scholar
De Paula Soares, V. & Zangrossi, H. Jr. (2004). Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. Brain Research Bulletin, 64, 181188.Google Scholar
Deakin, J. F. & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5, 305315.Google Scholar
Diamond, D. M., Bennett, M. C., Fleshner, M. & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421430.Google Scholar
Dielenberg, R. A., Hunt, G. E. & Mcgregor, I. S. (2001). “When a rat smells a cat”: The distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience, 104, 10851097.Google Scholar
Du Vigneaud, V., Ressler, C. & Trippett, S. (1953). The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. Journal of Biological Chemistry, 205, 949957.Google Scholar
Ferreira-Netto, C., Borelli, K. G. & Brandao, M. L. (2005). Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats. Brain Research, 1031, 151163.Google Scholar
Fokkema, D. S. & Koolhaas, J. M. (1985). Acute and conditioned blood pressure changes in relation to social and psychosocial stimuli in rats. Physiology and Behavior, 34, 3338.Google Scholar
Graeff, F. G. (1990). Brain defence systems and anxiety. In Roth, M., Burrow, G. D. & Noyes, R. (eds.) Handbook of Anxiety, Vol. 3, 307357. Amsterdam: Elsevier.Google Scholar
Graeff, F. G. (1997). Serotonergic systems. Psychiatric Clinics of North America, 20, 723739.Google Scholar
Graeff, F. G., Viana, M. B. & Tomaz, C. (1993). The elevated T maze: A new experimental model of anxiety and memory: effect of diazepam. Brazilian Journal of Medical and Biological Research, 26, 6770.Google Scholar
Griebel, G., Blanchard, D. C., Agnes, R. S. & Blanchard, R. J. (1995a). Differential modulation of antipredator defensive behavior in Swiss–Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology, 120, 5766.Google Scholar
Griebel, G., Blanchard, D. C., Jung, A. et al. (1995b). Further evidence that the mouse defense test battery is useful for screening anxiolytic and panicolytic drugs: Effects of acute and chronic treatment with alprazolam. Neuropharmacology, 34, 16251633.Google Scholar
Griebel, G., Blanchard, D. C. & Blanchard, R. J. (1996). Predator-elicited flight responses in Swiss–Webster mice: An experimental model of panic attacks. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 20, 185205.Google Scholar
Gross, C. T. & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13, 651658.Google Scholar
Hahn, J. D. & Swanson, L. W. (2012). Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. Journal of Comparative Neurology, 520, 18311890.Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 12011213.Google Scholar
Hogg, S., Michan, L. & Jessa, M. (2006). Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology, 51, 141145.Google Scholar
Huhman, K. L., Bunnell, B. N., Mougey, E. H. & Meyerhoff, J. L. (1990). Effects of social conflict on POMC-derived peptides and glucocorticoids in male golden hamsters. Physiology and Behavior, 47, 949956.Google Scholar
Joels, M. & De Kloet, E. R. (1992). Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences, 15, 2530.Google Scholar
Johnson, M. R., Lydiard, R. B. & Ballenger, J. C. (1995). Panic disorder. Pathophysiology and drug treatment. Drugs, 49, 328344.Google Scholar
Johnson, P. L., Molosh, A., Fitz, S. D., Truitt, W. A. & Shekhar, A. (2012). Orexin, stress, and anxiety/panic states. Progress in Brain Research, 198, 133161.Google Scholar
Karatsoreos, I. N. & McEwen, B. S. (2013). Resilience and vulnerability: A neurobiological perspective. F1000 Prime Reports, 5, 13.Google Scholar
Klein, D. F. (1993). False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Archives of General Psychiatry, 50, 306317.Google Scholar
Litvin, Y. & Pfaff, D. W. (2013). The involvement of oxytocin and vasopressin in fear and anxiety. In Choleris, E., Pfaff, D. W. & Kavaliers, M. (eds.) Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. Cambridge: Cambridge University Press.Google Scholar
Litvin, Y., Pentkowski, N. S., Pobbe, R. L., Blanchard, D. C. & Blanchard, R. J. (2008). Unconditioned models of fear and anxiety. In Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D. J. (eds.) Handbook of Anxiety and Fear. Amsterdam: Elsevier Academic Press.Google Scholar
Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., Mikkelsen, J. & Shekhar, A. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8, 233246.Google Scholar
Lupien, S. J. & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 127.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.Google Scholar
McGaugh, J. L. & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12, 205210.Google Scholar
