Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T10:41:41.968Z Has data issue: false hasContentIssue false

IIb - Escape decisions prior to pursuit

from Part II - Escape and refuge use: theory and findings for major taxonomic groups

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 61 - 196
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aastrup, P. (2000). Responses of West Greenland caribou to the approach of humans on foot. Polar Research, 19, 8390.Google Scholar
Alados, C. L. & Escos, J.(1988). Alarm calls and flight behaviour in Spanish ibex (Capra pyrenaica). Biology of Behaviour, 13, 1121.Google Scholar
Alendal, E. & Byrkjedal, I. (1976). Population size and reproduction of the reindeer (Rangifer tarandus platyrhynchus) on Nordenskiöld Land, Svalbard. Norsk Polarinstitutt Årbok, 1974, 139152.Google Scholar
Altmann, M. (1958). The flight distance in free-ranging big game. Journal of Wildlife Management, 22, 207209.Google Scholar
Altmann, M. (1963). Naturalistic studies of maternal care in moose and elk. In Rheingold, H. L. (ed.) Maternal Behavior in Mammals. New York, NY: John Wiley & Sons, Inc.Google Scholar
Andersen, S. M., Teilmann, J., Dietz, R., Schmidt, N. M. & Miller, L. A. (2012). Behavioural responses of harbour seals to human-induced disturbances. Aquatic Conservation: Marine and Freshwater Ecosystems, 22, 113121.Google Scholar
Anderson, J. R., Nilssen, A. C. & Hemmingsen, W. (2001). Use of host-mimicking trap catches to determine which parasitic flies attack reindeer, Rangifer tarandus, under different climatic conditions. Canadian Field-Naturalist, 115, 274286.Google Scholar
Archie, E. A., Moss, C. J. & Alberts, S. C. (2006). The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proceedings of the Royal Society Biological Sciences Series B, 273, 513522.Google Scholar
Banfield, A. W. F. (1961). A revision of the reindeer and caribou, genus Rangifer. Bulletin of the National Museum of Canada, Biological Series, 66, 1137.Google Scholar
Baskin, L. M. & Hjalten, J. (2001). Fright and flight behavior of reindeer. Alces, 37, 435445.Google Scholar
Baskin, L. M. & Skogland, T. (1997). Direction of escape in reindeer. Rangifer, 17, 3740.Google Scholar
Bekoff, M. & Gese, E. M. (2003). Coyote (Canis latrans). In Feldhammer, G. A., Thompson, B. C. & Chapman, J. A. (eds.) Wild Mammals of North America: Biology, Management, and Conservation. Baltimore: Johns Hopkins University Press.Google Scholar
Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. (1985). Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Applied Animal Behaviour Science, 13, 359370.Google Scholar
Berger, J. (2007). Carnivore repatriation and holarctic prey: Narrowing the deficit in ecological effectiveness. Conservation Biology, 21, 11051116.Google Scholar
Berger, J., Swenson, J. E. & Persson, I. L. (2001). Recolonizing carnivores and naive prey: conservation lessons from Pleistocene extinctions. Science, 291, 10361039.Google Scholar
Bergerud, A. T. (1974). The role of the environment in the aggregation, movement and disturbance behaviour of caribou. In Geist, V. & Walther, F. (eds.) The Behavior of Ungulates and its Relation to Management. Morges, Switzerland: International Union for Conservation of Nature and Natural Resources (IUCN).Google Scholar
Blumstein, D. T. (2002). Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands. Journal of Biogeography, 29, 685692.Google Scholar
Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder starting distance. Journal of Wildlife Management, 67, 852857.Google Scholar
Blumstein, D. T. (2006). The multipredator hypothesis and the evolutionary persistence of antipredator behavior. Ethology, 112, 209217.Google Scholar
Blumstein, D. T. (2010). Flush early and avoid the rush: a general rule of antipredator behavior? Behavioral Ecology, 21, 440442.Google Scholar
Blumstein, D. T. & Daniel, J. C. (2005). The loss of anti-predator behaviour following isolation on islands. Proceedings of the Royal Society B, 272, 16631668.Google Scholar
Blumstein, D. T. & Fernández-Juricic, E. (2010). A Primer on Conservation Behavior, Sunderland, MA: Sinauer Associates, Inc.Google Scholar
Blumstein, D. T., Ferando, E. & Stankowich, T. (2009). A test of the multipredator hypothesis: yellow-bellied marmots respond fearfully to the sight of novel and extinct predators. Animal Behaviour, 78, 873878.Google Scholar
Bonenfant, M. & Kramer, D. L. (1996). The influence of distance to burrow on flight initiation distance in the woodchuck, Marmota monax. Behavioral Ecology, 7, 299303.Google Scholar
Bøving, P. S. & Post, E. (1997). Vigilance and foraging behaviour of female caribou in relation to predation risk. Rangifer, 17, 5563.Google Scholar
Brown, G. E., Chivers, D. P. & Smith, R. J. F. (1997). Differential learning rates of chemical versus visual cues of a northern pike by fathead minnows in a natural habitat. Environmental Biology of Fishes, 49, 8996.Google Scholar
Byers, J. A. (1997). American Pronghorn: Social Adaptations and the Ghosts of Predators Past. Chicago, IL: Chicago Univiversity Press.Google Scholar
Cárdenas, Y. L., Shen, B., Zung, L. & Blumstein, D. T. (2005). Evaluating temporal and spatial margins of safety in galahs. Animal Behaviour, 70, 13951399.Google Scholar
Caro, T., Izzo, A., Reiner, R.C. Jr, Walker, H. & Stankowich, T. (2014). The function of zebra stripes. Nature Communications, 5, 110.Google Scholar
Caro, T. M. (2005). Antipredator Defenses in Birds and Mammals. Chicago, IL: University of Chicago Press.Google Scholar
Cassirer, E. F., Freddy, D. J. & Ables, E. D. (1992). Elk responses to disturbance by cross-country skiers in Yellowstone National Park. Wildlife Society Bulletin, 20, 375381.Google Scholar
Chapman, T., Rymer, T. & Pillay, N. (2012). Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris. Naturwissenschaften, 99, 893902.Google Scholar
Colman, J. E., Jacobsen, B. W. & Reimers, E. (2001). Summer response distances of Svalbard reindeer Rangifer tarandus platyrhynchus to provocation by humans on foot. Wildlife Biology, 7, 275283.Google Scholar
Cooper, W. E. (1997). Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): predator speed, directness of approach, and female presence. Herpetologica, 53, 464474.Google Scholar
Cooper, W. E. (1999). Tradeoffs between courtship, fighting, and antipredatory behavior by a lizard, Eumeces laticeps. Behavioral Ecology and Sociobiology, 47, 5459.Google Scholar
Cooper, W. E. & Blumstein, D. T. (2014). Novel effects of monitoring predators on costs of fleeing and not fleeing explain flushing early in economic escape theory. Behavioral Ecology, 25, 4452.Google Scholar
Coss, R. G. (1999). Effects of relaxed natural selection on the evolution of behavior. In Foster, S. A. & Endler, J. A. (eds.) Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms. Oxford: Oxford University Press.Google Scholar
Darling, F. F. (1937). A Herd of Red Deer. London: Oxford University Press.Google Scholar
Denniston, R. H. (1956). Ecology, behavior, and population dynamics of the Wyoming or Rocky Mountain moose, Alces alces shirasi. Zoologica, 41, 105118.Google Scholar
Derocher, A. E., Wiig, O. & Bangjord, G. (2000). Predation of Svalbard reindeer by polar bears. Polar Biology, 23, 675678.Google Scholar
Dill, L. M. & Houtman, R. (1989). The influence of distance to refuge on flight initiation distance in the gray squirrel (Sciurus carolinensis). Canadian Journal of Zoology, 67, 233235.Google Scholar
Elgar, M. A. (1989). Predator vigilance and group-size in mammals and birds: A critical review of the empirical-evidence. Biological Reviews of the Cambridge Philosophical Society, 64, 1333.Google Scholar
Espmark, Y. & Langvatn, R. (1979). Cardiac responses in alarmed red deer calves. Behavioural Processes, 4, 179186.Google Scholar
Espmark, Y. & Langvatn, R. (1985). Development and habituation of cardiac and behavioral responses in young red deer calves (Cervus elaphus) exposed to alarm stimuli. Journal of Mammalogy, 66, 702711.Google Scholar
Estes, R. D. & Goddard, J. (1967). Prey selection and hunting behavior of African wild dog. Journal of Wildlife Management, 31, 5270.Google Scholar
Gray, D. R. (1973). Winter research on the muskox (Ovibos moschatus wardi) on Bathurst Island, 1970–71. Arctic Circular, 21, 158163.Google Scholar
Griffin, S. C., Valois, T., Taper, M. L. & Scott Mills, L. (2007). Effects of tourists on behavior and demography of olympic marmots. Conservation Biology, 21, 10701081.Google Scholar
Hagemoen, R. I. M. & Reimers, E. (2002). Reindeer summer activity pattern in relation to weather and insect harassment. Journal of Animal Ecology, 71, 883892.Google Scholar
Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295311.Google Scholar
Hamlin, K. L. & Schweitzer, L. L. (1979). Cooperation by coyote pairs attacking mule deer fawns. Journal of Mammalogy, 60, 849850.Google Scholar
Hamr, J. (1988). Disturbance behavior of chamois in an alpine tourist area of Austria. Mountain Research and Development, 8, 6573.Google Scholar
Hediger, H. (1964). Wild Animals in Captivity. New York: Dover Publications, Inc.Google Scholar
Hone, E. (1934). The present status of the muskox in Arctic North America and Greenland. Special Publications of the American Committee for International Wildlife Protection, 5, 187.Google Scholar
Ilany, A. & Eilam, D. (2008). Wait before running for your life: defensive tactics of spiny mice (Acomys cahirinus) in evading barn owl (Tyto alba) attack. Behavioral Ecology and Sociobiology, 62, 923933.Google Scholar
Jacobsen, N. K. (1979). Alarm bradycardia in white-tailed deer fawns (Odocoileus virginianus). Journal of Mammalogy, 60, 343349.Google Scholar
Jensen, P. (2006). Domestication: From behaviour to genes and back again. Applied Animal Behaviour Science, 97, 315.Google Scholar
Karlsson, J., Eriksson, M. & Liberg, O. (2007). At what distance do wolves move away from an approaching human? Canadian Journal of Zoology, 85, 11931197.Google Scholar
Kearton, C. (1929). In the Land of the Lion. London: National Travel Club.Google Scholar
Kloppers, E. L., St. Clair, C. C. & Hurd, T. E. (2005). Predator-resembling aversive conditioning for managing habituated wildlife. Ecology and Society, 10, Online article 3, http://www.ecologyandsociety.org/vol10/iss1/art31/.Google Scholar
Kramer, D. L. & Bonenfant, M. (1997). Direction of predator approach and the decision to flee to a refuge. Animal Behaviour, 54, 289295.Google Scholar
Lagory, K. E. (1987). The influence of habitat and group characteristics on the alarm and flight response of white-tailed deer. Animal Behaviour, 35, 2025.Google Scholar
Lagos, P. A., Meier, A., Tolhuysen, L. O. et al. (2009). Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 87, 10161023.Google Scholar
Lahti, D. C., Johnson, N. A., Ajie, B. C. et al. (2009). Relaxed selection in the wild. Trends in Ecology & Evolution, 24, 487496.Google Scholar
Larivière, S. & Messier, F. (1996). Aposematic behaviour in the striped skunk, Mephitis mephitis. Ethology, 102, 986992.Google Scholar
Laundre, J. W., Hernandez, L. & Altendorf, K. B. (2001). Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Canadian Journal of Zoology, 79, 14011409.Google Scholar
Leader Williams, N. (1988). Reindeer on South Georgia: the Ecology of an Introduced Population. Cambridge: Cambridge University Press.Google Scholar
Lehrer, E. W., Schooley, R. L. & Whittington, J. K. (2011). Survival and antipredator behavior of woodchucks (Marmota monax) along an urban-agricultural gradient. Canadian Journal of Zoology, 90, 1221.Google Scholar
