Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T06:00:56.957Z Has data issue: false hasContentIssue false

12 - The Influence of Endophytes on Cork Oak Forests Under a Changing Climate

from Part III - Diversity and Community Ecology of Endophytes

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Quercus suber L. is an evergreen tree species with high economic, ecological and social importance within the Mediterranean Basin. Cork oak forests occupy more than 2 million hectares worldwide, being mainly located in Algeria, Morocco, Portugal and Spain. As in other Mediterranean ecosystems, cork oak forests have been reported as important reservoirs of biological diversity, including endemic species that are currently under threat due to abiotic and biotic stress. Despite the adaptation of cork oak to the Mediterranean climate, which is characterised by warm, dry summers and wet winters, the growth and productivity of this species is sensitive to climatic change and variability. Extended periods of high temperature and/or low precipitation leading to low level of available water in the soil, can trigger the decline of cork oak and increase vulnerability to pathogen attack. Plant microbiomes are major factors for preserving plant health and productivity under challenging climates and their endophytic components can have dual ecological function, both as detrimental microbes or as beneficial symbionts. Endophytes can play beneficial roles for plant health and productivity but some can become opportunistic pathogens that take advantage of weakened plants that are stressed by environmental conditions. This review discusses endophytes in the context of Mediterranean bioclimates, the geographic distribution of cork oaks and the spread of opportunistic disease-causing agents. Some studies have begun to characterise and isolate endophytes from cork oak, which represents the first steps towards understanding how cork oak endophytes might help ameliorate the negative impacts of climate change for this tree species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acácio, V., Holmgren, M., Rego, F., Moreira, F. and Mohren, G. M. (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems, 76, 389400.CrossRefGoogle Scholar
Acácio, V., Dias, F. S., Catry, F. X., Rocha, M. and Moreira, F. (2017). Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Global Change Biology, 23, 11991217.CrossRefGoogle ScholarPubMed
Allard, G., Berrahmouni, N., Besacier, C. et al. (2013). State of forest resources in the Mediterranean Region. In State of Mediterranean Forests 2013. Rome: FAO, pp. 27–114.Google Scholar
Alves, A., Correia, A., Luque, J. and Phillips, A. (2004). Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia, 96, 598613.CrossRefGoogle ScholarPubMed
APCOR (2016). Cork Yearbook 2016. Santa Maria de Lamas, Portugal: Portuguese Cork Association.Google Scholar
Aranda, I., Castro, L., Alía, R., Pardos, J. A. and Gil, L. (2005a). Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiology, 25, 10851090.CrossRefGoogle ScholarPubMed
Aranda, I., Castro, L., Pardos, M., Gil, L. and Pardos, J. A. (2005b). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. Forest Ecology and Management, 210, 117129.CrossRefGoogle Scholar
Arnold, A. E., Mejía, L. C., Kyllo, D. et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100, 15649–54.Google Scholar
Aronson, J., Pereira, J. S. and Pausas, J. G., eds. (2012). Cork Oak Woodlands On The Edge: Ecology, Adaptive Management, and Restoration. Washington, DC: Island Press.Google Scholar
Aschmann, H. (1973). Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis), ed. F. di Castri and H. A. Mooney. Berlin: Springer, pp. 1119.CrossRefGoogle Scholar
Azad, K. and Kaminskyj, S. (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68, 7378.CrossRefGoogle Scholar
Bae, H., Sicher, R. C., Kim, M. S. et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 32793295.CrossRefGoogle ScholarPubMed
Bagnouls, F. and Gaussen, H. (1957). Les climats biologiques et leur classification. Annales de Géographie, 66, 193220.CrossRefGoogle Scholar
Besson, C. K., Otieno, D., Do Vale, R. L. et al. (2006). Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant and Soil, 282, 361378.CrossRefGoogle Scholar
Besson, C. K., Do Vale, R. L., Rodrigues, M. L. et al. (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230242.CrossRefGoogle Scholar
Boncaldo, E., Sicoli, G., Mannerucci, F. and Luisi, N. (2008). Characterisation of fungal endophytic communities of deciduous oak species in Southern Italy. Italian Journal of Forest and Mountain Environments, 63, 321332.Google Scholar