Melo, L. L., Cardoso, S. H. & Brandao, M. L. (1992). Antiaversive action of benzodiazepines on escape behavior induced by electrical stimulation of the inferior colliculus. Physiology and Behavior, 51, 557562.Google Scholar
Micheau, J., Destrade, C. & Soumireu-Mourat, B. (1984). Time-dependent effects of posttraining intrahippocampal injections of corticosterone on retention of appetitive learning tasks in mice. European Journal of Pharmacology, 106, 3946.Google Scholar
Mochcovitch, M. D. & Nardi, A. E. (2010). Selective serotonin-reuptake inhibitors in the treatment of panic disorder: A systematic review of placebo-controlled studies. Expert Review of Neurotherapeutics, 10, 12851293.Google Scholar
Motta, S. C., Goto, M., Gouveia, F. V. et al. (2009). Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proceedings of the National Academy of Sciences, 106, 48704875.Google Scholar
O’Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Oxford University Press.Google Scholar
Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y. & Blanchard, R. J. (2006). Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. European Journal of Neuroscience, 23, 21852196.Google Scholar
Petrovich, G. D., Canteras, N. S. & Swanson, L. W. (2001). Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Research Reviews, 38, 247289.Google Scholar
Pobbe, R. L. & Zangrossi, H. Jr. (2005). 5-HT(1A) and 5-HT(2A) receptors in the rat dorsal periaqueductal gray mediate the antipanic-like effect induced by the stimulation of serotonergic neurons in the dorsal raphe nucleus. Psychopharmacology, 183, 314321.Google Scholar
Pobbe, R. L., Zangrossi, H. Jr., Blanchard, D. C. & Blanchard, R. J. (2011). Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors. European Neuropsychopharmacology, 21, 306315.Google Scholar
Quintino-Dos-Santos, J. W., Muller, C. J., Bernabe, C. S. et al. (2014). Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats. PLoS One, 9, e90726.Google Scholar
Risold, P. Y. & Swanson, L. W. (1995). Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements. Proceedings of the National Academy of Sciences U S A, 92, 38983902.Google Scholar
Romero, L. M. (2004). Physiological stress in ecology: Lessons from biomedical research. Trends in Ecology and Evolution, 19, 249255.Google Scholar
Roncon, C. M., Biesdorf, C., Coimbra, N. C. et al. (2013). Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and mu-receptors. Journal of Psychopharmacology, 27, 11411148.Google Scholar
Roozendaal, B., Van Der Zee, E. A., Hensbroek, R. A. et al. (1997). Muscarinic acetylcholine receptor immunoreactivity in the amygdala–II. Fear-induced plasticity. Neuroscience, 76, 7583.Google Scholar
Roozendaal, B., Hahn, E. L., Nathan, S. V., De Quervain, D. J. & Mcgaugh, J. L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. Journal of Neuroscience, 24, 81618169.Google Scholar
Rosen, J. B. (2004). The neurobiology of conditioned and unconditioned fear: A neurobehavioral system analysis of the amygdala. Behavioral and Cognitive Neuroscience Reviews, 3, 2341.Google Scholar
Spiess, J., Rivier, J., Rivier, C. & Vale, W. (1981). Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proceedings of the National Academy of Sciences, 78, 65176521.Google Scholar
Staples, L. G., McGregor, I. S., Apfelbach, R. & Hunt, G. E. (2008). Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats. Neuroscience, 151, 937947.Google Scholar
Thaker, M., Vanak, A. T., Lima, S. L. & Hews, D. K. (2010). Stress and aversive learning in a wild vertebrate: The role of corticosterone in mediating escape from a novel stressor. American Naturalist, 175, 5060.Google Scholar
Tuppy, H. (1953). The amino-acid sequence in oxytocin. Biochimica et Biophysica Acta, 11, 449450.Google Scholar
Turner, R. A., Pierce, J. G. & Du, V. V. (1951). The purification and the amino acid content of vasopressin preparations. Journal of Biological Chemistry, 191, 2128.Google Scholar
Vale, W., Spiess, J., Rivier, C. & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 13941397.Google Scholar
Viana, M. B., Tomaz, C. & Graeff, F. G. (1994). The elevated T-maze: a new animal model of anxiety and memory. Pharmacology Biochemistry & Behavior, 49, 549554.Google Scholar
Viken, R. J., Knutson, J. F. & Johnson, A. K. (1989). Effects of behavior and social condition on cardiovascular response to footshock stress. Physiology and Behavior, 46, 961966.Google Scholar
