Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T22:11:13.167Z Has data issue: false hasContentIssue false

14 - Enhancing Secondary Metabolite Production in Medicinal Plants Using Endophytic Elicitors: A Case Study of Centella asiatica (Apiaceae) and Asiaticoside

from Part IV - Endophytes for Novel Biomolecules and In Vitro Methods

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Fungal endophytes are a vital component of the plant microbiome. The symbiotic relationship between endophytic fungi and medicinal plants can considerably influence plant secondary metabolism pathways, thus affecting their metabolite production and the quality and quantity of crude drugs produced. This chapter focuses on how fungal endophytic symbiosis can increase production of secondary metabolites during in vitro culture. Other than promoting secondary metabolite accumulation, endophytic fungi can also promote the growth of host plants and improve their resistance to abiotic and biotic stresses. Therefore, an understanding of the relationship between endophytic fungi and their host medicinal plants is of utmost importance. This knowledge can be applied in the production of novel and improved drugs from medicinally valued plants. In vitro elicitation of secondary metabolites by endophytic fungi has been reported in several medicinal plants. A case study is documented in this chapter which shows enhancement of asiaticoside by an endophytic fungal (Colletotrichum gloeosporioides) elicitor isolated from in vivo grown plants of Centella asiatica. These findings may motivate further exploitation of fungal endophytes as an effective and beneficial way to enhance the production of pharmacologically important compounds from medicinal plants.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, K. and Hayashi, H. (2006). Strigolactones, chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of Botany, 97, 925931.CrossRefGoogle ScholarPubMed
Andrews, J. H. and Hirano, S. S., eds. (1991). Microbial Ecology of Leaves. Brock/Springer Series. London: Springer Verlag.CrossRefGoogle Scholar
Babykutty, S., Padikkala, J., Sathiadevan, P. P. et al. (2009). Apoptosis induction of Centella asiatica on human breast cancer cells. African Journal of Traditional, Complementary and Alternative Medicines, 6, 916.Google Scholar
Bacon, C. W. and White, J. F. (2000). Microbial Endophytes. New York: Marcel Deker Inc.CrossRefGoogle Scholar
Bajaj, R., Agarwal, A., Rajpal, K. et al. (2014). Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients. American Journal of Current Microbiology, 2, 617.Google Scholar
Baldi, A., Jain, A., Gupta, N., Srivastava, A. K. and Bisaria, V. S. (2008). Coculture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnology Letters, 30, 16711677.CrossRefGoogle ScholarPubMed
Belesky, D. P. and Fedders, J. M. (1996). Does endophyte influence regrowth of tall fescue? Annals of Botany, 78, 499505.CrossRefGoogle Scholar
Boullard, B. (1957). Lamycotrophie chez les Pteridophytes. Sa frequence, ses characters, sa signification. Botaniste, 41, 1185.Google Scholar
Chen, Y., Han, T., Rui, Y. et al. (2005). Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai, 28, 492496.Google ScholarPubMed
Chong, T. M., Abdullah, M. A., Lai, O. M., Nor’aini, F. M. and Lajis, N. H. (2005). Effective elicitation factors in Morinda elliptica cell suspension culture. Process Biochemistry, 40, 33973405.CrossRefGoogle Scholar
Clay, K. and Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 17421744.CrossRefGoogle ScholarPubMed
Dai, C. C., Yu, B. Y. and Li, X. (2008). Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. African Journal of Biotechnology, 7, 35053510.Google Scholar
Darnis, F., Orcel, L., de Saint Maur, P. P. and Mamov, P. (1979). Use of a titrated extract of Centella asiatica in chronic hepatic disorders. Semaine Des Hopitaux, 55, 17491750.Google ScholarPubMed
de Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Hofmeister’s Handbook of Physiological Botany, Volume II. Leipzig, Germany: Engelmann.Google Scholar
De Battista, J. P., Bacon, C. W., Severson, R. F., Plattner, R. D. and Bouton, J. H. (1990). Indole acetic acid production by the fungal endophyte of tall fescue. Agronomy Journal, 82, 878880.CrossRefGoogle Scholar