Lent, P. C. (1974). Mother-infant relationships in ungulates. In Geist, V. & Walther, F. (eds.) Behavior of Ungulates and its Relation to Management of Nature and Natural Resources. Gland, Switzerland: International Union for Conservation.Google Scholar
Lent, P. C. (1991). Maternal-infant behavior in muskoxen. Mammalia, 55, 322.Google Scholar
Li, C., Monclús, R., Maul, T. L., Jiang, Z. & Blumstein, D. T. (2011). Quantifying human disturbance on antipredator behavior and flush initiation distance in yellow-bellied marmots. Applied Animal Behaviour Science, 129, 146152.Google Scholar
Lima, S. L. (1995). Back to the basics of anti-predatory vigilance: the group-size effect. Animal Behaviour, 49, 1120.Google Scholar
Lingle, S. (2001). Anti-predator strategies and grouping patterns in white-tailed deer and mule deer. Ethology, 107, 295314.Google Scholar
Lingle, S. & Wilson, W. F. (2001). Detection and avoidance of predators in white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus). Ethology, 107, 125147.Google Scholar
Louis, S. & Le Beere, M. (2000). Adjustment in flight distance from humans by Marmota marmota. Canadian Journal of Zoology, 78, 556563.Google Scholar
Lovegrove, B. G. (2001). The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution, 55, 14641473.Google Scholar
Marealle, W. N., Fossøy, F., Holmern, T., Stokke, B. G. & Røskaft, E. (2010). Does illegal hunting skew Serengeti wildlife sex ratios? Wildlife Biology, 16, 419429.Google Scholar
Marion, K. R. & Sexton, O. J. (1979). Protective behavior by male pronghorn, Antilocapra americana (Artiodactyla). Southwestern Naturalist, 24, 709710.Google Scholar
Martín, J. & López, P. (1999). Nuptial coloration and mate guarding affect escape decisions of male lizards Psammodromus algirus. Ethology, 105, 439447.Google Scholar
Matson, T. K., Goldizen, A. W. & Putland, D. A. (2005). Factors affecting the vigilance and flight behaviour of impalas. South African Journal of Wildlife Research, 35, 111.Google Scholar
Matthiopoulos, J. (2003). The use of space by animals as a function of accessibility and preference. Ecological Modelling, 159, 239268.Google Scholar
McCleery, R. (2009). Changes in fox squirrel anti-predator behaviors across the urban-rural gradient. Landscape Ecology, 24, 483493.Google Scholar
McMillan, J. F. (1954). Some observations on moose in Yellowstone Park. American Midland Naturalist, 52, 392399.Google Scholar
Mirov, N. T. (1945). Notes on the domestication of reindeer. American Anthropologist, 47, 393408.Google Scholar
Moen, G. K., Støen, O.-G., Sahlén, V. & Swenson, J. E. (2012). Behaviour of solitary adult Scandinavian brown bears (Ursus arctos) when approached by humans on foot. PLoS ONE, 7, e31699.Google Scholar
Mooring, M. S., Fitzpatrick, T. A., Nishihira, T. T. & Reisig, D. D. (2004). Vigilance, predation risk, and the allee effect in desert bighorn sheep. Journal of Wildlife Management, 68, 519532.Google Scholar
Mörschel, F. H. & Klein, D. R. (1997). Effects of weather and parasitic insects on behavior and group dynamics of caribou of the Delta Herd, Alaska. Canadian Journal of Zoology, 75, 16591670.Google Scholar
Murphy, S. M. & Curatolo, J. A. (1987). Activity budgets and movement rates of caribou encountering pipelines, roads and traffic in Northern Alaska. Canadian Journal of Zoology, 65, 24832490.Google Scholar
Nieminen, M. (2013). Response distances of wild forest reindeer (Rangifer tarandus fennicus Lönnb.) and semi-domestic reindeer (R. t. tarandus L.) to direct provocation by a human on foot/snowshoes. Rangifer, 13, 115.Google Scholar
Pollard, R. H., Ballard, W. B., Noel, L. E. & Cronin, M. A. (1996). Summer distribution of Caribou, Rangifer tarandus granti, in the area of the Prudhoe Bay oil field, Alaska, 1990–1994. Canadian Field-Naturalist, 110, 659674.Google Scholar
Price, E. O. (1997). Behavioural genetics and the process of animal domestication. In Grandin, T. (ed.) Genetics and the Behaviour of Domestic Animals. Academic Press.Google Scholar
Price, E. O. & King, J. A. (1968). Domestication and adaptation. In Hafez, E. S. E. (ed.) Adaptation of Domestic Animals. Philadelphia, PA: Lea and Febiger.Google Scholar
Recarte, J. M., Vincent, J. P. & Hewison, A. J. M. (1998). Flight responses of park fallow deer to the human observer. Behavioural Processes, 44, 6572.Google Scholar
Reimers, E. & Colman, J. E. (2006). Reindeer and caribou (Rangifer tarandus) response towards human activities. Rangifer, 26, 5571.Google Scholar
Reimers, E. & Eftestøl, S. (2012). Response behaviours of Svalbard reindeer towards humans and humans disguised as polar bears on Edgeøya. Arctic, Antarctic and Alpine Research, 44, 483489.Google Scholar
Reimers, E., Dahle, B., Eftestol, S., Colman, J. E. & Gaare, E. (2007). Effects of a power line on migration and range use of wild reindeer. Biological Conservation, 134, 484494.Google Scholar
Reimers, E., Loe, L. E., Eftestol, S., Colman, J. E. & Dahle, B. (2009). Effects of hunting on response behaviors of wild reindeer. Journal of Wildlife Management, 73, 844851.Google Scholar
Reimers, E., Røed, K. H., Flaget, Ø. & Lurås, E. (2010). Habituation responses in wild reindeer exposed to recreational activities. Rangifer, 30, 4559.Google Scholar
Reimers, E., Lund, S. & Ergon, T. (2011). Vigilance and fright behaviour in the insular Svalbard reindeer. Canadian Journal of Zoology, 89, 753764.Google Scholar
Reimers, E., Røed, K. H. & Colman, J. E. (2012). Persistence of vigilance and flight response behaviour in wild reindeer with varying domestic ancestry. Journal of Evolutionary Biology, 25, 15431554.Google Scholar
Reimers, E., Tsegaye, D., Colman, J. E. & Eftestøl, S. (2014). Activity patterns in reindeer with domestic vs. wild ancestry. Applied Animal Behaviour Science. 150, 7484.Google Scholar
Reynolds, P. E. (1993). Dynamics of muskox groups in northeastern Alaska. Rangifer, 13, 8389.Google Scholar
Røed, K. H., Flagstad, O., Nieminen, M., et al. (2008). Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proceedings of the Royal Society B-Biological Sciences, 275, 18491855.Google Scholar
Røed, K. H., Flagstad, Ø., Bjørnstad, G. & Hufthammer, A. K. (2011). Elucidating the ancestry of domestic reindeer from ancient DNA approaches. Quarternary International, 238, 8388.Google Scholar
Roosevelt, T. (1910). African Game Trails: An Account of the African Wanderings of an American Hunter-Naturalist. Scribner.Google Scholar
Rowe-Rowe, D. T. (1974). Flight behavior and flight distance of blesbok. Zeitschrift für Tierpsychologie, 34, 208211.Google Scholar
Shallenberger, E. W. (1970). Tameness in Insular Animals: A Comparison of Approach Distances of Insular and Mainland Iguanid Lizards. Ph. D. Dissertation, University of California, Los Angeles.Google Scholar
Skarin, A., Danell, Ö., Bergström, R. & Moen, J. (2004). Insect avoidance may override human disturbances in reindeer habitat selection. Rangifer, 24, 95103.Google Scholar
Smallwood, K. S. (1993). Mountain lion vocalizations and hunting behavior. Southwestern Naturalist, 38, 6567.Google Scholar
Smith, W. P. (1987). Maternal defense in Columbian white-tailed deer: When is it worth it? The American Naturalist, 130, 310316.Google Scholar
Stafl, N. L. (2013). Quantifying the Effect of Hiking Disturbance on American Pika (Ochotona princeps) Foraging Behaviour. MSc, University of British Columbia.Google Scholar
Stankowich, T. (2008). Ungulate flight responses to human disturbance: a review and meta-analysis. Biological Conservation, 141, 21592173.Google Scholar
Stankowich, T. (2010). Risk-taking in self-defense. In Breed, M. D. & Moore, J. (eds.) Encyclopedia of Animal Behavior. Oxford: Academic Press.Google Scholar
Stankowich, T. & Blumstein, D. T. (2005). Fear in animals: a meta-analysis and review of risk assessment. Proceedings of the Royal Society B, 272, 26272634.Google Scholar
Stankowich, T. & Coss, R. G. (2006). Effects of predator behavior and proximity on risk assessment by Columbian black-tailed deer. Behavioral Ecology, 17, 246254.Google Scholar
Stankowich, T. & Coss, R. G. (2007a). Effects of risk assessment, predator behavior, and habitat on escape behavior in Columbian black-tailed deer. Behavioral Ecology, 18, 358367.Google Scholar
Stankowich, T. & Coss, R. G. (2007b). The re-emergence of felid camouflage with the decay of predator recognition in deer under relaxed selection. Proceedings of the Royal Society B, 274, 175182.Google Scholar
Tarlow, E. M. & Blumstein, D. T. (2007). Evaluating methods to quantify anthropogenic stressors on wild animals. Applied Animal Behaviour Science, 102, 429451.Google Scholar
Thomson, B. R. (1980). Behaviour differences between reindeer and caribou (Rangifer tarandus L.). In Reimers, E., Gaare, E. & Skjenneberg, S. (eds.) Second International Reindeer/Caribou Symposium, Røros, Norway. Trondheim: Direktoratet for vilt og ferskvannsfisk.Google Scholar
Tyler, N. J. C. (1991). Short-term behavioral responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biological Conservation, 56, 179194.Google Scholar
Tyler, N. J. C. & Øritsland, N. A. (1989). Why don’t Svalbard reindeer migrate. Holarctic Ecology, 12, 369376.Google Scholar
Van Der Knaap, W. O. (1986). On the presence of reindeer (Rangifer tarandus L.) on Edgeøya, Spitzbergen in the period 3800–5000 BP. Circumpolar Journal, 2, 310.Google Scholar
Vásquez, R. A., Ebensperger, L. A. & Bozinovic, F. (2002). The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behavioral Ecology, 13, 182187.Google Scholar
Vistnes, I. & Nellemann, C. (2008). The matter of spatial and temporal scales: a review of reindeer and caribou response to human activity. Polar Biology, 31, 399407.Google Scholar
Walther, F. R. (1969). Flight behaviour and avoidance of predators in Thomson’s gazelle (Gazella thomsoni Guenther 1884). Behaviour, 34, 184219.Google Scholar
Wam, H. K., Eldegard, K. & Hjeljord, O. (2014). Minor habituation torepeated experimental approaches in Scandinavian wolves. European Journal of Wildlife Research, 60, 839842.Google Scholar
Weston, M. A. & Stankowich, T. (2014). Dogs as agents of disturbance. In Gompper, M. E. (ed.) Free-Ranging Dogs and Wildlife Conservation. Oxford: Oxford University Press.Google Scholar
Wolf, I. D. & Croft, D. B. (2010). Minimizing disturbance to wildlife by tourists approaching on foot or in a car: A study of kangaroos in the Australian rangelands. Applied Animal Behaviour Science, 126, 7584.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229249.Google Scholar

References

Adams, J. L., Camelio, K. W., Orique, M. J. & Blumstein, D. T. (2006). Does information of predators influence general wariness? Behavioral Ecology and Sociobiology, 60, 742747.Google Scholar
Atwell, J. W., Cardoso, G. C., Whittaker, D. J. et al. (2012). Boldness behavior and stress physiology on a novel urban environment suggest rapid correlated evolutionary adaptation. Behavioral Ecology, 23, 960969.Google Scholar
Bateman, P. W. & Flemming, P. A. (2011). Who are you looking at? Hadeda ibises use direction of gaze, head orientation and approach speed in their risk assessment of a potential predator. Journal of Zoology, 285, 316323.Google Scholar
Bennett, P. M. & Owens, I. P. F. (2002). Evolutionary Ecology of Birds. Oxford: Oxford University Press.Google Scholar
Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder starting distance. Journal of Wildlife Management, 67, 852857.Google Scholar
Blumstein, D. T. (2006). Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Animal Behaviour, 71, 389399.Google Scholar
Blumstein, D. T. (2014). Attention, habituation, and anti-predator behaviour: Implications for urban birds. In Gil, D. & Brumm, H. (eds). Avian Urban Ecology. Oxford: Oxford University Press, pp. 4153.Google Scholar