Yang, M., Farrokhi, C., Vasconcellos, A., Blanchard, R. J. & Blanchard, D. C. (2006). Central infusion of Ovine CRF (oCRF) potentiates defensive behaviors in CD-1 mice in the Mouse Defense Test Battery (MDTB). Behavioral Brain Research, 171, 18.Google Scholar
Zangrossi, H. Jr. & Graeff, F. G.(2014). Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neuroscience Biobehavioral Reviews, 46, 397406.Google Scholar
Zanoveli, J. M., Nogueira, R. L. & Zangrossi, H. Jr. (2003). Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. European Journal of Pharmacology, 473, 153161.Google Scholar

References

Abrahams, M. V. (1995). The interaction between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook sticklebacks. Canadian Journal of Zoology, 73, 22092215.Google Scholar
Andrade, M. C. B. & Roitberg, B. D. (1995). Rapid response to intraclonal selection in the pea aphid (Acyrthosiphon pisum). Evolutionary Ecology, 9, 397410.Google Scholar
Arnold, S. J. & Bennett, A. F. (1984). Behavioral variation in natural populations. 3. Antipredator displays in the garter snake Thamnophis radix. Animal Behaviour, 32, 11081118.Google Scholar
Bize, P., Diaz, C. & Lindstrom, J. (2012). Experimental evidence that adult antipredator behaviour is heritable and not influenced by behavioural copying in a wild bird. Proceedings of the Royal Society B-Biological Sciences, 279, 13801388.Google Scholar
Blount, J. D., Surai, P. F., Nager, R. G., et al. (2002). Carotenoids and egg quality in the lesser black-backed gull Larus fuscus: A supplemental feeding study of maternal effects. Proceedings of the Royal Society B-Biological Sciences, 269, 2936.Google Scholar
Blumstein, D. T., Lea, A. J., Olson, L. E. & Martin, J. G. A. (2010). Heritability of anti-predatory traits: Vigilance and locomotor performance in marmots. Journal of Evolutionary Biology, 23, 879887.Google Scholar
Brodie, E. D. (1989). Genetic correlations between morphology and antipredator behavior in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542543.Google Scholar
Brodie, E. D. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 12841298.Google Scholar
Brodie, E. D. (1993). Homogeneity of the genetic variance-covariance matrix for antipredator traits in 2 natural populations of the garter snake Thamnophis ordinoides. Evolution, 47, 844854.Google Scholar
Brokordt, K., Farias, W., Lhorente, J. P. & Winkler, F. (2012). Heritability and genetic correlations of escape behaviours in juvenile scallop Argopecten purpuratus. Animal Behaviour, 84, 479484.Google Scholar
Chin, E. H., Love, O. P., Verspoor, J. J., et al. (2009). Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proceedings of the Royal Society B-Biological Sciences, 276, 499505.Google Scholar
Crews, D., Cantu, A. R., Bergeron, J. M. & Rhen, T. (1995). The relative effectiveness of androstenedione, testosterone, and estrone, precursors to estradiol, in sex reversal in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination. General and Comparative Endocrinology, 100, 119127.Google Scholar
Cucco, M., Guasco, B., Malacarne, G. & Ottonelli, R. (2006). Effects of beta-carotene supplementation on chick growth, immune status and behaviour in the grey partridge, Perdix perdix. Behavioural Processes, 73, 325332.Google Scholar
Dauphin-Villemant, C. & Xavier, F. (1987). Nychthemeral variations of plasma corticosteroids in captive Lacerta vivipara Jacquin: Influence of stress and reproductive state. General and Comparative Endocrinology, 67, 292302.Google Scholar
De Fraipont, M., Clobert, J., John-Alder, H. & Meylan, S. (2000). Increased pre-natal maternal corticosterone promotes philopatry of offspring in common lizards Lacerta vivipara. Journal of Animal Ecology, 69, 404413.Google Scholar
DeWitt, T. J., Sih, A. & Hucko, J. A. (1999). Trait compensation and cospecialization in a freshwater snail: Size, shape and antipredator behaviour. Animal Behaviour, 58, 397407.Google Scholar
Díaz, M., Møller, A. P., Flensted-Jensen, E., et al. (2013). The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. Plos One, 8, 7.Google Scholar
Evans, J. P., Kelley, J. L., Bisazza, A., Finazzo, E. & Pilastro, A. (2004). Sire attractiveness influences offspring performance in guppies. Proceedings of the Royal Society B-Biological Sciences, 271, 20352042.Google Scholar
Fuiman, L. A. & Ojanguren, A. F. (2011). Fatty acid content of eggs determines antipredator performance of fish larvae. Journal of Experimental Marine Biology and Ecology, 407, 155165.Google Scholar
Garland, T. (1988). Genetic basis of activity metabolism – 1. Inheritance of speed, stamina, and antipredator displays in the garter snake Thamnophis sirtalis. Evolution, 42, 335350.Google Scholar
