Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T12:28:29.829Z Has data issue: false hasContentIssue false

2 - Searching for Novel Fungal Biological Control Agents for Plant Disease Control Among Endophytes

from Part II - Role of Endophytes in Growth and Biotic and Abiotic Stress Resistance

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

There are increasing efforts aiming to utilise endophytes as biological control agents (BCAs) to improve crop production. However, reliability remains a major practical constraint for the development of novel BCAs. Many organisms are adapted to their specific habitat; it is optimistic to expect that a new organism added can find a niche or even out-compete those adapted and already present. Our approach for isolating novel BCAs for specific plant diseases is therefore to look in healthy plants in a habitat where disease is a problem, since we predict that it is more likely to find competitive strains among those present and adapted. In vitro inhibitory activities often do not correlate with in planta efficacy, especially since endophytes rely on intimate plant contact. They can, however, be useful to indicate modes of action. We therefore screen for in planta biological activity as early as possible in the process in order to minimise the risk of discarding valuable strains. Finally, some fungi are endophytic in one situation and pathogenic in another (the mutualism–parasitism continuum). This depends on their biology, environmental conditions, the formulation of inoculum, the health, developmental stage and cultivar of the host plant, and the structure of the plant microbiome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelfattah, A., Wisniewski, M., Droby, S. and Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047.CrossRefGoogle ScholarPubMed
Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V. et al. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evolutionary Bioinformatics Online, 12, 516.Google ScholarPubMed
Ahmed, A. A., McLellan, H., Aguilar, G. B. et al. (2016). Engineering barriers to infection by undermining pathogen effector function or by gaining effector recognition. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 2350.Google Scholar
Alabouvette, C., Heilig, U. and Cordier, C. (2012). Microbial Control of Plant Diseases. In Beneficial Microorganisms in Agriculture, Food and the Environment: Safety Assessment and Regulation, ed. Sundh, I, Wilcks, A and Goettel, M. Oxfordshire, UK: CAB International, pp. 96111.Google Scholar
Alonso–Ramírez, A., Poveda, J., Martín, I. et al. (2014). Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Molecular Plant Pathology, 15, 823831.CrossRefGoogle ScholarPubMed
Anon. (2009). Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, 52, 1.Google Scholar
Anon. (2016). Guidance on active micro-organisms and biocidal products. ECHA, doi: 10.2823/82218.Google Scholar
Berger, S., El Chazli, Y., Babu, A. F. and Coste, A. T. (2017). Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Frontiers in Microbiology, 8, 1024.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Rott, M., Schlaeppi, K. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 9195.CrossRefGoogle ScholarPubMed
Busby, P. E., Peay, K. G. and Newcombe, G. (2016a). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209 , 16811692.CrossRefGoogle ScholarPubMed
Busby, P. E., Ridout, M. and Newcombe, G. (2016b). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Card, S., Johnson, L. E. B., Teasdale, S. and Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92, fiw114.CrossRefGoogle ScholarPubMed
Carter, J. P., Spink, J., Cannon, P. F., Daniels, M. J. and Osbourn, A. E. (1999). Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Applied and Environmental Microbiology, 65, 33643372.CrossRefGoogle ScholarPubMed
Chagas, F. O., Dias, L. G. and Pupo, M. T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39, 13351342.CrossRefGoogle ScholarPubMed
Coleman-Derr, D. and Tringe, S. G. (2014). Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283.CrossRefGoogle ScholarPubMed
Collinge, D. B. (2018). Transgenic crops and beyond: how can biotechnology contribute to the sustainable control of plant diseases? European Journal of Plant Pathology, 152, 977–986.CrossRefGoogle Scholar
Collinge, D. B., Jørgensen, H. J. L., Lund, O. S. and Lyngkjær, M. F. (2010). Engineering pathogen resistance in crop plants – current trends and future prospects. Annual Review of Phytopathology, 48, 269291.CrossRefGoogle ScholarPubMed