Ding, C., Wang, Q. B., Guo, S. and Wang, Z. Y. (2017). The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi. Brazilian Journal of Microbiology, 49, 362369.CrossRefGoogle ScholarPubMed
Dreyfuss, M. M. and Chapela, I. H. (1994). Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In The Discovery of Natural Products with Therapeutic Potential, ed. Gullo, V. P.. London: Butterworth-Heinemann, pp. 4980.CrossRefGoogle Scholar
Dubey, V. S., Bhalla, R. and Luthra, R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences, 28, 637646.CrossRefGoogle ScholarPubMed
Freeman, E. M. (1904). The seed-fungus of Lolium temulentum, L., the Darnel. Philosophical Transactions of Royal Society B, 196, 127.Google Scholar
Furumai, T., Yamakawa, T., Yoshida, R. and Igarashi, Y. (2003). Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics, 56, 700704.CrossRefGoogle ScholarPubMed
Ghisalberti, E. L. (2002). Anti-infective agents produced by the Hypomycetes genera Trichoderma and Gliocladium. Current Medicinal Chemistry-Anti- Infective Agents, 1, 343374.CrossRefGoogle Scholar
Glick, B. R. and Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353378.CrossRefGoogle ScholarPubMed
Guerin, P. (1898). Sur la presence d’un champignon dansl’ivraie. Journal de Botanique, 12, 230238.Google Scholar
Gunatilaka, A. A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity and implication of their occurrence. Journal of Natural Products, 69, 509526.CrossRefGoogle ScholarPubMed
Guo, B., Li, H. and Zhang, L. (1998). Isolation of the fungus producing vinblastine. Journal of Yunnan University (Natural Science Edition), 20, 214215.Google Scholar
Gupta, S. (2015). Characterization of Foliar Endophytic Fungi from Centella asiatica (L.) Urban as a Promising Source of Bioactive Metabolites. PhD Thesis, G.B. Pant University of Agriculture & Technology, Pantnagar, India.Google Scholar
Gupta, S., Bhatt, P. and Chaturvedi P. (2018). Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World Journal of Microbiology and Biotechnology, 34, 111.CrossRefGoogle Scholar
Harper, J. K., Ford, E. J., Strobel, G. A. et al. (2003). Pestacin: a 1,3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 24712476.CrossRefGoogle Scholar
Hill, N. S., Belesky, D. P. and Stringer, W. C. (1991). Competitiveness of tall fescue as influenced by Acremonium coenophialum. Crop Science, 30, 156161.CrossRefGoogle Scholar
Hill, N. S., Pachon, J. G. and Bacon, C. W. (1996). Acremonium coenophialum mediated short- and long-term drought acclimation in tall fescue. Crop Science, 36, 665672.CrossRefGoogle Scholar
Hussain, M. S., Rahman, M. A., Fareed, S. et al. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4, 1020.CrossRefGoogle ScholarPubMed
Igarashi, Y., Iwashita, T., Fujita, T. et al. (2003). Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. II. physicochemical properties and structure determination. Journal of Antibiotics, 56, 705706.CrossRefGoogle ScholarPubMed
Jiang, D. F., Ma, P., Yang, J. et al. (2003). Formation of blood resin in abiotic Dracaena cochinchinensis inoculated with Fusarium 9568D. Ying Yong Sheng Tai XueBao (in Chinese), 14, 477478.Google ScholarPubMed
Junker, C., Draeger, S. and Schulz, B. (2012). A fine line endophytes or pathogens in Arabidopsis thaliana. Fungal Ecology, 5, 657662.CrossRefGoogle Scholar
Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3, 12221239.Google Scholar
Keith, C. (1998). Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology, 69, 1016.Google Scholar
Krings, M., Taylor, T. N., Hass, H. et al. (2007). Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytologist, 174, 648657.CrossRefGoogle Scholar
Kumara, M. P., Zuehlke, S., Priti, V. et al. (2012). Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie van Leeuwenhoek, 101, 323329.CrossRefGoogle Scholar
Kusari, S., Verma, V. C., Lamshoeft, M. and Spiteller, M. (2012). An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World Journal of Microbiology and Biotechnology, 28, 12871294.CrossRefGoogle ScholarPubMed