Grant, B. & Mettler, L. E. (1969). Disruptive and stabilizing selection on the escape behavior of Drosophila melanogaster. Genetics, 62, 625637.Google Scholar
Hayward, L. S. & Wingfield, J. C. (2004). Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. General and Comparative Endocrinology, 135, 365371.Google Scholar
Hedrick, A. V. & Kortet, R. (2006). Hiding behaviour in two cricket populations that differ in predation pressure. Animal Behaviour, 72, 11111118.Google Scholar
Hill, G. E. (1991). Plumage coloration is a sexually selected indicator of male quality. Nature, 350, 337339.Google Scholar
Hotchkin, P. & Riveroll, H. (2005). Comparative escape behavior of chihuahuan desert parthenogenetic and gonochoristic whiptail lizards. Southwestern Naturalist, 50, 172177.Google Scholar
Jackson, J. F., Ingram, W. & Campbell, H. W. (1976). Dorsal pigmentation pattern of snakes as an antipredator strategy: A multivariate approach. American Naturalist, 110, 10291053.Google Scholar
King, R. B. (2002). Family, sex and testosterone effects on garter snake behavior. Animal Behaviour, 64, 345359.Google Scholar
Lancaster, L. T., McAdam, A. G., Wingfield, J. C. & Sinervo, B. R. (2007). Adaptive social and maternal induction of antipredator dorsal patterns in a lizard with alternative social strategies. Ecology Letters, 10, 798808.Google Scholar
Lancaster, L. T., Hazard, L. C., Clobert, J. & Sinervo, B. R. (2008). Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade-offs in r-strategist and K-strategist females. Journal of Evolutionary Biology, 21, 556565.Google Scholar
Lancaster, L. T., McAdam, A. G. & Sinervo, B. (2010). Maternal adjustment of egg size organizes alternative escape behaviors, promoting adaptive phenotypic integration. Evolution, 64, 16071621.Google Scholar
Laurila, A., Lindgren, B. & Laugen, A. T. (2008). Antipredator defenses along a latitudinal gradient in Rana temporaria. Ecology, 89, 13991413.Google Scholar
Losos, J. B., Mouton, P. L. N., Bickel, R., Cornelius, I. & Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Animal Behaviour, 64, 313321.Google Scholar
May, R. M. (1972). Limit cycles in predator–prey communities. Science, 177, 900902.Google Scholar
McGhee, K. E., Pintor, L. M., Suhr, E. L. & Bell, A. M. (2012). Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Functional Ecology, 26, 932940.Google Scholar
McLean, E. B. & Godin, J. G. J. (1989). Distance to cover and fleeing from predators in fish with different amounts of defensive armor. Oikos, 55, 281290.Google Scholar
Meylan, S. & Clobert, J. (2004). Maternal effects on offspring locomotion: Influence of density and corticosterone elevation in the lizard Lacerta vivipara. Physiological and Biochemical Zoology, 77, 450458.Google Scholar
Milstead, W. W. (1957). Observations on the natural history of four species of whiptail lizard, Cnemidophorus (Sauria, Teiidae) in Trans-Pecos Texas. Southwestern Naturalist, 2, 105121.Google Scholar
Mousseau, T. A. & Fox, C. W. (1998). Maternal Effects as Adaptations. Oxford: Oxford University Press.Google Scholar
Nakayama, S. & Miyatake, T. (2010). Genetic trade-off between abilities to avoid attack and to mate: a cost of tonic immobility. Biology Letters, 6, 1820.Google Scholar
O’Steen, S., Cullum, A. J. & Bennett, A. F. (2002). Rapid evolution of escape ability in Trinidadian guppies (Poecilia reticulata). Evolution, 56, 776784.Google Scholar
Partecke, J. & Schwabl, H. (2008). Organizational effects of maternal testosterone on reproductive behavior of adult house sparrows. Developmental Neurobiology, 68, 15381548.Google Scholar
Paulissen, M. A. (1998). Laboratory study of escape tactics of parthenogenetic and gonochoristic Cnemidophorus from southern Texas. Copeia, 240243.Google Scholar
Pinheiro, C. E. G. (1996). Palatability and escaping ability in neotropical butterflies: Tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae). Biological Journal of the Linnean Society, 59, 351365.Google Scholar
Placyk, J. S. (2012). The role of innate and environmental influences in shaping antipredator behavior of mainland and insular gartersnakes (Thamnophis sirtalis). Journal of Ethology, 30, 101108.Google Scholar
Price, A. H. (1992). Comparative behavior in lizards of the genus Cnemidophorus (Teiidae), with comments on the evolution of parthenogenesis in reptiles. Copeia, 323331.Google Scholar
Punzo, F. (2007). Sprint speed and degree of wariness in two populations of whiptail lizards (Aspidoscelis tesselata) (Squamata Teiidae). Ethology Ecology & Evolution, 19, 159169.Google Scholar