Braisier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347358.CrossRefGoogle Scholar
Brasier, C. M., Robredo, F. and Ferraz, J. F. P. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140145.CrossRefGoogle Scholar
Bugalho, M. N., Caldeira, M. C., Pereira, J. S., Aronson, J. and Pausas, J. G. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 9, 278286.CrossRefGoogle Scholar
Camilo-Alves, C. S. P., Clara, M. I. E. and Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411432.CrossRefGoogle Scholar
Camilo-Alves, C. S. P., Vaz, M., Da Clara, M. I. E. and Ribeiro, N. M. A. (2017). Chronic cork oak decline and water status: new insights. New Forests, 48, 753772.CrossRefGoogle Scholar
Capelo, J. and Catry, F. (2007). A distribuição do sobreiro em Portugal. In Os Montados – Muito para além das árvores. Vol. 3, ed. J. S. Silva. Colecção Árvores e Florestas de Portugal. Jornal Público/Fundação Luso-Americana para o Desenvolvimento/Liga para a Protecção da Natureza. Lisboa. 9 vols, pp. 107–113.Google Scholar
Caritat, A., Molinas, M. and Gutiérrez, E. (1996). Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). Forest Ecology and Management, 86, 113120.CrossRefGoogle Scholar
Caritat, A., Gutierrez, E. and Molinas, M. (2000). Influence of weather on cork-ring width. Tree Physiology, 20, 893900.CrossRefGoogle ScholarPubMed
Carrete, M. and Donázar, J. A. (2005). Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the cinereous vulture, Aegypius monachus. Biological Conservation, 126, 582590.CrossRefGoogle Scholar
Collado, J., Platas, G., González, I. and Peláez, F. (1999). Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytologist, 144, 525532.CrossRefGoogle ScholarPubMed
Compant, S., Heijden, M. G. A. and Sessitsch, A. (2010). Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiology Ecology, 73, 197214.Google ScholarPubMed
Costa, A., Pereira, H. and Oliveira, A. (2001). A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees – Structure and Function, 15, 438443.CrossRefGoogle Scholar
Costa, A., Madeira, M. and Oliveira, Â. C. (2008). The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal. Forest Ecology and Management, 255, 15251535.CrossRefGoogle Scholar
Costa, A., Pereira, H. and Madeira, M. (2010). Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Annals of Forest Science, 67, 204204.CrossRefGoogle Scholar
Costa, A., Nunes, L. C., Spiecker, H. and Graça, J. (2015). Insights into the responsiveness of cork oak (Quercus suber L.) to bark harvesting. Economic Botany, 69, 171184.CrossRefGoogle Scholar
Costa, A., Barbosa, I., Roussado, C., Graça, J. and Spiecker, H. (2016). Climate response of cork growth in the Mediterranean oak (Quercus suber L.) woodlands of southwestern Portugal. Dendrochronologia, 38, 7281.CrossRefGoogle Scholar
Council of European Union (1992). Council directive 92/43/EEC. Official Journal of the European Communities, L 269, 115.Google Scholar
Dastogeer, K. M. G. and Wylie, S. J. (2017). Plant-fungi association: Role of fungal endophytes in improving plant tolerance to water stress. In Plant–Microbe Interactions in Agro-Ecological Perspectives, ed. D. P. Singh, H. B. Singh and R. Prabha. Singapore: Springer Singapore, pp. 161176.Google Scholar
Desprez-Loustau, M. L., Marçais, B., Nageleisen, L. M., Piou, D. and Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63, 597612.CrossRefGoogle Scholar
de Vries, S. M. G., Alan, M., Bozzano, M. et al. (2015). Pan-European strategy for genetic conservation of forest trees and establishment of a core network of dynamic conservation units. European Forest Genetic Resources Programme (EUFORGEN), Biodiversity International, Rome, Italy. xii, 3.Google Scholar
Dewan, M. M., Ghisalbertib, E. L., Rowland, C. and Sivasithamparam, K. (1994). Reduction of symptoms of take-all of wheat and rye-grass seedlings by the soil-borne fungus Sordaria fimicola. Applied Soil Ecology, 1, 4551.CrossRefGoogle Scholar
Di Castri, F. (1991). An ecological overview of the five regions of the world with Mediterranean climate. In Biogeography of Mediterranean Invasions, ed. R. H. Groves and F. Di Castri. Cambridge: Cambridge University Press, pp. 315.CrossRefGoogle Scholar
Emberger, L. (1930). Sur une formule climatique applicable en géographie botanique. Comptes Rendus de l’Académie des Sciences, 191, 389390.Google Scholar
EUFORGEN (2009). Distribution map of cork oak (Quercus suber). www.euforgen.org.Google Scholar