Blumstein, D. T. & Daniel, J. C. (2005). The loss of anti-predator behaviour following isolation on islands. Proceedings of the Royal Society of London – Series B, 272, 16631668.Google Scholar
Blumstein, D. T. & Fernández-Juricic, E. (2010). A Primer of Conservation Behavior. Sunderland, MA: Sinauer.Google Scholar
Blumstein, D. T., Anthony, L. L., Harcourt, R. & Ross, G. (2003). Testing a key assumption of buffer zones: Is flight initiation distance a species-specific trait? Biological Conservation, 110, 97100.Google Scholar
Blumstein, D. T., Fernández-Juricic, E., LeDee, O. et al. (2004). Avian risk assessment: Effects of perching height and detectability. Ethology, 110, 273285.Google Scholar
Bolnick, D. I. & Preisser, E. L. (2005). Resource competition modifies the strength of trait-mediated predator–prey interactions: A meta-analysis. Ecology, 86, 27712779.Google Scholar
Boyer, J. S., Hass, L. L., Lurie, M. H. & Blumstein, D. T. (2006). Effect of visibility on time allocation and escape decisions in crimson rosellas. Australian Journal of Zoology, 54, 363367.Google Scholar
Burger, J. (1981). The effect of human activity on birds at a coastal bay. Biological Conservation, 21, 231241.Google Scholar
Burger, J. & Gochfeld, M. (1981). Discrimination of the threat of direct versus tangential approach to the nest by incubating herring and great black-backed gulls. Journal of Comparative Physiology and Psychology, 95, 676684.Google Scholar
Cárdenas, Y. L., Shen, B., Zung, L. & Blumstein, D. T. (2005). Evaluating temporal and spatial margins of safety in galahs. Animal Behaviour, 70, 13951399.Google Scholar
Carrete, M. & Tella, J. L. (2010). Individual consistency in flight initiation distances in burrowing owls: A new hypothesis on disturbance-induced habitat selection. Biology Letters, 6, 167170.Google Scholar
Carrete, M. & Tella, J. L. (2011a). Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasions in birds. Public Library of Science One, 6, e18859.Google Scholar
Carrete, M. & Tella, J. L. (2013). High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Scientific Reports, 3, 3524.Google Scholar
Clucas, B., Marzluff, J. M., Mackovjak, D. & Palmquist, I. (2013). Do American crows pay attention to human gaze and facial expressions? Ethology, 119, 17.Google Scholar
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Cooke, A. S. (1980). Observations on how close certain passerine species will tolerate an approaching human in rural and suburban areas. Biological Conservation, 18, 8588.Google Scholar
Cooper, W. E. & Blumstein, D. T. (2013). Novel effects of monitoring predators on costs of fleeing and not fleeing explain flushing early in economic escape theory. Behavioral Ecology, 25, 4452.Google Scholar
Daly, M. & Wilson, M. (1983). Sex, Evolution, and Behavior, 2nd edn. Boston, MA: Willard Grant.Google Scholar
Darwin, C. (1868). The Variation of Animals and Plants under Domestication. London: John Murray.Google Scholar
de Jong, A., Magnhagen, C. & Thulin, C.-G. (2013). Variable flight initiation distance in incubating European curlew. Behavioral Ecology and Sociobiology, 67, 10891096.Google Scholar
Díaz, M., Møller, A. P., Flensted-Jensen, E. et al. (2013). The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. Public Library of Science One, 8, e64634.Google Scholar
Domenici, P., Blagburn, J. M. & Bacon, J. P. (2011a). Animal escapology I: Theoretical issues and emerging trends in escape trajectories. Journal of Experimental Biology, 214, 24632473.Google Scholar
Domenici, P., Blagburn, J. M. & Bacon, J. P. (2011b). Animal escapology II: Escape trajectory case studies. Journal of Experimental Biology, 214, 24742494.Google Scholar
Dumont, F., Pasquaretta, C., Reale, D., Bogliani, G. & von Hardenberg, A.(2012). Flight initiation distance: Biological effect or mathematical artefact? Ethology, 118, 10511062.Google Scholar
Eason, P. K., Sherman, P. T., Rankin, O. & Coleman, B. (2006). Factors affecting flight initiation distance in American robins. Journal of Wildlife Management, 70, 17961800.Google Scholar
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th edn. New York, NY: Longman.Google Scholar
Fernández-Juricic, E. (2002). Can human disturbance promote nestedness? A case study with birds in an urban fragmented landscape. Oecologia, 131, 269278.Google Scholar
Fernández-Juricic, E., Vaca, R. & Schroeder, N. (2004). Spatial and temporal responses of forest birds to human approaches in a protected area and implications for two management strategies. Biological Conservation, 117, 407416.Google Scholar
Fernández-Juricic, E., Venier, P., Renison, D. & Blumstein, F. T. (2005). Sensitivity of wildlife to spatial patterns of recreationist behavior: a critical assessment of minimum approaching distances and buffer areas for grassland birds. Biological Conservation, 125, 225235.Google Scholar
Fernández-Juricic, E., Blumstein, D. T., Abrica, G. et al. (2006). Relationships of anti-predator escape and post-escape responses with body mass and morphology: A comparative avian study. Evolutionary Ecology Research, 8, 731752.Google Scholar
Frid, A. & Dill, L. M. (2002). Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6, www.consecol.org/Journal/vol6/iss1/art11/print.pdf.Google Scholar
Geist, C., Liao, J., Libby, S. & Blumstein, D. T. (2005). Does intruder group size and orientation affect flight initiation distance in birds? Animal Biodiversity and Conservation, 28, 6973.Google Scholar
Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. (2011). Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landscape and Urban Planning, 103, 326334.Google Scholar
Guay, P.-J., Weston, M. A., Symonds, M. R. E. & Glover, H. K. (2013). Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecology, 38, 516522.Google Scholar
Healy, S. D. & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society B, 274, 453464.Google Scholar
Hediger, H. (1934). Zur Biologie und Psychologie der Flucht bei Tieren. Biologisches Zentralblatt, 54, 2140.Google Scholar
Heil, L., Fernández-Juricic, E., Renison, D. et al. (2007). Avian responses to tourism in the biogeographically isolated high Córdoba Mountains, Argentina. Biodiversity and Conservation, 16, 10091026.Google Scholar
Keyel, A. C., Peck, D. T. & Reed, J. M. (2012). No evidence far individual assortment by temperament relative to patch area or patch openness in the bobolink. Condor, 114, 212218.Google Scholar
Koricheva, J., Gurevich, J. & Mengersen, K. (2013). Handbook of Meta-analysis in Ecology and Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Laursen, K., Kahlert, J. & Frikke, J. (2005). Factors affecting escape distances of staging waterbirds. Wildlife Biology, 11, 1319.Google Scholar
Lee, S., Hwang, S., Joe, Y. et al. (2013). Direct look from a predator shortens the risk-assessment time by prey. Public Library of Science One, 8, e64977.Google Scholar
Legagneux, P. & Ducatez, S. (2013). European birds adjust their flight initiation distance to road speed limits. Biology Letters, 9, 20130417.Google Scholar
Lin, T., Coppack, T., Lin, Q. et al. (2012). Does avian flight initiation distance indicate tolerance towards urban disturbance?Ecological Indicators, 15, 3035.Google Scholar
Madsen, J. (1995). Impacts of disturbance on migratory waterfowl. Ibis, 137, S67S74.Google Scholar
Madsen, J. (1998a). Experimental refuges for migratory waterfowl in Danish wetlands. I. Baseline assessment of disturbance effects of recreational activities. Journal of Applied Ecology, 35, 386397.Google Scholar
Madsen, J. (1998b). Experimental refuges for migratory waterfowl in Danish wetlands. II. Tests of hunting disturbance effects. Journal of Applied Ecology, 35, 398417.Google Scholar
Madsen, J. & Fox, A. D. (1995). Impacts of hunting disturbance on waterbirds: A review. Wildlife Biology, 1, 193207.Google Scholar
Martín, J., de Neve, L., Polo, V., Fargallo, J. A. & Soler, M. (2006). Health-dependent vulnerability to predation affects escape responses of unguarded chinstrap penguin chicks. Behavioral Ecology and Sociobiology, 60, 778784.Google Scholar
Møller, A. P. (2008a). Flight distance of urban birds, predation and selection for urban life. Behavioral Ecology and Sociobiology, 63, 6375.Google Scholar
Møller, A. P. (2008b). Flight distance and population trends in European breeding birds. Behavioral Ecology, 19, 10951102.Google Scholar
Møller, A. P. (2009a). Basal metabolic rate and risk taking behavior in birds. Journal of Evolutionary Biology, 22, 24202429.Google Scholar
Møller, A. P. (2009b). Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia, 159, 849858.Google Scholar
Møller, A. P. (2010a). Interspecific variation in fear responses predicts urbanization in birds. Behavioral Ecology, 21, 365371.Google Scholar
Møller, A. P. (2010b). Up, up, and away: Relative importance of horizontal and vertical escape from predators for survival and senescence. Journal of Evolutionary Biology, 23, 16891698.Google Scholar
Møller, A. P. (2012). Urban areas as refuges from predators and flight distance of prey. Behavioral Ecology, 23, 10301035.Google Scholar
Møller, A. P. (2014). Life history, predation and flight initiation distance in a migratory bird. Journal of Evolutionary Biology, 27, 11051113.Google Scholar
Møller, A. P. (2014a). Behavioural and ecological predictors of urbanization. In Gil, D. and Brumm, H. (eds.) Avian Urban Ecology. Oxford: Oxford University Press, pp. 5468Google Scholar
Møller, A. P. (2014b). Urban birds use cheap escape: Variance in escape direction from predators by prey.Google Scholar
Møller, A. P. & Erritzøe, J. (2010). Flight distance and eye size in birds. Ethology, 116, 458465.Google Scholar
Møller, A. P. & Erritzøe, J. (2014). Predator–prey interactions, flight initiation distance and brain size. Journal of Evolutionary Biology, 27, 3442.Google Scholar
Møller, A. P. & Garamszegi, L. Z. (2012). Between individual variation in risk taking behavior and its life history consequences. Behavioral Ecology, 23, 843853.Google Scholar
Møller, A.P. & Jennions, M.D. (2002). How much variance can be explained by ecologists and evolutionary biologists? Oecologia, 132, 492500.Google Scholar
Møller, A. P. & Liang, W. (2013). Tropical birds take small risks. Behavioral Ecology, 24, 267272.Google Scholar
Møller, A. P. & Tryjanowski, P. (2014). Direction of approach by predators and flight initiation distance of urban and rural populations of birds. Behavioral Ecology, 25, 960966.Google Scholar
Møller, A. P., Nielsen, J. T. & Garamszegi, L. Z. (2008). Risk taking by singing males. Behavioral Ecology, 19, 4153.Google Scholar
Møller, A. P., Bonisoli-Alquati, A., Rudolfsen, G. & Mousseau, T. A. (2011). Chernobyl birds have smaller brains. Public Library of Science One, 6, e16862.Google Scholar
Møller, A. P., Vágási, C. I. & Pap, P. L. (2013). Risk-taking and the evolution of mechanisms for rapid escape from predators. Journal of Evolutionary Biology, 26, 11431150.Google Scholar
Mukherjee, S., Ray-Mukherjee, J. & Sarabia, R. (2013). Behaviour of American crows (Corvus brachyrhynchos) when encountering an oncoming vehicle. Canadian Field-Naturalist, 127, 229233.Google Scholar
Müller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. (2013). Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Molecular Ecology, 22, 36293637.Google Scholar
Partecke, J., Schwabl, I. & Gwinner, E. (2006). Stress and the city: urbanisation and its effects on the stress physiology in European blackbirds. Ecology, 87, 19451952.Google Scholar