Riechert, S. E. & Hedrick, A. V. (1990). Levels of predation and genetically based antipredator behavior in the spider, Agelenopsis aperta. Animal Behaviour, 40, 679687.Google Scholar
Robert, K. A., Vleck, C. & Bronikowski, A. M. (2009). The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans). Hormones & Behavior, 55, 2432.Google Scholar
Ruuskanen, S. & Laaksonen, T. (2010). Yolk hormones have sex-specific long-term effects on behavior in the pied flycatcher (Ficedula hypoleuca). Hormones and Behavior, 57, 119127.Google Scholar
Sasaki, K., Fox, S. F. & Duvall, D. (2009). Rapid evolution in the wild: Changes in body size, life-history traits, and behavior in hunted populations of the Japanese mamushi snake. Conservation Biology, 23, 93102.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551566.Google Scholar
Shaffer, L. R. & Formanowicz, D. R. (2000). Sprint speeds of juvenile scorpions: Among family differences and parent offspring correlations. Journal of Insect Behavior, 13, 4554.Google Scholar
Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. American Naturalist, 145, 809823.Google Scholar
Shine, R. & Downes, S. J. (1999). Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia, 119, 18.Google Scholar
Shine, R. & Harlow, P. S. (1996). Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology, 77, 18081817.Google Scholar
Shine, R., Madsen, T. R. L., Elphick, M. J. & Harlow, P. S. (1997). The influence of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology, 78, 17131721.Google Scholar
Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291295.Google Scholar
Sinervo, B. & Huey, R. B. (1990). Allometric engineering: An experimental test of the causes of interpopulational differences in performance. Science, 248, 11061109.Google Scholar
Sinervo, B. & Lively, C. M. (1996). The rock–paper–scissors game and the evolution of alternative male strategies. Nature, 380, 240243.Google Scholar
Sinervo, B., Svensson, E. & Comendant, T. (2000). Density cycles and an offspring quantity and quality game driven by natural selection. Nature, 406, 985988.Google Scholar
Sinn, D. L., Apiolaza, L. A. & Moltschaniwskyj, N. A.(2006). Heritability and fitness-related consequences of squid personality traits. Journal of Evolutionary Biology, 19, 14371447.Google Scholar
Sorci, G., Swallow, J. G., Garland, T. & Clobert, J. (1995). Quantitative genetics of locomotor speed and endurnace in the lizard Lacerta vivipara. Physiological Zoology, 68, 698720.Google Scholar
Stapley, J. & Keogh, J. S. (2005). Behavioral syndromes influence mating systems: Floater pairs of a lizard have heavier offspring. Behavioral Ecology, 16, 514520.Google Scholar
Storfer, A. & Sih, A. (1998). Gene flow and ineffective antipredator behavior in a stream-breeding salamander. Evolution, 52, 558565.Google Scholar
Storm, J. J. & Lima, S. L. (2010). Mothers forewarn offspring about predators: A Transgenerational maternal effect on behavior. American Naturalist, 175, 382390.Google Scholar
Tobler, M., Healey, M. & Olsson, M. (2011). Digit ratio, color polymorphism and egg testosterone in the Australian painted dragon. Plos One, 6, 7.Google Scholar
Tobler, M., Healey, M. & Olsson, M. (2012). Digit ratio, polychromatism and associations with endurance and antipredator behaviour in male painted dragon lizards. Animal Behaviour, 84, 12611269.Google Scholar
Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11, 107184.Google Scholar
Uller, T. & Olsson, M. (2006). Direct exposure to corticosterone during embryonic development influences behaviour in an ovoviviparous lizard. Ethology, 112, 390397.Google Scholar
Wahle, R. A. (1992). Body size dependent antipredator mechanisms of the American lobster. Oikos, 65, 5260.Google Scholar
Watkins, T. B. & McPeek, M. A. (2006). Growth and predation risk in green frog tadpoles (Rana clamitans): A quantitative genetic analysis. Copeia, 2006, 478488.Google Scholar
Webb, J. K., Brown, G. P. & Shine, R. (2001). Body size, locomotor speed and antipredator behaviour in a tropical snake (Tropidonophis mairii, Colubridae): The influence of incubation environments and genetic factors. Functional Ecology, 15, 561568.Google Scholar

References

Bell, A. M. (2005). Behavioral differences between individuals and populations of threespined stickleback. Journal of Evolutionary Biology, 18, 464473.Google Scholar
Bell, A. M. (2007). Future directions in behavioural syndromes research. Proceedings of the Royal Society of London Series B, Biological Sciences, 274, 755761.Google Scholar