Li, P. Q., Lou, J. F., Mou, Y. et al. (2012). Effects of oligosaccharide elicitors from endophytic Fusarium oxysporum Dzf17 on diosgenin accumulation in Dioscorea zingiberensis seedling cultures. Journal of Medicinal Plants Research, 6, 51285134.Google Scholar
Li, Y. C., Tao, W. Y. and Cheng, L. (2009). Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Applied Microbiology and Biotechnology, 83, 233239.CrossRefGoogle Scholar
Li, Y. L. and Tao, W. Y. (2009). Interactions of Taxol-producing endophytic fungus with its host (Taxus spp.) during Taxol accumulation. Cell Biology International, 33, 106112.CrossRefGoogle ScholarPubMed
Malinowski, D. P. and Belesky, D. P. (2000). Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 40, 923940.CrossRefGoogle Scholar
Malinowsky, D. P., Brauer, D. K. and Belesky, D. P. (1999). Neotyphodium coenophyialum endophyte affects root morphology of tall fescue grown under phosphorous deficiency. Journal of Agronomy and Crop Science, 183, 5360.CrossRefGoogle Scholar
Montecchio, G. P., Samaden, A., Carbone, S. et al. (1991). Centella asiatica triterpene fraction (CATTF) reduces the number of circulating endothelial cells in subjects with post phlebitic syndrome. Haematologica, 76, 256259.Google ScholarPubMed
Mucciarelli, M., Scannerini, S., Bertea, C. and Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytologist, 158, 579591.CrossRefGoogle ScholarPubMed
Murashige, T. and Skoog, F. A. (1962). A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473497.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Nalini, K., Aroor, A. R., Karantu, K. S. and Rao, A. (1992). Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia, 63, 232237.Google Scholar
Naoumkina, M. A., He, X. and Dixon, R. A. (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8, 132.CrossRefGoogle ScholarPubMed
Nassar, H. A., El-Tarabily, K. A. and Sivasithamparam, K. (2005). Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays) roots. Journal of Biology and Fertility of Soils, 42, 97108.CrossRefGoogle Scholar
Nery-Silva, F. A., Fernandes, J. J., Juliatti, F. C. and Melo, B. (2007). Reação de germoplasma de mandioca a Xanthomonas axonopodis pv. manihots. Semina: Ciênc. Agra, 28, 310.Google Scholar
Niere, B. (2001). Significance of non-pathogenic isolates of Fusarium oxysporum Schlecht, Fries for the biological control of the burrowing nematode Radopholus similis (Cobb) Thorne on tissue-cultured bananas. PhD Thesis, University of Bonn, Germany.Google Scholar
Ola, A. R. B., Thomy, D., Lai, D., Brötz-Oesterhelt, H. and Proksch, P. (2013). Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of Natural Products, 76, 20942099.CrossRefGoogle ScholarPubMed
Peng, X., Zhao, Y., Liang, X. et al. (2006). Assessing the quality of RCTs on the effect of beta-elemene, one ingredient of a Chinese herb, against malignant tumors. Contemporary Clinical Trials, 27, 7082.CrossRefGoogle ScholarPubMed
Plohman, B., Bader, G., Streich, S., Hiller, K. and Franz, G. (1994). Immuno-modulatory effects of triterpenoid saponins. European Journal of Pharmaceutical Sciences, 21, 120.CrossRefGoogle Scholar
Pocasangre, L. (2000). Biological enhancement of tissue culture plantlets with endophytic fungi for the control of the burrowing nematode Radopholus similis and the Panama disease (Fusarium oxysporum f. sp. cubense). PhD Thesis, University of Bonn, Germany.Google Scholar
Porter, J. K. (1995). Analysis of endophyte toxins: fescue and other grasses toxic to livestock. Journal Animal Science, 73, 871880.CrossRefGoogle ScholarPubMed
Prasad, R., Garg, A. P. and Varma, A. (2004). Interaction of medicinal plant growth-promoting rhizobacteria and symbiotic fungi. In Basic Research and Applications: Mycorrhizae, Microbiology Series, ed. Podila, G and Varma, A. Delhi: IK International, pp. 363407.Google Scholar
Puri, S. C., Verma, V., Amna, T., Qazi, G. N. and Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. Journal of Natural Products, 68, 17171719.CrossRefGoogle ScholarPubMed
Rai, M., Acharya, D. and Singh, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza, 11, 123128.CrossRefGoogle Scholar