Partecke, J., Van’t Hof, T. J. & Gwinner, E. (2005). Underlying physiological control of reproduction and forest-dwelling blackbirds Turdus merula. Journal of Avian Biology, 36, 295305.Google Scholar
Pennycuick, C. J. (1989). Bird Flight Performance. Oxford: Oxford University Press.Google Scholar
Preisser, E. L., Bolnick, D. I. & Benard, M. F. (2005). Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology, 86, 501509.Google Scholar
Rand, A. S. (1964). Inverse relationship between temperature and shyness in the lizard Anolis lineatopus. Ecology, 45, 863864.Google Scholar
Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J. & Schwager, M. (2011). Population trends of birds across the iron curtain: Brain matters. Biological Conservation, 144, 25242533.Google Scholar
Rodriguez-Prieto, I., Fernández-Juricic, E. & Martín, J. (2008a). To run or to fly: Low cost versus low risk strategies in blackbirds. Behaviour, 125, 11251138.Google Scholar
Roff, D. (1992). Life History Evolution. New York, NY: Chapman & Hall.Google Scholar
Rosenthal, R. (1994). Parametric measures of effect size. In Cooper, H. & Hedges, L. V. (eds). The Handbook of Research Synthesis. New York, NY: Russel Sage Foundation, pp. 231244.Google Scholar
Rosenberg, M. S., Adams, D. C. & Gurevitch, J. (2000). MetaWin: Statistical Software for Meta-analysis. Version 2.1. Sunderland, MA: Sinauer Associates.Google Scholar
St. Clair, J. J. H., García-Peña, G. E., Woods, R. W. & Székely, T. (2012). Presence of mammalian predators decreases tolerance to human disturbance in a breeding shorebird. Behavioral Ecology, 21, 12851292.Google Scholar
Samia, D. S. M., Nomura, F. & Blumstein, D. T. (2013). Do animals generally flush early and avoid the rush? A meta-analysis. Biology Letters, 9, 20130016.Google Scholar
Scales, J., Hyman, J. & Hughes, M. (2011). Behavioral syndromes break down in urban song sparrow populations. Ethology, 117, 19.Google Scholar
Seltmann, M. W., Öst, M., Jaatinen, K. et al. (2012). Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Animal Behaviour, 84, 889896.Google Scholar
Smith-Castro, J. R. & Rodewald, A. D. (2010). Behavioral responses of nesting birds to human disturbance along recreational trails. Journal of Field Ornithology, 81, 130138.Google Scholar
Stankowich, T. & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceedings of the Royal Society of London B, 272, 26272634.Google Scholar
Tarlow, E. M. & Blumstein, D. T. (2007). Evaluating methods to quantify anthropogenic stressors on wild animals. Applied Animal Behaviour Science, 102, 429451.Google Scholar
Tatner, P. & Bryant, D. M. (1986). Flight cost of a small passerine measured using doubly labeled water: Implications for energetic studies. Auk, 103, 169180.Google Scholar
Thaxter, C. B., Joys, A. C., Gregory, R. D., Baillie, S. R. & Noble, D. G. (2010). Hypotheses to explain patterns of population change among breeding bird species in England. Biological Conservation, 143, 20062019.Google Scholar
Tomialojc, L. (1970). Quantitative studies on the synanthropic avifauna of Legnica town and its environs. Acta Ornithologica, 12, 293392.Google Scholar
Valcarcel, A. & Fernández-Juricic, E. (2009). Antipredator strategies of house finches: Are urban habitats safe spots from predators even when humans are around? Behavioral Ecology and Sociobiology, 63, 673685.Google Scholar
Weston, M. A., McLeod, E. M., Blumstein, D. T. & Guay, P.-J. (2012). A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu, 112, 269286.Google Scholar
Wright, S. (1968). Evolution and the Genetics of Populations. Vol. 1. Genetic and Biometric Foundations. Chicago, IL: University of Chicago Press.Google Scholar
Zanette, L. T., White, A. F., Allen, M. C. & Clinchy, M. (2011). Perceived predation risk reduces the number of offspring songbirds produce per year. Science, 334, 13981401.Google Scholar

References

Bateman, P. W. & Fleming, P. A. (2009). To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology, 277, 114.Google Scholar
Berger, S., Wikelski, M., Romero, L. M., Kalko, E. K. V. & Rödl, T. (2007). Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana. Hormones and Behavior, 52, 653663.Google Scholar
Bisazza, A., Rogers, L. J. & Vallortigarac, G. (1998). The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neuroscience and Biobehavioral Reviews, 22, 411426.Google Scholar
Blamires, S. J. (1999). Factors influencing the escape response of an arboreal agamid lizard of tropical Australia (Lophognathus temporalis) in an urban environment. Canadian Journal of Zoology, 77, 19982003.Google Scholar
Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder starting distance. Journal of Wildlife Management, 67, 852857.Google Scholar
Brodie, E. D. III. (1989). Genetic correlations between morphology and antipredator behavior in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542543.Google Scholar
Brodie, E. D. III (1992). Correlational selection for clolor patterns and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 12841298.Google Scholar
Brown, G. P. & Shine, R. (2004). Effects of reproduction on the antipredator tactics of snakes (Tropidophis mairii, Colubridae). Behavioral Ecology and Sociobiology, 56, 257262.Google Scholar
Bulova, S. J. (1994). Ecological correlates of population and individual variation in antipredator behavior of two species of desert lizards. Copeia, 1994, 980992.Google Scholar
Burger, J. & Gochfeld, M. (1993). The importance of the human face in risk perception by black iguanas, Ctenosaura similis. Journal of Herpetology, 27, 426430.Google Scholar
Burger, J., Gochfeld, M. & Murray, B. G. Jr. (1991). The role of a predator’s eye size in risk perception by basking black iguana, Ctenosaura similis. Animal Behaviour, 42, 471476.Google Scholar
Burger, J., Gochfeld, M. & Murray, B. B. Jr. (1992). Risk discrimination of eye contact and directness of approach in black iguanas (Ctenosaura similis). Journal of Comparative Psychology, 106, 97101.Google Scholar
Clark, C. W. (1994). Antipredator behavior and the asset-protection principle. Behavioral Ecology, 5, 159170.Google Scholar
Congdon, J. D., Vitt, L. J. & King, W. W. (1974). Geckos: Adaptive significance and energetics of tail autotomy. Science, 184, 13791380.Google Scholar
Cooper, W. E. Jr. (1997a). Escape by a refuging prey, the broad-headed skink (Eumeces laticeps). Canadian Journal of Zoology, 75, 943947.Google Scholar
Cooper, W. E. Jr. (1997b). Threat factors affecting antipredatory behavior in the broad-headed skink (Eumeces laticeps): Repeated approach, change in predator path, and predator’s field of view. Copeia, 1997, 613619.Google Scholar
Cooper, W. E. Jr. (1998a). Effects of refuge and conspicuousness on escape behavior by the broad-headed skink (Eumeces laticeps). Amphibia-Reptilia, 19, 103108.Google Scholar
Cooper, W. E. Jr. (1998b). Reactive and anticipatory display to deflect predatory attack to an autotomous lizard tail. Canandian Journal of Zoology, 76, 15071510.Google Scholar
Cooper, W. E. Jr. (1998c). Direction of predator turning, a neglected cue to predation risk. Behaviour, 135, 5564.Google Scholar
Cooper, W. E. Jr. (1999a). Escape behavior by prey blocked from entering the nearest refuge. Canadian Journal of Zoology, 77, 671674.Google Scholar
Cooper, W. E. Jr. (1999b). Tradeoffs between courtship, fighting, and antipredatory behavior by a lizard, Eumeces laticeps. Behavioral Ecology and Sociobiology, 47, 5459.Google Scholar
Cooper, W. E. Jr. (2003). Shifted balance of risk and cost after autotomy affects use of cover, escape, activity, and foraging in the keeled earless lizard (Holbrookia propinqua). Behavioral Ecology and Sociobiology, 54, 179187.Google Scholar
Cooper, W. E. Jr. (2006a). Dynamic risk assessment: Prey rapidly adjust flight initiation distance to changes in predator approach speed. Ethology, 112, 858864.Google Scholar
Cooper, W. E. Jr. (2006b). Risk factors affecting escape grahamÿr by Puerto rican Anolis lizards. Canadian Journal of Zoology, 84, 495504.Google Scholar
Cooper, W. E. Jr. (2007a). Escape and its relationship to pursuit-deterrent grahamÿrÿ in the Cuban curly-tailed lizard Leiocephalus carinatus. Herpetologica, 63, 144150.Google Scholar
Cooper, W. E. Jr. (2007b). Compensatory changes in escape and refuge use following autotomy in the lizard Sceloporus virgatus. Canadian Journal of Zoology, 85, 99107.Google Scholar
Cooper, W. E. Jr. (2007c). Foraging modes as suites of coadapted movement traits. Journal of Zoology, 272, 4556.Google Scholar
Cooper, W. E. Jr. (2008). Strong artifactual effect of starting distance on flight initiation distance in the actively foraging lizard Aspidoscelis exsanguis. Herpetologica, 64, 200206.Google Scholar
Cooper, W. E. Jr. (2009a). Rapid covering by shadow as a cue to predation risk in three lizard species. Behaviour, 146, 12171234.Google Scholar
Cooper, W. E. Jr. (2009b). Flight initiation distance decreases during social activity in lizards (Sceloporus virgatus). Behavioral Ecology and Sociobiology, 63, 17651771.Google Scholar
Cooper, W. E. Jr. (2009c). Fleeing and hiding under simultaneous risks and costs. Behavioral Ecology, 20, 665671.Google Scholar
Cooper, W. E. Jr. (2010a). Pursuit deterrence varies with predation risks affecting escape behavior in the lizard Callisaurus draconoides. Animal Behaviour, 80, 249256.Google Scholar
Cooper, W. E. Jr. (2010b). Escape tactics and effects of perch height and habituation on flight initiation distance in two Jamaican anoles (Squamata: Polychrotidae). Revista de Biologia Tropical, 58, 11991209.Google Scholar
Cooper, W. E. Jr. (2011a). Age, sex and escape grahamÿr in the striped plateau lizad (Sceloporus virgatus) and the mountain spiny lizard (Sceloporus jarrovii), with a review of age and sex effects on escape by lizards. Behaviour, 148, 12151238.Google Scholar
Cooper, W. E. Jr. (2011b). Pursuit deterrence, predations risk, and escape in the lizard Callisaurus draconoides. Behavioral Ecology and Sociobiology, 65, 18331841.Google Scholar
Cooper, W. E. Jr. (2011c). Influence of some potential predation risk factors and interaction between predation risk and cost of fleeing on escape by the lizard Sceloporus virgatus. Ethology, 117, 620629.Google Scholar
Cooper, W. E. Jr. (2012). Risk factors affecting escape behavior by the Jamaican lizard Anolis lineatopus (Polychrotidae, Squamata). Caribbean Journal of Science, 46, 112.Google Scholar
Cooper, W. E. Jr. & Avalos, A. (2010). Predation risk, escape and refuge use by mountain spiny lizards (Sceloporus jarrovii). Amphibia-Reptilia, 31, 363373.Google Scholar
Cooper, W. E. Jr. & Blumstein, D. T. (2014). Starting distance, alert distance and flushing early challenge economic escape theory: New proposed effects on costs of fleeing and not fleeing. Behavioral Ecology, 25, 4452.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967.Google Scholar
Cooper, W. E. Jr. & Pérez-Mellado, V. (2011). Escape by the Balearic lizard (Podarcis lilfordi) is affected by elevation of an approaching predator, but not by some other potential predation risk factors. Acta Herpetologica, 6, 247259.Google Scholar
Cooper, W. E. Jr. & Pérez-Mellado, V. (2012). Historical influence of predation pressure on escape behavior by Podarcis lizards in the Balearic islands. Biological Journal of the Linnaean Society, 107, 254268Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2010). Crypsis influences escape decisions in the round-tailed horned lizard (Phrynosoma modestusm). Canadian Journal of Zoology, 88, 10031010.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2012). Choosing between a rock and a hard place: Camouflage in the round-tailed horned lizard Phrynosoma modestum. Current Zoology, 58, 541548.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2013a). Effects of recent movement, starting distance and other risk factors on escape behaviour by two phrynosomatid lizards. Behaviour, 150, 447469.Google Scholar