Fisher, P. J., Petrini, O., Petrini, L. E. and Sutton, B. C. (1994). Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytologist, 127, 133137.CrossRefGoogle ScholarPubMed
Franceschini, A., Linaldeddu, B. T. and Marras, F. (2005). Occurrence and distribution of fungal endophytes in declining cork oak forests in Sardinia (Italy). IOBC-WPRS Bulletin, 28, 6774.Google Scholar
Fujimura, K. E., Egger, K. N. and Henry, G. H. R. (2008). The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME Journal, 2, 105114.CrossRefGoogle ScholarPubMed
Gennaro, M., Gonthier, P. and Nicolotti, G. (2003). Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. Trees in Northern Italy. Journal of Phytopathology, 151, 529534.CrossRefGoogle Scholar
Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A. and Ripullone, F. (2017). Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest – Biogeosciences and Forestry, 10, 796806.CrossRefGoogle Scholar
Gil, L. and Varela, M. C. (2008). EUFORGEN Technical guidelines for genetic conservation and use for cork oak (Quercus suber). Biodiversity International, 6.Google Scholar
Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.CrossRefGoogle Scholar
Giorgi, F. and Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90104.CrossRefGoogle Scholar
Gonthier, P., Gennaro, M. and Nicolotti, G. (2006). Effects of water stress on the endophytic mycota of Quercus robur. Fungal Diversity, 21, 6980.Google Scholar
Gonzalez, P., Neilson, R. P., Lenihan, J. M. and Drapek, R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 19, 755768.CrossRefGoogle Scholar
González-García, S., Dias, A. C. and Arroja, L. (2013). Life-cycle assessment of typical Portuguese cork oak woodlands. Science of the Total Environment, 452, 355364.CrossRefGoogle ScholarPubMed
Gouveia, A. C. and Freitas, H. (2009). Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees – Structure and Function, 23, 267275.CrossRefGoogle Scholar
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hashizume, Y., Sahashi, N. and Fukuda, K. (2008). The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000km apart. Forest Pathology, 38, 218226.CrossRefGoogle Scholar
Hasnaoui, F., Zouaoui, I., Seghaeir, W. O. and Abbes, C. (2017). Identification and pathogenicity of Fungi associated with decline of cork oak in the north west of Tunisia. Journal of New Sciences, 40, 21642168.Google Scholar
Henriques, J., Inácio, M. L., Lima, A. and Sousa, E. (2012). New outbreaks of charcoal canker on young cork oak trees in Portugal. IOBC/WPRS Bulletin, 76, 8588.Google Scholar
Henriques, J., Nóbrega, F., Sousa, E. and Lima, A. (2016). Analysis of the genetic diversity and phylogenetic relationships of Biscogniauxia mediterranea isolates associated with cork oak. Phytoparasitica, 44, 1934.CrossRefGoogle Scholar
Hesse, U., Schöberlein, W., Wittenmayer, L. et al. (2003). Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science, 58, 407415.CrossRefGoogle Scholar
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367368.CrossRefGoogle ScholarPubMed
Howlett, D. S., Moreno, G., Losada, M. R. M., Nair, P. R. and Nair, V. D. (2011). Soil carbon storage as influenced by tree cover in the dehesa cork oak silvopasture of central-western Spain. Journal of Environmental Monitoring, 13, 1897.CrossRefGoogle ScholarPubMed
Huang, Y. L., Devan, M. N., U’Ren, J. M., Furr, S. H. and Arnold, A. E. (2016). Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Microbial Ecology, 71, 452468.CrossRefGoogle ScholarPubMed
Ibáñez, B., Gómez-Aparicio, L., Stoll, P. et al. (2015). A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS One, 10, e0117827.CrossRefGoogle ScholarPubMed
Ibáñez, B., Gómez-Aparicio, L., Ávila, J. M., Pérez-Ramos, I. M. and Marañón, T. (2017). Effects of Quercus suber decline on woody plant regeneration: potential implications for successional dynamics in Mediterranean forests. Ecosystems, 20, 630644.CrossRefGoogle Scholar
IPMA (n.d. Clima de Portugal Continental. www.ipma.pt/pt/educativa/tempo.clima/Google Scholar
Joffre, R. and Rambal, S. (1993). How tree cover influences the water balance of Mediterranean rangelands. Ecology, 74, 570582.CrossRefGoogle Scholar
Kwaśna, H., Szewczyk, W. and Behnke-Borowczyk, J. (2016). Fungal root endophytes of Quercus robur subjected to flooding. Forest Pathology, 46, 3546.CrossRefGoogle Scholar
Larena, I., Torres, R., De Cal, A. et al. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32, 305310.CrossRefGoogle Scholar
La Porta, N., Capretti, P., Thomsen, I. M. et al. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30, 177195.CrossRefGoogle Scholar