Bell, A. M. (2009). Approaching the genomics of risk-taking behavior. Advances in Genetics, 68, 83104.Google Scholar
Bell, A. M. & Sih, A. (2007). Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecology Letters, 10, 828834.Google Scholar
Bell, A. M., Hankison, S. J. & Laskowski, K. L. (2009). The repeatability of behaviour: a meta-analysis. Animal Behaviour, 77, 771783.Google Scholar
Biro, P. A. & Stamps, J. A. (2008). Are animal personality traits linked to life-history productivity? Trends in Ecology and Evolution, 23, 361368.Google Scholar
Blumstein, D. T. & Pelletier, D. (2005). Yellow-bellied marmot hiding time is sensitive to variation in costs. Canadian Journal of Zoology, 83, 363367.Google Scholar
Boissy, A. (1995). Fear and fearfulness in animals. Quarterly Review of Biology, 70, 165191.Google Scholar
Briffa, M. & Greenaway, J. (2011). High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria). PLoS ONE, 6(7), e21963.Google Scholar
Briffa, M., Rundle, S. D. & Fryer, A. (2008). Comparing the strength of behavioural plasticity and consistency across situations: Animal personalities in the hermit crab Pagurus bernhardus. Proceedings of the Royal Society of London Series B, Biological Sciences, 275, 13051311.Google Scholar
Carere, C. & Maestipieri, D. (eds.) (2013). Animal Personalities. Behavior, Physiology and Evolution. Chicago, IL: University of Chicago Press.Google Scholar
Carrete, M. & Tella, J. L. (2010). Individual consistency in flight initiation distances in burrowing owls: A new hypothesis on disturbance induced habitat selection. Biology Letters, 6, 167170.Google Scholar
Carter, A. J., Goldizen, A. W. & Tromp, S. A. (2010). Agamas exhibit behavioral syndromes: bolder males bask and feed more but may suffer higher predation. Behavioral Ecology, 21, 655661.Google Scholar
Carter, A. J., Heinsohn, R., Goldizen, A. W. & Biro, P. A. (2012a). Boldness, trappability and sampling bias in wild lizards. Animal Behaviour, 83, 10511058.Google Scholar
Carter, A., Goldizen, A. & Heinsohn, R. (2012b). Personality and plasticity: Temporal behavioural reaction norms in a lizard, the Namibian rock agama. Animal Behaviour, 84, 471477.Google Scholar
Coleman, K. & Wilson, D. S. (1998). Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific. Animal Behaviour, 56, 927936.Google Scholar
Cooper, W. E. Jr. (2009). Variation in escape behavior among individuals of the striped plateau lizard Sceloporus virgatus may reflect differences in boldness. Journal of Herpetology, 43, 495502.Google Scholar
Cooper, W. E. Jr. (2011). Risk, escape from ambush, and hiding time in the lizard Sceloporus virgatus. Herpetologica, 68, 505513.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007a). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007b). Optimal time to emerge from refuge. Biological Journal of The Linnean Society, 91, 375382.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2010). Longer hiding time in refuge implies greater assessed risk after capture and autotomy in striped plateau lizards (Sceloporus virgatus). Herpetologica, 66, 425431.Google Scholar
Cresswell, W., Quinn, J. L., Whittingham, M. J. & Butler, S. (2003). Good foragers can also be good at detecting predators. Proceedings of the Royal Society of London Series B, Biological Sciences, 270, 10691076.Google Scholar
Dall, S. R. X., Houston, A. I. & McNamara, J. M. (2004). The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecology Letters, 7, 734739.Google Scholar
Dingemanse, N. J. & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: mixed effect modelling approaches. Journal of Animal Ecology, 82, 3954.Google Scholar
Dingemanse, N. J. & Wolf, M. (2010) A review of recent models for adaptive personality differences. Philosophical Transactions of the Royal Society of London Series B, 365, 39473958.Google Scholar
Dingemanse, N. J., Thomas, D. K., Wright, J. et al. (2007). Behavioural syndromes differ predictably between twelve populations of three-spined stickleback. Journal of Animal Ecology, 76, 11281138.Google Scholar
Dingemanse, N. J., Kazem, A. J. M., Réale, D. & Wright, J. (2010). Behavioural reaction norms: Animal personality meets individual plasticity. Trends in Ecology and Evolution, 25, 8189.Google Scholar
Garamszegi, L. Z. & Herczeg, G. (2012). Behavioural syndromes, syndrome deviation and the within- and between-individual components of phenotypic correlations: When reality does not meet statistics. Behavioral Ecology and Sociobiology, 66, 16511658.Google Scholar