Cooper, W. E. Jr. & Sherbrooke, W. C. (2013b). Risk and cost of immobility in the presence of an immobile predator: effects on latency to flee or approach food or a potential mate. Behavioral Ecology and Sociobiology, 67, 583592.Google Scholar
Cooper, W. E. & Stankowich, T. (2010). Prey or predator? Body size of an approaching animal affects decisions to attack or escape. Behavioral Ecology, 21, 12781284.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1985). Blue tails and autotomy: Enhancement of predation avoidance in juvenile skinks. Zeitschrift fur Tierpsychologie, 70, 265276.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1991). Influence of detectability and ability to escape on natural selection of conspicuous autotomous defenses. Canadian Journal of Zoology, 69, 757764.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2007). Beyond optimal escape theory: Microhabitats as well as predation risk affect escape and refuge use by the phrynosomatid lizard Sceloporus virgatus. Behaviour, 144, 12351254.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2008). How to stay alive after losing your tail. Behaviour, 145, 10851089.Google Scholar
Cooper, W. E. Jr., Vitt, L. J., Hedges, R. & Huey, R. B. (1990). Locomotor impairment and defense in gravid lizards (Eumeces laticeps): Behavioral shift in activity may offset costs of reproduction in an active forager. Behavioral Ecology and Sociobiology, 27, 153157.Google Scholar
Cooper, W. E. Jr., Pérez-Mellado, V., Baird, T. et al. (2003). Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behavioral Ecology, 14, 288293.Google Scholar
Cooper, W. E. Jr., Perez-Mellado, V. & Hawlena, D. (2006). Magnitude of food reward affects escape behavior and acceptable risk in Balearic lizards, Podarcis lilfordi. Behavioral Ecology, 17, 554559.Google Scholar
Cooper, W. E. Jr., Perez-Mellado, V. & Hawlena, D. (2007). Number, speeds, and approach paths of predators affect escape behavior by the Balearic lizard, Podarcis lilfordi. Journal of Herpetology, 41, 197204.Google Scholar
Cooper, W. E. Jr., Attum, O. & Kingsbury, B. (2008). Escape behaviors and flight initiation distance in the common water snake Nerodia sipedon. Journal of Herpetology, 42, 493500.Google Scholar
Cooper, W. E. Jr., Wilson, D. S. & Smith, G. R. (2009a). Sex, reproductive status, and cost of tail autotomy via decreased running speed. Ethology, 115, 713.Google Scholar
Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. (2009b). Interactive effect of starting distance and approach speed on escape challenges theory. Behavioral Ecology, 20, 542546.Google Scholar
Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. (2009c). Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Canadian Journal of Zoology, 87, 912919.Google Scholar
Cooper, W. E. Jr., López, P., Martín, J. & Pérez-Mellado, V. (2012). Latency to flee from an immobile predator: Effects of risk and cost of immobility for the prey. Behavioral Ecology, 23, 790797.Google Scholar
Eifler, D. (2001). Egernia cunninghami (Cunningham’s skink). Escape behavior. Herpetological Review, 32, 40.Google Scholar
Fitch, H. S. (1963). Natural history of the racer Coluber constrictor. University of Kansas Publications, Museum of Natural History, 15, 351468.Google Scholar
Fitch, H. S. (1965). An ecological study of the garter snake, Thamnophis sirtalis. University of Kansas Publications, Museum of Natural History, 15, 493564.Google Scholar
Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. (2006). Blue tail and striped body: Why do lizards change their infant costume when growing up? Behavioral Ecology, 17, 889896.Google Scholar
Hawlena, D., Perez-Mellado, V. & Cooper, W. E. Jr. (2009). Morphological traits affect escape behavior of the Balearic lizards (Podarcis lilfordi). Amphibia-Reptilia, 30, 587592.Google Scholar
Hertz, P. E., Huey, R. B. & Nevo, E. (1983). Homage to Santa Anita: Thermal sensitivity of sprint speed in agamid lizards. Evolution, 37, 10751084.Google Scholar
Holley, A. J. F. (1993). Do brown hares signal foxes? Ethology, 94, 2130.Google Scholar
Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia, Vol. 12, Physiology C: Physiological Ecology. London: Academic Press, pp. 2591.Google Scholar
Jackson, J. F., Ingram, W. III. & Campbell, H. W. (1976). The dorsal pigmentation as an antipredator strategy: a multivariate approach. American Naturalist, 110, 10291053.Google Scholar
Kacoliris, F. P., Gurrero, E., Molinari, A., Moyano, B. & Rafael, A. (2009). Run to shelter or bury into the sand? Factors affecting escape grahamÿr decisions in Argentinian sand dun lizards (Liolaemus multimaculatus). Herpetological Journal, 19, 213216.Google Scholar
Kelt, D. A., Nabors, L. K. & Forister, M. L. (2002). Size-specific differences in tail loss and escape behavior in Liolaemus nigromaculatus. Journal of Herpetology, 36, 322325.Google Scholar
Kramer, D. L. & Bonenfant, M. (1997). Direction of predator approach and the decision to flee to a refuge. Animal Behaviour, 54, 289295.Google Scholar
Lailvaux, S. P., Alexander, G. J. & Whiting, M. J. (2003). Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius. Physiological and Biochemical Zoology, 76, 511521.Google Scholar
Layne, J. R. & Ford, N. B. (1984). Flight distance of the queen snake, Regina septemvittata. Journal of Herpetology, 18, 496498.Google Scholar
Lima, S. L. & Bednekoff, P. A. (1999). Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. American Naturalist, 153, 649659.Google Scholar
Llewelyn, J., Webb, J. K. & Shine, R. (2010). Flexible defense: context-dependent antipredator responses of two species of Australian elapid snakes. Herpetologica, 66, 111.Google Scholar
López, P., Hawlena, D., Polo, V., Amo, L. & Martín, J. (2005). Sources of shy–bold variations in antipredator grahamÿr of male Iberian rock lizards. Animal Behaviour, 69, 19.Google Scholar
Losos, J. B. & Irschick, D. J. (1996). The effect of perch diameter on escape grahamÿr of Anolis lizards: Laboratory predictions and field tests. Animal Behaviour, 51, 593602.Google Scholar
Losos, J. B., Mouton, P. L. F. N., Bickel, R., Cornelius, I. & Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Animal Behaviour, 64, 313321.Google Scholar
Maritz, B. (2012). To run or hide? Escape behavior in a cryptic African snake. African Zoology, 47, 270274.Google Scholar
Martín, J. & López, P. (1999). Nuptial coloration and mate-guarding affect escape decisions of male lizards, Psammodromus algirus. Ethology, 105, 439447.Google Scholar
Martín, J., López, P. & Cooper, W. E. Jr. (2003). When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology, 109, 7787.Google Scholar
Martín, J., Luque-Larena, J. J. & López, P. (2009). When to run from an ambush predator: balancing crypsis benefits with costs of fleeing in lizards. Animal Behaviour, 78, 10111018.Google Scholar
Mattingly, W. B. & Jayne, B. C. (2005). The choice of arboreal escape paths and its consequences for the locomotor behaviour of four species of Anolis lizards. Animal Behaviour, 70, 12391250.Google Scholar
McConnachie, S. & Whiting, M. J. (2003). Costs associated with tail autotomy in an ambush foraging lizard, Cordylus melanotus melanotus. African Zoology, 38, 5765.Google Scholar
Melville, J. & Swain, R. (2003). Evolutionary correlations between escape behaviour and performance ability in eight species of snow skinks from Tasmania (Niveoscincus: Lygosominae). Journal of Zoology, 261, 7989.Google Scholar
Olsson, M., Shine, R. & Bak-Olsson, E. (2000). Locomotor impairment of gravid lizards: is the burden physiological? Journal of Evolutionary Biology, 13, 263268.Google Scholar
Owen-Smith, N. & Mills, M. G. L. (2008). Predator–prey size relationships in an African large-mammal food web. Journal of Animal Ecology, 77, 173183.Google Scholar
Pérez-Cembranos, A., Pérez-Mellado, V. & Cooper, W. E. (2013). Predation risk and opportunity cost of fleeing while foraging on plants influences escape decisions of and insular lizard. Ethology, 119, 522530.Google Scholar
Pough, F. H. (1976). Multiple cryptic effects of crossbanded and ringed patterns of snakes. Copeia, 1976, 834836.Google Scholar
Ruxton, G. D., Sheratt, T. N. & Speed, M. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford: Oxford University Press.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551556.Google Scholar
Schneider, K. R., Parmerlee, J. S. Jr. & Powell, R. (2000). Escape behavior of Anolis lizards from the Sierra de Baoruco, Hispaniola. Caribbean Journal of Science, 36, 321323.Google Scholar
Schulte, J. A., Losos, J., Cruz, F. B. & Nunez, H. (2004). The relarionship between morphology, escape behavior and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae: Liolaemini). Journal of Evolutionary Biology, 17, 408420.Google Scholar
Schwarzkopf, L. & Shine, R. (1992). Costs of reproduction in lizards: escape tactics and susceptibility to predation. Behavioral Ecology and Sociobiology, 31, 1725.Google Scholar
Scribner, S. J. & Weatherhead, P. J. (1995). Locomotion and antipredator behaviour in three species of aquatic snakes. Canadian Journal of Zoology, 73, 321329.Google Scholar
Shallenberger, E. W. (1970). Tameness in Insular Animals: a Comparison of Approach Distances of Insular and Mainland Iguanid Lizards. Los Angeles: University of California at Los Angeles.Google Scholar
Shine, R. (1980). “Costs” of reproduction in reptiles. Oecologia, 46, 92100.Google Scholar
Shine, R., Sun, L.-X., Fitzgerald, M. & Kearney, M. (2002). Antipredator responses of free-ranging pit vipers (Gloydius shedaoensis, Viperidae). Copeia, 2002, 843850.Google Scholar
Shine, R., Phillips, B., Waye, H. & Mason, R. T. (2003a). Behavioral shifts associated with reproduction in garter snakes. Behavioral Ecology, 14, 251256.Google Scholar
Shine, R., Phillips, B., Waye, H. & Mason, R. T. (2003b). Small-scale geographic variation in antipredator tactics of garter snakes. Herpetologica, 59, 333339.Google Scholar
Shine, R., Bonnett, X. & Cogger, H. C. (2003c). Antipredator tactics of amphibious sea snakes (Serpentes, Laticaudidae). Ethology, 109, 533542.Google Scholar
Smith, G. R. (1996). Correlates of approach distance in the striped plateau lizard (Sceloporus virgatus). Herpetological Journal, 6, 5658.Google Scholar
Stankowich, T. & Blumstein, D. T. (2005). Fear in animals: a meta-analysis and review of risk assessment. Proceedings of the Royal Society of London, Series B, Biological Sciences, 272, 26272634.Google Scholar
Stankowich, T. & Coss, R. G. (2007). Effects of risk assessment, predator behavior, and habitat on escape behavior in Columbian black-tailed deer. Behavioral Ecology, 18, 358367.Google Scholar
Stapley, J. & Keogh, J. S. (2004). Exploratory and antipredator behaviours differ between territorial and nonterritorial male lizards. Animal Behaviour, 68, 841846.Google Scholar
Stiller, R. B. & McBrayer, L. B. (2013). The ontogeny of escape behavior, locomotor performance, and the hind limb in Sceloporus woodi. Zoology, 116, 175181.Google Scholar
Thaker, M., Lima, S. L. & Hews, D. K. (2009). Alternative antipredatory tactics in tree lizard morphs: hormonal and behavioural responses to a predator encounter. Animal Behaviour, 77, 395401.Google Scholar
Ward, J. P. & Hopkins, W. D. (1993). Primate laterality: current behavioral evidence of primate asymmetries. New York: Springer-Verlag.Google Scholar