Lima, G., Ippolito, A., Nigro, F. and Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biology and Technology, 10, 169178.CrossRefGoogle Scholar
Linaldeddu, B. T., Franceschini, A. and Pulina, M. A. (2005). Epidemiological aspects of Biscogniauxia mediterranea in declining cork oak forest in Sardinia (Italy). IOBC/WPRS Bulletin, 28, 308.Google Scholar
Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. (2009). Physiological responses of cork oak and holm oak to infection by fungal pathogens involved in oak decline. Forest Pathology, 39, 232238.CrossRefGoogle Scholar
Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. (2011). Variation of endophytic cork oak-associated fungal communities in relation to plant health and water stress. Forest Pathology, 41, 193201.CrossRefGoogle Scholar
Lionello, P., Malanotte-Rizzoli, P. and Boscolo, R. (2006). The Mediterranean climate: an overview of the main characteristics and issues. In Mediterranean Climate Variability, ed. Lionello, P., Malanotte-Rizzoli, P., Paola, and Boscolo, R.. Amsterdam: Elsevier, pp. 126.Google Scholar
Madrigal, C., Pascual, S. and Melgarejo, P. (1994). Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathology, 43, 554561.CrossRefGoogle Scholar
Maghnia, F. Z., Abbas, Y., Mahé, F. et al. (2017). Habitat- and soil-related drivers of the root-associated fungal community of Quercus suber in the Northern Moroccan forest. PLoS One, 12, e0187758.CrossRefGoogle ScholarPubMed
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. and Hannah, L. E. E. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538548.CrossRefGoogle ScholarPubMed
Martín, J., Cabezas, J., Buyolo, T. and Patón, D. (2005). The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. Forest Ecology and Management, 216, 166174.CrossRefGoogle Scholar
Martínez-Álvarez, P., Rodríguez-Ceinós, S., Martín-García, J. and Diez, J. J. (2012). Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain. Forest Systems, 21, 373382.CrossRefGoogle Scholar
Mejía, L. C., Rojas, E. I., Maynard, Z. et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 414.CrossRefGoogle Scholar
Mendes, M. P., Ribeiro, L., David, T. S. and Costa, A. (2016). How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. Forest Ecology and Management, 378, 122130.CrossRefGoogle Scholar
Moricca, S. and Ragazzi, A. (2008). Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology, 98, 380386.CrossRefGoogle ScholarPubMed
Moricca, S., Ginetti, B. and Ragazzi, A. (2012). Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathologia Mediterranea, 51, 587598.Google Scholar
Moricca, S., Linaldeddu, B. T., Ginetti, B. et al. (2016). Endemic and emerging pathogens threatening cork oak trees: Management options for conserving a unique forest ecosystem. Plant Disease, 100, 21842193.CrossRefGoogle ScholarPubMed
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853858.CrossRefGoogle ScholarPubMed
Naseby, D. C., Pascual, J. A. and Lynch, J. M. (2000). Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88, 161169.CrossRefGoogle ScholarPubMed
O’Hanlon, K. A., Knorr, K., Jørgensen, L. N., Nicolaisen, M. and Boelt, B. (2012). Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biological Control, 63, 6978.CrossRefGoogle Scholar
Oliveira, G. and Costa, A. (2012). How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. Forest Ecology and Management, 270, 257272.CrossRefGoogle Scholar
Oliveira, V., Lauw, A. and Pereira, H. (2016). Sensitivity of cork growth to drought events: insights from a 24-year chronology. Climatic Change, 137, 261274.CrossRefGoogle Scholar
Oses, R., Valenzuela, S., Freer, J., Sanfuentes, E. and Rodriguez, J. (2008). Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Diversity, 33, 7786.Google Scholar
Ozenda, P. and Borel, J. L. (2000). An ecological map of Europe: why and how? Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 323, 983994.Google ScholarPubMed
Paulo, J. A., Palma, J. H. N., Gomes, A. A. et al. (2015). Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New Forests, 46, 293307.CrossRefGoogle Scholar
Pausas, J. G. (1997). Resprouting of Quercus suber in NE Spain after fire. Journal of Vegetation Science, 8, 703706.CrossRefGoogle Scholar
Pereira, H. (2007). Cork: Biology, Production and Uses. Amsterdam: Elsevier.Google Scholar
Pereira, J. S., Bugalho, M. N. and Caldeira, M. D. C. (2008). From the Cork Oak to Cork. Portugal: APCOR – Portuguese Cork Association.Google Scholar
Pereira, P. M. and Fonseca, M. P. (2003). Nature vs. nurture: The making of the montado ecosystem. Ecology and Society, 7, 7.Google Scholar