Rajeswari, G., Murugan, M. and Mohan, V. R. (2013). GC-MS analysis of bioactive components of Hugonia mystax L. bark (Linaceae). Journal of Pharmaceutical and Biomedical Sciences, 29, 818824.Google Scholar
Raman, B. V., Samuel, L. A., Pardhasaradhi, M. et al. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, 5, 99106.Google Scholar
Rommert, A. K., Oros-Sichler, M., Aust, H. J., Lange, T. and Schulz, B. (2002). Growth promoting effects of endophytic colonization of the roots of larch (Larix decidua) with Cryptosporiopsis sp. and Phialophora sp. 7th International Mycological Congress, Oslo, Norway.Google Scholar
Sachin, N., Manjuntha, B. L., Mohana, K. P. et al. (2013). Do endophytic fungi possess pathway genes for plant secondary metabolites? Current Science, 104, 178182.Google Scholar
Saxena, P. K., Cole, I. B. and Murch, S. J. (2005). Approaches to quality plant based medicine: significance of chemical profiling. In Applications of Plant Metabolic Engineering, ed. Verpoorte, R., Alfermann, A. W. and Johnson, T. S.. Amsterdam: Springer, pp. 311330.Google Scholar
Sherameti, I., Shahollari, B., Venus, Y. et al. (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. Journal of Biological Chemistry, 280, 2624126247.CrossRefGoogle ScholarPubMed
Shukla, A., Rasik, A. K. and Dhawan, B. N. (1999). Asiaticoside–induced elevation of antioxidant levels in healing wounds. Phytotherapy Research, 13, 5054.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Staniek, A., Woerdenbag, H. J. and Kayser, O. (2008). Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interaction, 3, 7593.CrossRefGoogle Scholar
Stierle, A., Strobel, G. A. and Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214216.CrossRefGoogle ScholarPubMed
Strobel, G. A. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Strobel, G. A., Yang, X., Sears, J. et al. (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology, 142, 435440.CrossRefGoogle Scholar
Strobel, G. A., Miller, R. V., Miller, C. et al. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145, 19191926.CrossRefGoogle ScholarPubMed
Strobel, G. A., Ford, A. Worapong, E., J. et al. (2002). Ispoestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry, 60, 179183.CrossRefGoogle ScholarPubMed
Tang, Z. H., Rao, L. Q., Peng, G. P. et al. (2009). Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. Journal of Medicinal Plants Research, 5, 21922200.Google Scholar
Wang, J., Li, G., Lu, H. et al. (2000). Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiology Letters, 193, 249253.CrossRefGoogle ScholarPubMed
Wang, J., Zheng, L., Tan, R. and Chin, J. (2006). The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L. Chinese Journal of Biotechnology, 22, 829834.Google ScholarPubMed
Wang, J. W., Wu, J. H., Huang, W. Y. and Tan, R. X. (2006). Laccase production by Monotospora sp. an endophytic fungus in Cynodon dactylon. Bioresource Technology, 97, 786789.CrossRefGoogle ScholarPubMed
Wang, Y., Dai, C. C., Cao, J. L. and Xu, D. S. (2012). Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World Journal of Microbiology and Biotechnology, 28, 575584.CrossRefGoogle ScholarPubMed
Yao, Y. Q., Ding, X., Jia, Y. C. et al. (2008). Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Letters, 264, 127134.CrossRefGoogle ScholarPubMed
Yuan, Z. L., Dai, C. and Chen, L. (2007). Regulation and accumulation of secondary metabolites in plant–fungus symbiotic system. African Journal of Biotechnology, 6, 12661271.Google Scholar
Yuan, Z. L., Zhang, C. L. and Lin, F. C. (2010). Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. Journal of Plant Growth Regulation, 29, 116126.CrossRefGoogle Scholar
Yue, C. C., Miller, J., White, J. and Richardson, M. (2000). Isolation and characterization of fungal inhibitors from Epichloë festucae. Journal of Agricultural and Food Chemistry, 48, 46874692.CrossRefGoogle ScholarPubMed
Zhang, L., Guo, B., Li, H. et al. (2000). Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chinese Traditional and Herbal Drugs, 31, 805807.Google Scholar
Zhang, Z. and Zhou, X. (2011). GC/MS analysis on benzene/alcohol extractives of Manglietia glauca leaves for biomedicine engineering. Advanced Materials Research, 213, 475–47.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×