Weatherhead, P. J. & Robertson, I. C. (1992). Thermal constraints on swimming performance and escape response of northern water snakes (Nerodia sipedon). Canadian Journal of Zoology, 70, 9498.Google Scholar
Whitaker, P. B. & Shine, R. (1999). Responses of free-ranging brownsnakes (Pseudonaja textilis: Elapidae). Wildlife Research, 26, 689704.Google Scholar
Williams, E. E. (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. In Lizard Ecology: Studies of a Model Organism. Cambridge: Harvard University Press, pp. 326370.Google Scholar
Williams, D. M., Samia, D. S. M., Cooper, W. E. Jr. & Blumstein, D. T. (2014). The flush early and avoid the rush hypothesis holds after accounting for spontaneous behavior. Behavioral Ecology, 25, 11361147.Google Scholar
Zani, P. A., Jones, T. D., Neuhaus, R. A. & Milgrom, J. E. (2009). Effect of refuge distance on escape behavior of side-blotched lizards (Uta stansburiana). Canadian Journal of Zoology, 87, 407414.Google Scholar

References

Abrahams, M. V. (1995). The interaction between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook sticklebacks. Canadian Journal of Zoology, 73, 22092215.Google Scholar
Allan, B. J. M., Domenici, P., Mccormick, M. I., Watson, S.-A. & Munday, P. L. (2013). Elevated CO2 affects predator–prey interactions through altered performance. PloS ONE, 8, e58520.Google Scholar
Alvarez, M. C., Murphy, C. A., Rose, K. A., Mccarthy, I. D. & Fuiman, L. A. (2006). Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquatic Toxicology, 80, 329337.Google Scholar
Andraso, G. M. (1997). A comparison of startle response in two morphs of the brook stickleback (Culaea inconstans): Further evidence for a trade-off between defensive morphology and swimming ability. Evolutionary Ecology, 11, 8390.Google Scholar
Andraso, G. M. & Barron, J. N.(1995). Evidence for a trade-off between defensive morphology and startle-response performance in the brook stickleback (Culaea inconstans). Canadian Journal of Zoology, 73, 11471153.Google Scholar
Arai, T., Tominaga, O., Seikai, T. & Masuda, R. (2007). Observational learning improves predator avoidance in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles. Journal of Sea Research, 58, 5964.Google Scholar
Askey, P. J., Richards, S. A., Post, J. R. & Parkinson, E. A. (2006). Linking angling catch rates and fish learning under catch-and-release regulations. North American Journal of Fisheries Management, 26, 10201029.Google Scholar
Bateman, P. W. & Fleming, P. A. (2014). Living on the edge: effects of body size, group density and microhabitat selection on escape behaviour of Southern Leopard Frogs (Lithobates sphenocephalus). Current Zoology, 60, 712718.Google Scholar
Bateman, P. W. & Fleming, P. A. (2015). Body size and group size of Cuban tree frogs (Osteopilus Septentrionalis) tadpoles influence their escape behaviour. Acta Ethologica, doi: 10.1007/s10211-014-0201-9.Google Scholar
Bergstrom, C. (2002). Fast-start swimming performance and reduction in lateral plate number in threespine stickleback. Canadian Journal of Zoology, 80, 207213.Google Scholar
Blanchard, R. J., Blanchard, D. C., Rodgers, J. & Weiss, S. M. (1991). The characterization and modelling of antipredator defensive behavior. Neuroscience & Biobehavioral Reviews, 14, 463472.Google Scholar
Blaxter, J., Gray, J. & Denton, E. (1981). Sound and startle responses in herring shoals. Journal of the Marine Biology Association UK, 61, 851870.Google Scholar
Blumstein, D. T. & Fernández-Juricic, E. (2010). A Primer on Conservation Behavior. Sunderland, MA: Sinauer Associates Inc.Google Scholar
Bohórquez-Herrera, J., Kawano, S. M. & Domenici, P.(2013). Foraging behavior delays mechanically-stimulated escape responses in fish. Integrative and Comparative Biology, 53, 780786.Google Scholar
Brick, O. (1998). Fighting behaviour, vigilance and predation risk in the cichlid fish Nannacara anomala. Animal Behaviour, 56, 309317.Google Scholar
Bridges, C. M. (1997). Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environmental Toxicology and Chemistry, 16, 19351939.Google Scholar
Brown, C. & Laland, K. N. (2003). Social learning in fishes: A review. Fish and Fisheries, 4, 280288.Google Scholar
Brown, R. M. & Taylor, D. H. (1995). Compensatory escape mode trade-offs between swimming performance and maneuvering behavior through larval ontogeny of the wood frog, Rana sylvatica. Copeia, 17.Google Scholar
Chan, A. A. Y.-H. & Blumstein, D. T. (2011). Attention, noise, and implications for wildlife conservation and management. Applied Animal Behaviour Science, 131, 17.Google Scholar
Chovanec, A. (1992). The influence of tadpole swimming behaviour on predation by dragonfly nymphs. Amphibia-Reptilia, 13, 341349.Google Scholar
Cole, R. (1994). Abundance, size structure, and diver-oriented behaviour of three large benthic carnivorous fishes in a marine reserve in northeastern New Zealand. Biological Conservation, 70, 9399.Google Scholar
Cooper, W. Jr. (2011). Escape strategy and vocalization during escape by American bullfrogs (Lithobates catesbeianus). Amphibia-Reptilia, 32, 213221.Google Scholar
Cooper, W. E. Jr., Caldwell, J. P. & Vitt, L. J. (2008). Effective crypsis and its maintenance by immobility in Craugastor frogs. Copeia, 2008, 527532.Google Scholar
Cooper, W. E. Jr., Caldwell, J. P. & Vitt, L. J. (2009). Risk assessment and withdrawal behavior by two species of aposematic poison frogs, Dendrobates auratus and Oophaga pumilio, on forest trails. Ethology, 115, 311320.Google Scholar
D’anna, G., Giacalone, V. M., Badalamenti, F. & Pipitone, C.(2004). Releasing of hatchery-reared juveniles of the white seabream Diplodus sargus (L., 1758) in the Gulf of Castellammare artificial reef area (NW Sicily). Aquaculture, 233, 251268.Google Scholar
D’anna, G., Giacalone, V. M., Fernández, T. V. et al. (2012). Effects of predator and shelter conditioning on hatchery-reared white seabream Diplodus sargus (L., 1758) released at sea. Aquaculture, 356–357, 9197.Google Scholar
Dayton, G. H., Saenz, D., Baum, K. A., Langerhans, R. B. & Dewitt, T. J. (2005). Body shape, burst speed and escape behavior of larval anurans. Oikos, 111, 582591.Google Scholar
Denny, M. W. (1993). Air and Water: The Biology and Physics of Life’s Media. Princeton University Press.Google Scholar
Dill, L. M. (1974a). The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Animal Behaviour, 22, 711722.Google Scholar
Dill, L. M. (1974b). The escape response of the zebra danio (Brachydanio rerio) II. The effect of experience. Animal Behaviour, 22, 723730.Google Scholar
Dill, L. M. (1990). Distance-to-cover and the escape decisions of an African cichlid fish, Melanochromis chipokae. Environmental Biology of Fishes, 27, 147152.Google Scholar
Domenici, P. (2010). Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313, 5979.Google Scholar
Domenici, P. & Batty, R. S.(1997). Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Marine Biology, 128, 2938.Google Scholar
Domenici, P. & Blake, R. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 200, 11651178.Google Scholar
Domenici, P., Lefrancois, C. & Shingles, A. (2007). Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 21052121.Google Scholar
Donnelly, W. A. & Dill, L. M. (1984). Evidence for crypsis in coho salmon, Oncorhynchus kisutch (Walbaum), parr: Substrate colour preference and achromatic reflectance. Journal of Fish Biology, 25, 183195.Google Scholar
Eaton, R. C., Lee, R. K. K. & Foreman, M. B. (2001). The Mauthner cell and other identified neurons of the brainstem escape network of fish. Progress in Neurobiology, 63, 467485.Google Scholar
Eterovick, P. C., Oliveira, F. F. R. & Tattersall, G. J. (2010). Threatened tadpoles of Bokermannohyla alvarengai (Anura: Hylidae) choose backgrounds that enhance crypsis potential. Biological Journal of the Linnean Society, 101, 437446.Google Scholar
Feary, D. A., Cinner, J. E., Graham, N. A. J. & Januchowski-Hartley, F. A. (2011). Effects of customary marine closures on fish behavior, spear-fishing success, and underwater visual surveys. Conservation Biology, 25, 341349.Google Scholar
Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88, 698724.Google Scholar
Fuiman, L. A. (1993). Development of predator evasion in Atlantic herring, Clupea harengus L. Animal Behaviour, 45, 11011116.Google Scholar
Ghalambor, C. K., Reznick, D. N. & Walker, J. A. (2004). Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). The American Naturalist, 164, 3850.Google Scholar
Godin, J.-G. J. & Morgan, M. J. (1985). Predator avoidance and school size in a cyprinodontid fish, the banded killifish (Fundulus diaphanus Lesueur). Behavioral Ecology and Sociobiology, 16, 105110.Google Scholar
Gotanda, K. M., Turgeon, K. & Kramer, D. L. (2009). Body size and reserve protection affect flight initiation distance in parrot fishes. Behavioral Ecology and Sociobiology, 63, 15631572.Google Scholar
Grant, J. W. & Noakes, D. L. (1987). Escape behaviour and use of cover by young-of-the-year brook trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences, 44, 13901396.Google Scholar
Guidetti, P., Vierucci, E. & Bussotti, S. (2008). Differences in escape response of fish in protected and fished Mediterranean rocky reefs. Journal of the Marine Biological Association of the UK, 88, 625627.Google Scholar
Handeland, S. O., Järvi, T., Fernö, A. & Stefansson, S. O.(1996). Osmotic stress, antipredatory behaviour, and mortality of Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences, 53, 26732680.Google Scholar
Hartman, E. J. & Abrahams, M. V. (2000). Sensory compensation and the detection of predators: The interaction between chemical and visual information. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 571575.Google Scholar
Healey, M. C. & Reinhardt, U. (1995). Predator avoidance in naive and experienced juvenile chinook and coho salmon. Canadian Journal of Fisheries and Aquatic Sciences, 52, 614622.Google Scholar
Hettyey, A., Rölli, F., Thürlimann, N., Zürcher, A.-C. & Buskirk, J. V. (2012). Visual cues contribute to predator detection in anuran larvae. Biological Journal of the Linnean Society, 106, 820827.Google Scholar
Horat, P. & Semlitsch, R. D. (1994). Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behavioral Ecology and Sociobiology, 34, 393401.Google Scholar
Ingle, D. J. & Hoff, K. (1990). Visually elicited evasive behavior in frogs. BioScience, 40, 284291.Google Scholar
Jakobsson, S., Brick, O. & Kullberg, C. (1995). Escalated fighting behaviour incurs increased predation risk. Animal Behaviour, 49, 235239.Google Scholar
Januchowski-Hartley, F. A., Feary, D., Morove, T. & Cinner, J. (2011). Fear of fishers: Human predation explains behavioral changes in coral reef fishes. PloS ONE, doi: 10.1371/journal.pone.0022761.Google Scholar
Januchowski-Hartley, F. A., Graham, N. A. J., Cinner, J. E. & Russ, G. R. (2013). Spillover of fish naïveté from marine reserves. Ecology Letters, 16, 191197.Google Scholar
Januchowski-Hartley, F. A., Nash, K. L. & Lawton, R. J. (2012). Influence of spear guns, dive gear and observers on estimating fish flight initiation distance on coral reefs. Marine Ecology Progress Series, 469, 113.Google Scholar
Kelley, J. L. & Magurran, A. E. (2003). Learned predator recognition and antipredator responses in fishes. Fish and Fisheries, 4, 216226.Google Scholar
King, J. R. & Comer, C. (1996). Visually elicited turning behavior in Rana pipiens: comparative organization and neural control of escape and prey capture. Journal of Comparative Physiology A, 178, 293305.Google Scholar
Korn, H. & Faber, D. S. (2005). The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron, 47, 1328.Google Scholar