Groothuis, T. G. G. & Carere, C. (2005). Avian personalities: characterization and epigenesis. Neuroscience & Biobehavioral Reviews, 29, 137150.Google Scholar
Hedrick, A. V. & Kortet, R. (2006). Hiding behaviour in two cricket populations that differ in predation pressure. Animal Behaviour, 72, 11111118.Google Scholar
Hedrick, A. V. & Kortet, R. (2012). Sex differences in the repeatability of boldness over metamorphosis. Behavioral Ecology and Sociobiology, 66, 407412.Google Scholar
Hemmi, J. & Merkle, T. (2009). High stimulus specificity characterizes anti-predator habituation under natural conditions. Proceedings of the Royal Society of London Series B, Biological Sciences, 276, 43814388.Google Scholar
Hensley, N. M., Cook, T. C., Lang, M., Petelle, M. B. & Blumstein, D. T. (2012). Personality and habitat segregation in giant sea anemones (Condylactis gigantea). Journal of Experimental Marine Biology and Ecology, 426–427, 14.Google Scholar
Huntingford, F. A. (1976). The relationship between anti-predator behaviour and aggression among conspecifics in the three-spined stickleback, Gasterosteus aculeatus. Animal Behaviour, 24, 245260.Google Scholar
Ibáñez, A., Marzal, A., López, P. & Martín, J. (2013). Boldness and body size of male Spanish terrapins affect their responses to chemical cues of familiar and unfamiliar males. Behavioral Ecology and Sociobiology, 67, 541548.Google Scholar
Jones, K. A. & Godin, J.-G. J. (2010). Are fast explorers slow reactors? Linking personality type and anti-predator behaviour. Proceedings of the Royal Society of London. Series B: Biological Sciences, 277, 625632.Google Scholar
Jones, K. A., Krebs, J. R. & Whittingham, M. J. (2009). Heavier birds react faster to predators: Individual differences in the detection of stalking and ambush predators. Behavioral Ecology and Sociobiology, 63, 13191329.Google Scholar
Koolhaas, J. M., Korte, S. M., De Boer, S. F. et al. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23, 925935.Google Scholar
Krams, I., Kivleniece, I., Kuusik, A. et al. (2014). High repeatability of anti-predator responses and resting metabolic rate in a beetle. Journal of Insect Behavior, 27, 5766.Google Scholar
Krause, J. & Godin, J.-G. J. (1996). Influence of prey foraging posture on flight behavior and predation risk: Predators take advantage of unwary prey. Behavioral Ecology, 7, 264271.Google Scholar
Lindström, K. M., Van de Veen, I. T., Lagault, B. A. & Lundström, J. O. (2003). Activity and predator escape performance of common greenfinches Carduelis chloris infected with sindbis virus. Ardea, 91, 103111.Google Scholar
López, P., Hawlena, D., Polo, V., Amo, L. & Martín, J. (2005). Sources of interindividual shy–bold variations in antipredatory behaviour of male Iberian rock-lizards. Animal Behaviour, 69, 19.Google Scholar
Lord, A., Waas, J. R., Innes, J. & Whittingham, M. J. (2001). Effects of human approaches to nests of northern New Zealand dotterels. Biological Conservation, 98, 233240.Google Scholar
Luttbeg, B. & Sih, A. (2010). Risk, resources and state-dependent adaptive behavioural syndromes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 365, 39773990.Google Scholar
Magle, S., Zhu, J. & Crooks, K. R. (2005). Behavioral responses to repeated human intrusion by black-tailed prairie dogs (Cynomys ludovicianus). Journal of Mammalogy, 86, 524530.Google Scholar
Mathot, K. J., van den Hout, P. J., Piersma, T. et al. (2011). Disentangling the roles of frequency- vs. state-dependence in generating individual differences in behavioural plasticity. Ecology Letters, 14, 12541262.Google Scholar
Martín, J., de Neve, L., Fargallo, J. A., Polo, V. & Soler, M. (2006). Health-dependent vulnerability to predation affects escape responses of unguarded chinstrap penguin chicks. Behavioral Ecology and Sociobiology, 60, 778784.Google Scholar
McElreath, R., Luttbeg, B., Fogarty, S. P., Brodin, T. & Sih, A. (2007). Communication arising: Evolution of animal personalities. Nature, 450, e5e6.Google Scholar
Niemelä, P. T., Vainikka, A., Hedrick, A. V. & Kortet, R. (2012a). Integrating behaviour with life history: Boldness of the field cricket, Gryllus integer, during ontogeny. Functional Ecology, 26, 450456.Google Scholar
Niemelä, P. T., DiRienzo, N. & Hedrick, A. V. (2012b). Predator-induced changes in the boldness of naïve field crickets, Gryllus integer, depends on behavioural type. Animal Behaviour, 84, 129135.Google Scholar
Nussey, D. H., Wilson, A. J. & Brommer, J. E. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20, 831844.Google Scholar