Petrini, O. and Fisher, P. J. (1990). Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycological Research, 94, 1077–1080.CrossRefGoogle Scholar
Pinto, C. A., Henriques, M. O., Figueiredo, J. P. et al. (2011). Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Forest Ecology and Management, 262, 500508.CrossRefGoogle Scholar
Pulina, M. A., Linaldeddu, B. T. and Franceschini, A. (2006). Topoclimats et communautés des champignons endophytiques dans des bois de chênes-lièges dépéris et non dépéris en Sardaigne (Italie). Les risques liés au temps et au climat, 474.Google Scholar
Ragazzi, A., Mancini, F., Dellavalle, I., Capretti, P. and Moricca, S. (2001). Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathologia Mediterranea, 40, 165171.Google Scholar
Ragazzi, A., Moricca, S., Capretti, P., Dellavalle, I. and Turco, E. (2003). Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. Forest Pathology, 33, 3138.CrossRefGoogle Scholar
Ramírez-Valiente, J. A., Valladares, F., Huertas, A. D., Granados, S. and Aranda, I. (2011). Factors affecting cork oak growth under dry conditions: Local adaptation and contrasting additive genetic variance within populations. Tree Genetics and Genomes, 7, 285295.CrossRefGoogle Scholar
Redman, R. S., Kim, Y. O., Woodward, C. J. et al. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One, 6, e14823.CrossRefGoogle ScholarPubMed
Rego, F. C. and Rocha, M. S. (2014). Climatic patterns in the Mediterranean region. Ecologia Mediterranea, 40, 4959.CrossRefGoogle Scholar
Reis, F., Tavares, R. M., Baptista, P. and Lino-Neto, T. (2017). Mycorrhization of Fagaceae forests within Mediterranean ecosystems. In Mycorrhiza: Function, Diversity, State of the Art, 4th edn, ed. A. Varma. Berlin: Springer International Publishing, pp. 7597.CrossRefGoogle Scholar
Rho, H., Hsieh, M., Kandel, S. L. et al. (2017). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecology, 75, 407–418.Google Scholar
Rigueiro-Rodríguez, A., McAdam, J. and Mosquera-Losada, M. R., eds. (2009). Agroforestry in Europe. Current Status and Future Prospects. Berlin: Springer Science & Business Media B. V.CrossRefGoogle Scholar
Rodriguez, R. J., Henson, J., Van Volkenburgh, E. et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404416.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., WhiteJr., J. F., Arnold, A. E. and Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Romeralo, C., Santamaría, O., Pando, V. and Diez, J. J. (2015). Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biological Control, 80, 3039.CrossRefGoogle Scholar
Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21, 6774.CrossRefGoogle Scholar
Saucedo-García, A., Anaya, A. L., Espinosa-García, F. J. and González, M. C. (2014). Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. PloS One, 9, e98454.CrossRefGoogle ScholarPubMed
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Seghers, D., Wittebolle, L., Top, E. M., Verstraete, W. and Siciliano, S. D. (2004). Impact of agricultural practices on the Zea mays L. endophytic community. Applied and Environmental Microbiology, 70, 14751482.CrossRefGoogle ScholarPubMed
Sieber, T. N. (2007). Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews, 21, 7589.CrossRefGoogle Scholar
Slippers, B. and Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21, 90106.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M. et al. (2007). Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, pp. 235337.Google Scholar
Sun, X., Ding, Q., Hyde, K. D. and Guo, L. D. (2012). Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecology, 5, 624632.CrossRefGoogle Scholar
Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H. and Song, Y. C. (2007). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23, 7983.CrossRefGoogle Scholar
Waqas, M., Khan, A. L., Shahzad, R. et al. (2015a). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University. Science. B, 16, 1011.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Hamayun, M. et al. (2015b). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. Journal of plant interactions, 10, 280287.CrossRefGoogle Scholar
White, J. F., Torres, M. S., Johnson, H., Irizarry, I. and Tadych, M. (2014). A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In Advances in Endophytic Research, ed. Verma, V. and Gange, A.. New Delhi: Springer, pp. 425439.CrossRefGoogle Scholar
Wilson, D. and Carroll, G. C. (1994). Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia, 86, 635647.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×