Collinge, D. B., Mullins, E., Jensen, B. and Jørgensen, H. J. L. (2016). The status and prospects for biotechnological approaches to attaining sustainable disease resistance. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 120.CrossRefGoogle Scholar
Comby, M., Lacoste, S., Baillieul, F., Profizi, C. and Dupont, J. (2016). Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Frontiers in Microbiology, 7, 403.CrossRefGoogle ScholarPubMed
de Jonge, R., Peter van Esse, H., Kombrink, A. et al. (2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science, 329, 953.CrossRefGoogle ScholarPubMed
De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D. and Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31, 155168.CrossRefGoogle Scholar
De Vleesschauwer, D., Gheysen, G. and Hofte, M. (2013). Hormone defense networking in rice: tales from a different world. Trends in Plant Science, 18, 555565.CrossRefGoogle ScholarPubMed
Diaz, P. L., Hennell, J. R. and Sucher, N. J. (2012). Genomic DNA extraction and barcoding of endophytic fungi. In Plant DNA Fingerprinting and Barcoding: Methods and Protocols, ed. Sucher, N. J, Hennell, J. R and Carles, M. C. Totowa, NJ: Humana Press, pp. 171179.CrossRefGoogle Scholar
Dupont, P.-Y., Eaton, C. J., Wargent, J. J. et al. (2015). Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 208, 12271240.CrossRefGoogle ScholarPubMed
Eevers, N., Gielen, M., Sánchez-López, A. et al. (2015). Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microbial Biotechnology, 8, 707715.CrossRefGoogle ScholarPubMed
Ehlers, R.-U. (2011). Regulation of biological control agents and the EU policy support action REBECA. In Regulation of Biological Control Agents, ed. Ehlers, R.-U. Dordrecht, The Netherlands: Springer, pp. 323.CrossRefGoogle Scholar
Evangelisti, E., Rey, T. and Schornack, S. (2014). Cross-interference of plant development and plant–microbe interactions. Current Opinion in Plant Biology, 20, 118126.CrossRefGoogle ScholarPubMed
Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. and Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 38, 155163.CrossRefGoogle ScholarPubMed
Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 96, 14551464.CrossRefGoogle ScholarPubMed
Fravel, D., Olivain, C. and Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157, 493502.CrossRefGoogle ScholarPubMed
Furnkranz, M., Lukesch, B., Muller, H. et al. (2012). Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology, 63, 418428.CrossRefGoogle ScholarPubMed
Gdanetz, K. and Trail, F. (2017). The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes, 1, 158168.CrossRefGoogle Scholar
Giraud, T., Gladieux, P. and Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25, 387395.CrossRefGoogle ScholarPubMed
Großkinsky, D. K., van der Graaff, E. E. and Roitsch, T. (2016). Regulation of abiotic and biotic stress responses by plant hormones. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 131154.CrossRefGoogle Scholar
Guimil, S., Chang, H. S., Zhu, T. et al. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America, 102, 80668070.CrossRefGoogle ScholarPubMed
Gutjahr, C. (2014). Phytohormone signaling in arbuscular mycorhiza development. Current Opinion in Plant Biology, 20, 2634.CrossRefGoogle ScholarPubMed
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hertz, M., Jensen, I. R., Jensen, L. Ø. et al. (2016). The fungal community changes over time in developing wheat heads. International Journal of Food Microbiology, 222, 3039.CrossRefGoogle ScholarPubMed
Hilbert, M., Voll, L. M., Ding, Y. et al. (2012). Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytologist, 196, 520534.CrossRefGoogle Scholar
Houterman, P. M., Cornelissen, B. J. C. and Rep, M. (2008). Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4, e1000061.CrossRefGoogle ScholarPubMed
Howlett, B. J. (2006). Secondary metabolite toxins and nutrition of plant pathogenic fungi. Current Opinion in Plant Biology, 9, 371375.CrossRefGoogle ScholarPubMed
Ionescu, I. A., López-Ortega, G., Burow, M. et al. (2017). Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Frontiers in Plant Science, 8, 1233.CrossRefGoogle ScholarPubMed
Jacobs, S., Zechmann, B., Molitor, A. et al. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology, 156, 726740.CrossRefGoogle ScholarPubMed
Jensen, B., Knudsen, I. M. B. and Jensen, D. F. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: biocontrol efficacy against Fusarium culmorum. European Journal of Plant Pathology, 106, 233242.CrossRefGoogle Scholar