Quinn, J. L. & Cresswell, W. (2005a). Escape response delays in wintering redshank, Tringa totanus, flocks: Perceptual limits and economic decisions. Animal Behaviour, 69, 12851292.Google Scholar
Quinn, J. L. & Cresswell, W. (2005b) Personality, anti-predation behaviour and behavioural plasticity in the chaffinch Fringilla coelebs. Behaviour, 142, 13771402.Google Scholar
Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291318.Google Scholar
Riechert, S. E. & Hedrick, A. V. (1993). A test for correlations among fitness-linked behavioural traits in the spider Agelenopsis aperta (Araneae, Agelinidae). Animal Behaviour, 46, 669675.Google Scholar
Rodríguez-Prieto, I., Martín, J. & Fernández-Juricic, E. (2010). Habituation to low risk predators improves body condition in lizards. Behavioral Ecology and Sociobiology, 64, 19371945.Google Scholar
Rodríguez-Prieto, I., Martín, J. & Fernández-Juricic, E. (2011). Individual variation in behavioural plasticity: Direct and indirect effects of boldness, exploration and sociability on habituation to predators in lizards. Proceedings of the Royal Society of London. Series B: Biological Sciences, 278, 266273.Google Scholar
Runyan, A. & Blumstein, D. T. (2004). Do individual differences influence flight initiation distance? Journal of Wildlife Management, 68, 11241129.Google Scholar
Seltmann, M. W., Ost, M., Jaatinen, K. et al. (2012). Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Animal Behaviour, 84, 889896.Google Scholar
Sih, A. & Bell, A. M. (2008). Insights from behavioral syndromes for behavioral ecology. Advances in the Study of Behavior, 38, 277281.Google Scholar
Sih, A., Kats, L. B. & Maurer, E. E. (2003). Behavioural correlations across situations and the evolution of antipredator behaviour in a sunfish–salamander system. Animal Behaviour, 65, 2944.Google Scholar
Sih, A., Bell, A. & Johnson, J. C. (2004a). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology and Evolution, 19, 372378.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. (2004b). Behavioral syndromes: An integrative overview. Quarterly Review of Biology, 79, 241277.Google Scholar
Sinn, D. L., Gosling, S. D. & Moltschaniwskyj, N. A. (2008). Development of shy/bold behaviour in squid: Context-specific phenotypes associated with developmental plasticity. Animal Behaviour, 75, 433442.Google Scholar
Smith, B. R. & Blumstein, D. T. (2008). Fitness consequences of personality: A meta-analysis. Behavioral Ecology, 19, 448455.Google Scholar
Stamps, J. A. (2007). Growth-mortality tradeoffs and “personality traits” in animals. Ecology Letters, 10, 355363.Google Scholar
Stapley, J. & Keogh, J. S. (2004). Exploratory and antipredator behaviours differ between territorial and nonterritorial male lizards. Animal Behaviour, 68, 841846.Google Scholar
Tulley, J. J. & Huntingford, F. A. (1988). Additional information on the relationship between intra-specific aggression and antipredator behaviour in the three-spined stickleback Gasterosteus aculeatus. Ethology, 78, 219222.Google Scholar
Van Oers, K., De Jong, G., Drent, P. J. & Van Noordwijk, A. J. (2004a). Genetic correlations of avian personality traits: Correlated response to artificial selection. Behavior Genetics, 34, 611619.Google Scholar
Van Oers, K., Drent, P. J., De Goede, P. & Van Noordwijk, A. J. (2004b). Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. Proceedings of the Royal Society of London Series B, Biological Sciences, 271, 6573.Google Scholar
Watanabe, N. M., Stahlman, W. D., Blaisdell, A. P. et al. (2012). Quantifying personality: Different measures, different inferences. Behavioral Processes, 91, 133140.Google Scholar
Wechsler, B. (1995). Coping and coping strategies: A behavioural view. Applied Animal Behaviour Science, 43, 123134.Google Scholar
Wilson, D. S. (1998). Adaptive individual differences within single populations. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 353, 199205.Google Scholar
Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. (2007). Life-history trade-offs favour the evolution of animal personalities. Nature, 447, 581584.Google Scholar
Wolf, M., van Doorn, G. S. & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences of the United States of America, 105, 1582515830Google Scholar
Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. (2013). The evolution of animal personalities. In Carere, C. & Maestipieri, D. (eds.) Animal Personalities. Behavior, Physiology and Evolution. Chicago: University of Chicago Press, pp. 252275.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229249.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×