Krause, J. (1994). Differential fitness returns in relation to spatial position in groups. Biological Reviews, 69, 187206.Google Scholar
Krause, J. & Godin, J.-G. J. (1996). Influence of prey foraging posture on flight behavior and predation risk: Predators take advantage of unwary prey. Behavioral Ecology, 7, 264271.Google Scholar
Krause, R. J., Grant, J. W., Mclaughlin, J. D. & Marcogliese, D. J. (2010). Do infections with parasites and exposure to pollution affect susceptibility to predation in johnny darters (Etheostoma nigrum)? Canadian Journal of Zoology, 88, 12181225.Google Scholar
Kulbicki, M. (1998). How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. Journal of Experimental Marine Biology and Ecology, 222, 1130.Google Scholar
Laland, K. N., Brown, C. & Krause, J. (2003). Learning in fishes: From three-second memory to culture. Fish and Fisheries, 4, 199202.Google Scholar
Langerhans, R. B., Layman, C. A., Shokrollahi, A. & Dewitt, T. J. (2004). Predator-driven phenotypic diversification in Gambusia affinis. Evolution, 58, 23052318.Google Scholar
Lefrancois, C. & Domenici, P. (2006). Locomotor kinematics and behaviour in the escape response of European sea bass, Dicentrarchus labrax L., exposed to hypoxia. Marine Biology, 149, 969977.Google Scholar
Lefrançois, C., Shingles, A. & Domenici, P. (2005). The effect of hypoxia on locomotor performance and behaviour during escape in Liza aurata. Journal of Fish Biology, 67, 17111729.Google Scholar
Lescak, E. A. & Von Hippel, F. A. (2011). Selective predation of threespine stickleback by rainbow trout. Ecology of Freshwater Fish, 20, 308314.Google Scholar
Maag, N., Gehrer, L. & Woodhams, D. C. (2012). Sink or swim: a test of tadpole behavioral responses to predator cues and potential alarm pheromones from skin secretions. Journal of Comparative Physiology A, 198, 841846.Google Scholar
Malavasi, S., Georgalas, V., Lugli, M., Torricelli, P. & Mainardi, D. (2004). Differences in the pattern of antipredator behaviour between hatchery-reared and wild European sea bass juveniles. Journal of Fish Biology, 65, 143155.Google Scholar
Marras, S., Killen, S. S., Claireaux, G., Domenici, P. & McKenzie, D. J. (2011). Behavioural and kinematic components of the fast-start escape response in fish: Individual variation and temporal repeatability. Journal of Experimental Biology, 214, 31023110.Google Scholar
Martín, J., Luque-Larena, J. J. & López, P. (2005). Factors affecting escape behavior of Iberian green frogs (Rana perezi). Canadian Journal of Zoology, 83, 11891194.Google Scholar
Martín, J., Luque-Larena, J. J. & López, P. (2006). Collective detection in escape responses of temporary groups of Iberian green frogs. Behavioral Ecology, 17, 222226.Google Scholar
McKenzie, D. J., Shingles, A., Claireaux, G. & Domenici, P. (2009). Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiological and Biochemical Zoology, 82, 353362.Google Scholar
McLean, E. B. & Godin, J.-G. J. (1989). Distance to cover and fleeing from predators in fish with different amounts of defensive armour. Oikos, 281290.Google Scholar
Meager, J. J., Domenici, P., Shingles, A. & Utne-Palm, A. C. (2006). Escape responses in juvenile Atlantic cod Gadus morhua L.: The effects of turbidity and predator speed. Journal of Experimental Biology, 209, 41744184.Google Scholar
Miller, B. M., Mcdonnell, L. H., Sanders, D. J. et al. (2011). Locomotor compensation in the sea: Body size affects escape gait in parrotfish. Animal Behaviour, 82, 11091116.Google Scholar
Miner, J. G. & Stein, R. A. (1996). Detection of predators and habitat choice by small bluegills: Effects of turbidity and alternative prey. Transactions of the American Fisheries Society, 125, 97103.Google Scholar
Paglianti, A. & Domenici, P. (2006). The effect of size on the timing of visually mediated escape behaviour in staghorn sculpin Leptocottus armatus. Journal of Fish Biology, 68, 11771191.Google Scholar
Petranka, J. W., Kats, L. B. & Sih, A. (1987). Predator–prey interactions among fish and larval amphibians: Use of chemical cues to detect predatory fish. Animal Behaviour, 35, 420425.Google Scholar
Pitcher, T. J., Green, D. A. & Magurran, A. E. (1986). Dicing with death: predator inspection behaviour in minnow shoals. Journal of Fish Biology, 28, 439448.Google Scholar
Popper, A. N. & Fay, R. R. (1993). Sound detection and processing by fish: critical review and major research questions (Part 1 of 2). Brain, Behavior and Evolution, 41, 1425.Google Scholar
Radabaugh, D. (1989). Seasonal colour changes and shifting antipredator tactics in darters. Journal of Fish Biology, 34, 679685.Google Scholar
Reader, S. M., Kendal, J. R. & Laland, K. N. (2003). Social learning of foraging sites and escape routes in wild Trinidadian guppies. Animal Behaviour, 66, 729739.Google Scholar
Rodríguez-Prieto, I. & Fernández-Juricic, E.(2005). Effects of direct human disturbance on the endemic Iberian frog Rana iberica at individual and population levels. Biological Conservation, 123, 19.Google Scholar
Ruxton, G. D., Speed, M. P. & Kelly, D. J. (2004). What, if anything, is the adaptive function of countershading? Animal Behaviour, 68, 445451.Google Scholar
Sazima, I., Carvalho, L. N., Mendonça, F. P. & Zuanon, J.(2006). Fallen leaves on the water-bed: Diurnal camouflage of three night active fish species in an Amazonian streamlet. Neotropical Ichthyology, 4, 119122.Google Scholar
Seghers, B. H. (1981). Facultative schooling behavior in the spottail shiner (Notropis hudsonius): Possible costs and benefits. Environmental Biology of Fishes, 6, 2124.Google Scholar
Semeniuk, C. A. D. & Dill, L. M. (2005). Cost/benefit analysis of group and solitary resting in the cowtail stingray, Pastinachus sephen. Behavioral Ecology, 16, 417426.Google Scholar
Semeniuk, C. A. D. & Dill, L. M. (2006). Anti-predator benefits of mixed-species groups of cowtail stingrays (Pastinachus sephen) and whiprays (Himantura uarnak) at rest. Ethology, 112, 3343.Google Scholar
Semlitsch, R. D. (1990). Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Canadian Journal of Zoology, 68, 10271030.Google Scholar
Semlitsch, R. D. & Reyer, H.-U. (1992). Modification of anti-predator behaviour in tadpoles by environmental conditioning. Journal of Animal Ecology, 353360.Google Scholar
Stauffer, H.-P. & Semlitsch, R. D. (1993). Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles. Animal Behaviour, 46, 355364.Google Scholar
Sutter, D. A. H., Suski, C. D., Philipp, D. P. et al. (2012). Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences, 109, 2096020965.Google Scholar
Teplitsky, C., Plénet, S., Léna, J. P. et al. (2005). Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole. Journal of Evolutionary Biology, 18, 180190.Google Scholar
Turesson, H. K., Satta, A. & Domenici, P. (2009). Preparing for escape: Anti-predator posture and fast-start performance in gobies. Journal of Experimental Biology, 212, 29252933.Google Scholar
Videler, J. J. (1993). Fish Swimming. London: Chapman & Hall.Google Scholar
Volff, J. N. (2005). Genome evolution and biodiversity in teleost fish. Heredity, 94, 280294.Google Scholar
Wakeling, J. M. (2005). Fast-start mechanics. Fish Physiology, 23, 333368.Google Scholar
Walker, J. A., Ghalambor, C. K., Griset, O. L., Mckenney, D. & Reznick, D. N. (2005). Do faster starts increase the probability of evading predators? Functional Ecology, 19, 808815.Google Scholar
Ward, A. J., Herbert-Read, J. E., Sumpter, D. J. & Krause, J. (2011). Fast and accurate decisions through collective vigilance in fish shoals. Proceedings of the National Academy of Sciences, 108, 23122315.Google Scholar
Ward, A. J. W., Thomas, P., Hart, P. J. & Krause, J. (2004). Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behavioral Ecology and Sociobiology, 55, 561568.Google Scholar
Warkentin, K. M. (1995). Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proceedings of the National Academy of Sciences, 92, 35073510.Google Scholar
Warkentin, K. M. (2005). How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Animal Behaviour, 70, 5971.Google Scholar
Warner, R. R. (1998). The role of extreme iteroparity and risk avoidance in the evolution of mating systems. Journal of Fish Biology, 53, 8293.Google Scholar
Wassersug, R. J. (1989). Locomotion in amphibian larvae (or “Why aren’t tadpoles built like fishes?”). American Zoologist, 29, 6584.Google Scholar
Webb, P. W. (1981). Responses of northern anchovy, Engraulis mordax, larvae to predation by a biting planktivore, Amphiprion percula. Fishery Bulletin, 79.Google Scholar
Webb, P. W. (1986). Effect of body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Canadian Journal of Fisheries and Aquatic Sciences, 43, 763771.Google Scholar
Webb, P. W. & Zhang, H. (1994). The relationship between responsiveness and elusiveness of heat-shocked goldfish (Carassius auratus) to attacks by rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology, 72, 423426.Google Scholar
Willink, B., Brenes-Mora, E., Bolaños, F. & Pröhl, H. (2013). Not everything is black and white: Color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog. Evolution, 67, 27832794.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229249.Google Scholar

References

Arai, T., Tominaga, O., Seikai, T. & Masuda, R. (2007). Observational learning improves predator avoidance in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles. Journal of Sea Research, 58, 5964.Google Scholar
Bateman, P. W. & Fleming, P. A. (2005). Direct and indirect costs of limb autotomy in field crickets Gryllus bimaculatus. Animal Behaviour, 69, 151159.Google Scholar
Bateman, P. W. & Fleming, P. A. (2006a). Increased susceptibility to predation for autotomized house crickets (Acheta domestica). Ethology, 112, 670677.Google Scholar
Bateman, P. W. & Fleming, P. A. (2006b). Sex, intimidation and severed limbs: The effect of simulated predator attack and limb autotomy on calling behavior and level of caution in the field cricket Gryllus bimaculatus. Behavioral Ecology and Sociobiology, 59, 674681.Google Scholar
Bateman, P. W. & Fleming, P. A. (2008). An intra-and inter-specific study of body size and autotomy as a defense in Orthoptera. Journal of Orthoptera Research, 17, 315320.Google Scholar
Bateman, P. W. & Fleming, P. A. (2011). Failure to launch? The influence of limb autotomy on the escape behavior of a semiaquatic grasshopper Paroxya atlantica (Acrididae). Behavioral Ecology, 22, 763768.Google Scholar
Bateman, P. W. & Fleming, P. A. (2013a). The influence of web silk decorations on fleeing behaviour of Florida orb weaver spiders, Argiope florida (Aranaeidae). Canadian Journal of Zoology, 91, 468472.Google Scholar
Bateman, P. W. & Fleming, P. A. (2013b). Signaling or not-signaling: variation in vulnerability and defense tactics of armored ground crickets (Acanthoplus speiseri: Orthoptera, Tettigoniidae, Hetrodinae). Journal of Insect Behavior, 26, 1422.Google Scholar
Bateman, P. W. & Fleming, P. A. (2014). Switching to Plan B: changes in the escape tactics of two grasshopper species (Acrididae: Orthoptera) under repeated predatory approaches. Behavioral Ecology and Sociobiology, 68, 457465.Google Scholar
Bellman, K. L. & Krasne, F. B. (1983). Adaptive complexity of interactions between feeding and escape in crayfish. Science, 221, 779781.Google Scholar
Ben-Ari, M. & Inbar, M.(2013). When herbivores eat predators: Predatory insects effectively avoid incidental ingestion by mammalian herbivores. PloS ONE, 8, e56748.Google Scholar
Briffa, M. & Twyman, C. (2011). Do I stand out or blend in? Conspicuousness awareness and consistent behavioural differences in hermit crabs. Biology Letters, 7, 330332.Google Scholar