Jensen, B., Knudsen, I. M. B., Madsen, M. and Jensen, D. F. (2004). Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology, 94, 551560.CrossRefGoogle ScholarPubMed
Jensen, B., Lübeck, P. S. and Jørgensen, H. J. L. (2016a). Clonostachys rosea reduces spot blotch in barley by inhibiting prepenetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Management Science, 72, 22312239.CrossRefGoogle ScholarPubMed
Jensen, D. F., Karlsson, M., Sarrocco, S. and Vannacci, G. (2016b). Biological control using microorganisms as an alternative to disease resistance. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 341363.CrossRefGoogle Scholar
Kapongo, J. P., Shipp, L., Kevan, P. and Sutton, J. C. (2008). Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, 46, 508514.CrossRefGoogle Scholar
Kaul, S., Sharma, T. and Dhar, M. K. (2016). ‘Omics’ tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7, 955.CrossRefGoogle ScholarPubMed
Kernaghan, G., Mayerhofer, M. and Griffin, A. (2017). Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Canadian Journal of Microbiology, 63, 583595.CrossRefGoogle ScholarPubMed
Keyser, C. A., Jensen, B. and Meyling, N. V. (2016). Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Management Science, 72, 517526.CrossRefGoogle Scholar
Khan, A. L., Hamayun, M., Kang, S.-M. et al. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology, 12, 3.CrossRefGoogle ScholarPubMed
Khatabi, B., Molitor, A., Lindermayr, C. (2012). Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One, 7, e35502.CrossRefGoogle ScholarPubMed
Knudsen, I. M. B., Hockenhull, J. and Jensen, D. F. (1995). Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathology, 44, 467477.CrossRefGoogle Scholar
Knudsen, I. M. B., Thomsen, K. A., Jensen, B. and Poulsen, K. M. (2004). Effects of hot water treatment, biocontrol agents, disinfectants and a fungicide on storability of English oak acorns and control of the pathogen, Ciboria batschiana. Forest Pathology, 34, 4764.CrossRefGoogle Scholar
Koch, E., Schmitt, A., Stephan, D. et al. (2010). Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds. European Journal of Plant Pathology, 127, 99112.CrossRefGoogle Scholar
Köhl, J., Postma, J., Nicot, P., Ruocco, M. and Blum, B. (2011). Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 57, 112.CrossRefGoogle Scholar
Köhl, J., Scheer, C., Holb, I. J., Masny, S. and Molhoek, W. (2014). Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease, 99, 535543.CrossRefGoogle Scholar
Kojima, M., Kamada-Nobusada, T., Komatsu, H. et al. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant and Cell Physiology, 50, 12011214.CrossRefGoogle ScholarPubMed
Kosawang, C., Amby, D. B., Bussaban, B. et al. (2018). Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 122, 21102120.CrossRefGoogle Scholar
Kroll, S., Agler, M. T. and Kemen, E. (2017). Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Current Opinion in Plant Biology, 36, 7178.CrossRefGoogle ScholarPubMed
Kurose, D., Furuya, N., Tsuchiya, K., Tsushima, S. and Evans, H. C. (2012). Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biology, 116, 785791.CrossRefGoogle ScholarPubMed
Kusari, S., Hertweck, C. and Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 19, 792798.CrossRefGoogle ScholarPubMed
Lahiri, A., Douglas, G. C., Murphy, B. R. and Hodkinson, T. R. (2019). In vitro methods for plant–microbe interaction and biocontrol studies in European ash (Fraxinus excelsior L.). In Endophytes for a Growing World, ed. T. R. Hodkinson, F. M. Doohan, M. J. Saunders and B. R. Murphy. Cambridge: Cambridge University Press, Chapter 15.Google Scholar
Latz, M. A. C., Jensen, B., Collinge, D. B. and Jørgensen, H. J. L. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology and Diversity, doi: 10.1080/17550874.2018.1534146.CrossRefGoogle Scholar
Lo Presti, L., Lanver, D., Schweizer, G. et al. (2015). Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513545.CrossRefGoogle ScholarPubMed
Lofgren, L. A., LeBlanc, N. R., Certano, A. K. et al. (2018). Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytologist, 217, 12031212.CrossRefGoogle ScholarPubMed
Louarn, S., Nawrocki, A., Thorup-Kristensen, K. et al. (2013). Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biology and Technology, 76, 2633.CrossRefGoogle Scholar
Lucas, J. A., Hawkins, N. J. and Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 90, 2992.CrossRefGoogle ScholarPubMed
Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 13251334.CrossRefGoogle ScholarPubMed
Lugtenberg, B. J. J., Caradus, J. R. and Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92, fiw194.CrossRefGoogle ScholarPubMed
Lundberg, D. S., Lebeis, S. L., Paredes, S. H. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 8690.CrossRefGoogle ScholarPubMed
Ma, K. W. and Ma, W. B. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 91, 713725.CrossRefGoogle ScholarPubMed
Ma, L. J., van der Does, H. C., Borkovich, K. A. et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367373.CrossRefGoogle ScholarPubMed
Malinovsky, F. G., Fangel, J. U. and Willats, W. G. T. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178.CrossRefGoogle ScholarPubMed
Mamarabadi, M., Jensen, B., Jensen, D. F. and Lübeck, M. (2008). Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiology Letters, 285, 101110.CrossRefGoogle ScholarPubMed
McGrann, G. R. D., Stavrinides, A., Russell, J. et al. (2014). A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. Journal of Experimental Botany, 65, 10251037.CrossRefGoogle ScholarPubMed
McGrann, G. R. D., Andongabo, A., Sjökvist, E. et al. (2016). The genome of the emerging barley pathogen Ramularia collo-cygni. Bmc Genomics, 17, 584.CrossRefGoogle ScholarPubMed
McKinney, L. V., Nielsen, L. R., Collinge, D. B. et al. (2014). The ash dieback crisis; genetic variation in resistance can prove a long-term solution. Plant Pathology, 63, 485499.CrossRefGoogle Scholar
Moissl-Eichinger, C., Pausan, M., Taffner, J. et al. (2018). Archaea are interactive components of complex microbiomes. Trends in Microbiology, 26, 7085.CrossRefGoogle ScholarPubMed
Møller, K., Jensen, B., Andersen, H. P., Stryhn, H. and Hockenhull, J. (2003). Biocontrol of Pythium tracheiphilum in Chinese cabbage by Clonostachys rosea under field conditions. Biocontrol Science and Technology, 13, 171182.CrossRefGoogle Scholar
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A. et al. (2012). Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology, 52, 522529.CrossRefGoogle ScholarPubMed
Müller, C. B. and Krauss, J. (2005). Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8, 450456.CrossRefGoogle ScholarPubMed
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson, T. R. (2015). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94–102.CrossRefGoogle Scholar
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
Nicolaisen, M., Justesen, A. F., Knorr, K., Wang, J. and Pinnschmidt, H. O. (2014). Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology, 11, 145153.CrossRefGoogle Scholar
Nowara, D., Gay, A. P., Lacomme, C. et al. (2010). HIGS: Host-Induced Gene Silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 22, 31303141.CrossRefGoogle ScholarPubMed
OEDC (2012). OECD guidance to the environmental safety evaluation of microbial biocontrol agents. OECD Environment, Health and Safety Publications, Series on Pesticides and Biocides, No. 67, Paris: OECD Publishing, pp. 63.Google Scholar
Peskan-Berghöfer, T., Vilches-Barro, A., Müller, T. M. et al. (2015). Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytologist, 208, 873886.CrossRefGoogle ScholarPubMed
Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. and van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489521.CrossRefGoogle ScholarPubMed
Ploch, S. and Thines, M. (2011). Obligate biotrophic pathogens of the genus Albugo are widespread as asymptomatic endophytes in natural populations of Brassicaceae. Molecular Ecology, 20, 36923699.Google ScholarPubMed
Rafiqi, M., Jelonek, L., Akum, N., Zhang, F. and Kogel, K.-H. (2013). Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Frontiers in Plant Science, 4, 228.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., White Jr, J. F., Arnold, A. E. and Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rojas, E. C., Jørgensen, H. J. L., Jensen, B. and Collinge, D. B. (2018). Fusarium diseases: biology and management perspectives. In Integrated Disease Management of Wheat and Barley, ed. Oliver, R. P. Cambridge, UK: Burleigh Dodds Science Publishing. doi: 10.19103/AS.2018.0039.02Google Scholar
Rook, F. (2016). Metabolic engineering of chemical defence pathways in plant disease control. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 7189.CrossRefGoogle Scholar
Rovenich, H., Boshoven, J. C. and Thomma, B. P. H. J. (2014). Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 20, 96103.CrossRefGoogle ScholarPubMed
Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A. et al. (2013). Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife, 2, e00790.CrossRefGoogle ScholarPubMed
Sánchez-Vallet, A., McDonald, M. C., Solomon, P. S. and McDonald, B. A. (2015). Is Zymoseptoria tritici a hemibiotroph? Fungal Genetics and Biology, 79, 2932.CrossRefGoogle ScholarPubMed
Sapkota, R., Jørgensen, L. N. and Nicolaisen, M. (2017). Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Frontiers in Plant Science, 8, 1357.CrossRefGoogle ScholarPubMed
Schäfer, P., Pfiffi, S., Voll, L. M. et al. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant Journal, 59, 461474.CrossRefGoogle ScholarPubMed
Schardl, C. L. and Phillips, T. D. (1997). Protective grass endophytes: where are they from and where are they going? Plant Disease, 81, 430438.CrossRefGoogle ScholarPubMed
Schisler, D. A. and Slininger, P. J. (1997). Microbial selection strategies that enhance the likelihood of developing commercial biological control products. Journal of Industrial Microbiology and Biotechnology, 19, 172179.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Shetty, N. P., Kristensen, B. K., Newman, M. A. et al. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333346.CrossRefGoogle Scholar
Stein, E., Molitor, A., Kogel, K. H. and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires Jasmonic Acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49, 17471751.CrossRefGoogle ScholarPubMed
Tenenboim, H. and Brotman, Y. (2016). Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends in Plant Science, 21, 781791.CrossRefGoogle ScholarPubMed
Tian, B.-Y., Cao, Y. and Zhang, K.-Q. (2015). Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific Reports, 5, 17087.CrossRefGoogle ScholarPubMed
Toju, H., Tanabe, A. S., Yamamoto, S. and Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7, e40863.CrossRefGoogle Scholar
van den Burg, H. A., Harrison, S. J., Joosten, M. H. A. J., Vervoort, J. and de Wit, P. J. G. M. (2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant–Microbe Interactions, 19, 14201430.CrossRefGoogle ScholarPubMed
Villaverde, J. J., Sevilla-Morán, B., Sandín-España, P., López-Goti, C. and Alonso-Prados, J. L. (2014). Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Management Science, 70, 25.CrossRefGoogle ScholarPubMed
Waller, F., Mukherjee, K., Deshmukh, S. D. et al. (2008). Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology, 165, 6070.CrossRefGoogle ScholarPubMed
Wani, Z. A., Ashraf, N., Mohiuddin, T. and Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology, 99, 29552965.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Kamran, M. et al. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 1075410773.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Shahzad, R., Ullah, I., Khan, A. R. and Lee, I. J. (2015). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University Science B, 16, 10111018.CrossRefGoogle ScholarPubMed
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.CrossRefGoogle ScholarPubMed
Woolhouse, M. E. J., Haydon, D. T. and Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20, 238244.CrossRefGoogle ScholarPubMed
Xu, X., Wang, C., Li, S. et al. (2015). Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Nature Reports, 5(13624), 1–14.Google ScholarPubMed
Xu, X. M., Jeffries, P., Pautasso, M. and Jeger, M. J. (2011). A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology, 101, 10321044.CrossRefGoogle ScholarPubMed
Ye, W., Shen, C.-H., Lin, Y. et al. (2014). Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One, 9, e84920.CrossRefGoogle ScholarPubMed
Zachow, C., Tilcher, R. and Berg, G. (2008). Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microbial Ecology, 55, 119129.CrossRefGoogle ScholarPubMed
Zamioudis, C. and Pieterse, C. M. J. (2011). Modulation of host immunity by beneficial microbes. Molecular Plant–Microbe Interactions, 25, 139150.CrossRefGoogle Scholar
Zeilinger, S., Gupta, V. K., Dahms, T. E. S. et al. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40, 182207.CrossRefGoogle ScholarPubMed
Zhao, Y., Gao, Z., Tian, B. et al. (2017). Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS One, 12, e0185907.CrossRefGoogle ScholarPubMed
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D. and Kogel, K.-H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543550.CrossRefGoogle ScholarPubMed
Zuccaro, A., Lahrmann, U., Güldener, U. et al. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens, 7, e1002290.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×