Camhi, J. M. (1969). Locust wind receptors I. Transducer mechanics and sensory response. Journal of Experimental Biology, 50, 335348.Google Scholar
Card, G. M. (2012). Escape behaviors in insects. Current Opinion in Neurobiology, 22, 180186.Google Scholar
Castellanos, I., Barbosa, P., Zuria, I., Tammaru, T. & Christman, M. C. (2011). Contact with caterpillar hairs triggers predator-specific defensive responses. Behavioral Ecology, 22, 10201025.Google Scholar
Chan, A. A. Y.-H., Giraldo-Perez, P., Smith, S. & Blumstein, D. T. (2010). Anthropogenic noise affects risk assessment and attention: The distracted prey hypothesis. Biology Letters, 6, 458461.Google Scholar
Chappell, M. A. & Whitman, D. W. (1990). Grasshopper thermoregulation. In Chapman, R. F. & Joern, A. (eds.) Biology of Grasshoppers. New York: Wiley.Google Scholar
Cooper, W. E. Jr. (2006). Risk factors and escape strategy in the grasshopper Dissosteira carolina. Behaviour, 143, 12011218.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2010). Predator lethality, optimal escape behavior, and autotomy. Behavioral Ecology, 21, 9196.Google Scholar
Corcoran, A. J., Wagner, R. D. & Conner, W. E. (2013). Optimal predator risk assessment by the sonar-jamming Arctiine moth Bertholdia trigona. PloS one, 8, e63609.Google Scholar
Dill, L. & Fraser, A. (1997). The worm re-turns: Hiding behaviour a tube-dwelling marine polychaete, Serpula vermicularis. Behavioral Ecology, 8, 186193.Google Scholar
Dill, L. M. & Gillett, J. F. (1991). The economic logic of barnacle Balanus glandula (Darwin) hiding behavior. Journal of Experimental Marine Biology and Ecology, 153, 115127.Google Scholar
Dill, L. M. & Ydenberg, R. C. (1987). The group size-flight distance relationship in water striders (Gerris remigis). Canadian Journal of Zoology, 65, 223226.Google Scholar
Dill, L. M., Fraser, A. H. G. & Roitberg, B. D. (1990). The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia, 83, 473478.Google Scholar
Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. (2008). Cockroaches keep predators guessing by using preferred escape trajectories. Current Biology, 18, 17921796.Google Scholar
Dukas, R. (1998). Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. University of Chicago Press.Google Scholar
Edmunds, M. (1974). Defence in Animals: A Survey of Anti-predatory Defences. Burnt Mill, Harlow: Longman.Google Scholar
Fleming, P. A. & Bateman, P. W. (2007). Just drop it and run: The effect of limb autotomy on running distance and locomotion energetics of field crickets (Gryllus bimaculatus). Journal of Experimental Biology, 210, 14461454.Google Scholar
Fleming, P. A., Muller, D. L. & Bateman, P. W. (2007). Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biological Reviews, 82, 481510.Google Scholar
Gish, M., Dafni, A. & Inbar, M. (2010). Mammalian herbivore breath alerts aphids to flee host plant. Current Biology, 20, R628R629.Google Scholar
Gish, M., Dafni, A. & Inbar, M. (2011). Avoiding incidental predation by mammalian herbivores: Accurate detection and efficient response in aphids. Naturwissenschaften, 98, 731738.Google Scholar
Gras, H. & Hörner, M. (1992). Wind-evoked escape running of the cricket, Gryllus bimaculatus. I. Behavioural analysis. Journal of Experimental Biology, 171, 189214.Google Scholar
Guderley, H. & Tremblay, I. (2013). Escape responses by jet propulsion in scallops. Canadian Journal of Zoology, 91, 420430.Google Scholar
Gyssels, F. G. M. & Stoks, R. (2005). Threat-sensitive responses to predator attacks in a damselfly. Ethology, 111, 411423.Google Scholar
Hassenstein, B. & Hustert, R. (1999). Hiding responses of locusts to approaching objects. Journal of Experimental Biology, 202, 17011710.Google Scholar
Hatle, J. D. & Faragher, S. G. (1998). Slow movement increases the survivorship of a chemically defended grasshopper in predatory encounters. Oecologia, 115, 260267.Google Scholar
Hedrick, A. V. (2000). Crickets with extravagant mating songs compensate for predation risk with extra caution. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 671675.Google Scholar
Hemmi, J. M. (2005a). Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behaviour, 69, 603614.Google Scholar
Hemmi, J. M. (2005b). Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behaviour, 69, 615625.Google Scholar
Hemmi, J. M. & Pfeil, A.(2010). A multi-stage anti-predator response increases information on predation risk. Journal of Experimental Biology, 213, 14841489.Google Scholar
Hochachka, P. W. & Somero, G. N.(2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford University Press.Google Scholar
Holmes, S. J. (1906). Death-feigning in Ranatra. Journal of Comparative Neurology and Psychology, 16, 200216.Google Scholar
Hugie, D. M. (2003). The waiting game: a “battle of waits” between predator and prey. Behavioral Ecology, 14, 807817.Google Scholar
Humphries, D. A. & Driver, P. M. (1970). Protean defence by prey animals. Oecologia, 5, 285302.Google Scholar
Javůrková, V., Šizling, A. L., Kreisinger, J. & Albrecht, T. (2012). An alternative theoretical approach to escape decision-making: the role of visual cues. PloS one, 7, e32522.Google Scholar
Jones, K. A., Jackson, A. L. & Ruxton, G. D. (2011). Prey jitters; protean behaviour in grouped prey. Behavioral Ecology, 22, 831836.Google Scholar
Juanes, F. & Smith, L. (1995). The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. Journal of Experimental Marine Biology and Ecology, 193, 197223.Google Scholar
Kral, K. (2010). Escape behaviour in blue-winged grasshoppers, Oedipoda caerulescens. Physiological Entomology, 35, 240248.Google Scholar
Krause, J. & Ruxton, G. D. (2002). Living in Groups. Oxford University Press.Google Scholar
Lagerspetz, K. Y. & Vainio, L. A.(2006). Thermal behaviour of crustaceans. Biological Reviews, 81, 237258.Google Scholar
Lagerspetz, K. Y. H. & Kivivuori, L.(1970). The rate and retention of the habituation of the shadow reflex in Balanus improvisus (Cirripedia). Animal Behaviour, 18, 616620.Google Scholar
Lazzari, C. & Varjú, D. (1990). Visual lateral fixation and tracking in the haematophagous bug Triatoma infestans. Journal of Comparative Physiology A, 167, 527531.Google Scholar
Lee, S.-I., Hwang, S., Joe, Y.-E. et al. (2013). Direct look from a predator shortens the risk-assessment time by prey. PloS ONE, 8, e64977.Google Scholar
Lewkiewicz, D. A. & Zuk, M. (2004). Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behavioral Ecology and Sociobiology, 55, 569573.Google Scholar
Losey, J. E. & Denno, R. F. (1998). The escape response of pea aphids to foliar-foraging predators: Factors affecting dropping behaviour. Ecological Entomology, 23, 5361.Google Scholar
Martín, J. & Pilar, L. (2014). Hiding time in refuge. In Cooper, W. E. Jr. & Blumstein, D. T. (eds.) Escaping from Predators: An Integrative View of Escape Decisions. Chapter 9.Google Scholar
McGinley, R. H., Prenter, J. & Taylor, P. W. (2013). Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): Links with morphology and between performance traits. Biological Journal of the Linnean Society, 110, 644657.Google Scholar
McPeek, M. A., Schrot, A. K. & Brown, J. M. (1996). Adaptation to predators in a new community: Swimming performance and predator avoidance in damselflies. Ecology, 77, 617629.Google Scholar
Miller, L. A. & Olesen, J. (1979). Avoidance behavior in green lacewings. Journal of Comparative Physiology, 131, 113120.Google Scholar
Miller, L. A. & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 570581.Google Scholar
Mima, A., Wada, S. & Goshima, S. (2003). Antipredator defence of the hermit crab Pagurus filholi induced by predatory crabs. Oikos, 102, 104110.Google Scholar
Miyatake, T. (2001). Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Brentidae). Journal of Insect Behavior, 14, 421432.Google Scholar
Nelson, M. K. & Formanowicz, D. R. Jr. (2005). Relationship between escape speed and flight distance in a wolf spider, Hogna carolinensis (Walckenaer 1805). Journal of Arachnology, 33, 153158.Google Scholar
Ohno, T. & Miyatake, T. (2007). Drop or fly? Negative genetic correlation between death-feigning intensity and flying ability as alternative anti-predator strategies. Proceedings of the Royal Society B: Biological Sciences, 274, 555560.Google Scholar
Peck, L. S., Webb, K. E. & Bailey, D. M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18, 625630.Google Scholar
Ratcliffe, J. M., Fullard, J. H., Arthur, B. J. & Hoy, R. R. (2011). Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proceedings of the Royal Society B: Biological Sciences, 278, 364370.Google Scholar
Reaney, L. T. & Backwell, P. R. Y. (2007). Risk-taking behavior predicts aggression and mating success in a fiddler crab. Behavioral Ecology, 18, 521525.Google Scholar
Riechert, S. E. & Hedrick, A. V. (1990). Levels of predation and genetically based anti-predator behaviour in the spider, Agelenopsis aperta. Animal Behaviour, 40, 679687.Google Scholar
Rind, F. C. & Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. Journal of Neurophysiology, 68, 16541666.Google Scholar
Robinson, M. H., Abele, L. G. & Robinson, B.(1970). Attack autotomy: A defence against predators. Science, 169, 301302.Google Scholar
Rodríguez-Prieto, I., Fernández-Juricic, E. & Martín, J. (2006). Anti-predator behavioral responses of mosquito pupae to aerial predation risk. Journal of Insect Behavior, 19, 373381.Google Scholar
Rosen, M. J., Levin, E. C. & Hoy, R. R. (2009). The cost of assuming the life history of a host: acoustic startle in the parasitoid fly Ormia ochracea. Journal of Experimental Biology, 212, 40564064.Google Scholar
Scarratt, A. M. & Godin, J.-G. J. (1992). Foraging and antipredator decisions in the hermit crab Pagurus acadianus (Benedict). Journal of Experimental Marine Biology and Ecology, 156, 225238.Google Scholar
Scrimgeour, G. J. & Culp, J. M. (1994). Foraging and evading predators: The effect of predator species on a behavioural trade-off by a lotic mayfly. Oikos, 7179.Google Scholar
Scrimgeour, G. J., Culp, J. M. & Wrona, F. J. (1994). Feeding while avoiding predators: evidence for a size-specific trade-off by a lotic mayfly. Journal of the North American Benthological Society, 368378.Google Scholar
Sih, A. (1986). Antipredator responses and the perception of danger by mosquito larvae. Ecology, 434441.Google Scholar
Stoks, R. (1998). Effect of lamellae autotomy on survival and foraging success of the damselfly Lestes sponsa (Odonata: Lestidae). Oecologia, 117, 443448.Google Scholar
Stoks, R. (1999). Autotomy shapes the trade-off between seeking cover and foraging in larval damselflies. Behavioral Ecology and Sociobiology, 47, 7075.Google Scholar
Treherne, J. E. & Foster, W. A. (1981). Group transmission of predator avoidance behaviour in a marine insect: The Trafalgar effect. Animal Behaviour, 29, 911917.Google Scholar
Uetz, G. W., Boyle, J., Hieber, C. S. & Wilcox, R. S. (2002). Antipredator benefits of group living in colonial web-building spiders: the “early warning” effect. Animal Behaviour, 63, 445452.Google Scholar
Weyel, W. & Wegener, G. (1996). Adenine nucleotide metabolism during anoxia and postanoxic recovery in insects. Experientia, 52, 474480.Google Scholar
Wong, B. B. M., Bibeau, C., Bishop, K. A. & Rosenthal, G. G. (2005). Response to perceived predation threat in fiddler crabs: trust thy neighbor as thyself?Behavioral Ecology and Sociobiology, 58, 345350.Google Scholar
Zuk, M. & Kolluru, G. R. (1998). Exploitation of sexual signals by predators and parasitoids. Quarterly Review of Biology, 73, 415443.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×