Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:10:31.945Z Has data issue: false hasContentIssue false

Chapter 10 - Experimental models of endocrine diseases

from Section II - Investigative techniques

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 271 - 282
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fluck, CE, Mullis, PE, Pandey, AV: Modeling of human P450 oxidoreductase structure by in silico mutagenesis and MD simulation. Mol Cell Endocrinol 2009;313:1722.Google Scholar
Bilek, R, Starka, L: The computer modelling of human TRH receptor, TRH and TRH-like peptides. Physiol Res 2005;54:141150.CrossRefGoogle ScholarPubMed
Raposo, JF, Sobrinho, LG, Ferreira, HG: A minimal mathematical model of calcium homeostasis. J Clin Endocrinol Metab 2002;87:43304340.Google Scholar
Cairns, LA, Crotta, S, Minuzzo, M, Ricciardi-Castagnoli, P, Pozzi, L, Ottolenghi, S: Immortalization of neuro-endocrine cells from adrenal tumors arising in SV40 T-transgenic mice. Oncogene 1997;14:30933098.Google Scholar
Voglauer, R, Grillari, J, Fortschegger, K, Wieser, M, Sterovsky, T, Gunsberg, P, Katinger, H, Pfragner, R: Establishment of human fibroma cell lines from a MEN1 patient by introduction of either hTERT or SV40 early region. Int J Oncol 2005;26:961970.Google Scholar
Ueda, T, Sasaki, M, Elia, AJ, Chio, II, Hamada, K, Fukunaga, R, Mak, TW: Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 2010;107:1398413990.Google Scholar
Werminghaus, P, Haase, M, Hornsby, PE, Schinner, S, Schott, M, Malendowicz, LK, Lammers, BJ, Goretzki, PE, Muller-Mattheis, V, Giessing, Markus, Willenberg, HS: Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J Steroid Biochem Mol Biol 2014;139:715.Google Scholar
American Type Culture Collection. 2015 Collection. Washington, DC: American Type Culture Collection (http://www.atcc.org/, accessed 27 July 2015).Google Scholar
Buonassisi, V, Sato, G, Cohen, AI: Hormone-producing cultures of adrenal and pituitary tumor origin. Proc Natl Acad Sci USA 1962;48:11841190.Google Scholar
Yasamura, Y, Tashjian, AH Jr., Sato, GH: Establishment of four functional, clonal strains of animal cells in culture. Science 1966;154:11861189.Google Scholar
Tashjian, AH Jr., Yasumura, Y, Levine, L, Sato, GH, Parker, ML: Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 1968;82:342352.Google Scholar
Judd, AM, Login, IS, Kovacs, K, Ross, PC, Spangelo, BL, Jarvis, WD, MacLeod, RM: Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. Endocrinology 1988;123:23412350.Google Scholar
Reymond, MJ, Nansel, DD, Burrows, GH, Neaves, WB, Porter, JC: A new clonal strain of rat pituitary tumour cells: a model for non-regulated secretion of prolactin. Acta Endocrinol (Copenh) 1984;106:459470.Google Scholar
Jin, L, Kulig, E, Qian, X, Scheithauer, BW, Eberhardt, NL, Lloyd, RV: A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen Endocr Pathol 1998;9:169184.Google Scholar
Tanaka, J, Ogura, T, Sato, H, Hatano, M: Establishment and biological characterization of an in vitro human cytomegalovirus latency model. Virology 1987;161:6272.Google Scholar
Kurebayashi, J, Tanaka, K, Otsuki, T, Moriya, T, Kunisue, H, Uno, M, Sonoo, H: All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab 2000;85:28892896.Google Scholar
Estour, B, Van Herle, AJ, Juillard, GJ, Totanes, TL, Sparkes, RS, Giuliano, AE, Klandorf, H: Characterization of a human follicular thyroid carcinoma cell line (UCLA RO 82 W-1). Virchows Arch B Cell Pathol Incl Mol Pathol 1989;57:167174.Google Scholar
Ito, T, Seyama, T, Hayashi, Y, Hayashi, T, Dohi, K, Mizuno, T, Iwamoto, K, Tsuyama, N, Nakamura, N, Akiyama, M: Establishment of 2 human thyroid-carcinoma cell-lines (8305c, 8505c) bearing p53 gene-mutations. Int J Oncol 1994;4:583586.Google Scholar
Berger, CL, de Bustros, A, Roos, BA, Leong, SS, Mendelsohn, G, Gesell, MS, Baylin, SB: Human medullary thyroid carcinoma in culture provides a model relating growth dynamics, endocrine cell differentiation, and tumor progression. J Clin Endocrinol Metab 1984;59:338343.Google Scholar
Asakawa, H, Kobayashi, T, Komoike, Y, Yanagawa, T, Takahashi, M, Wakasugi, E, Maruyama, H, Tamaki, Y, Matsuzawa, Y, Monden, M: Establishment of anaplastic thyroid carcinoma cell lines useful for analysis of chemosensitivity and carcinogenesis. J Clin Endocrinol Metab 1996;81:35473552.Google Scholar
Ambesi-Impiombato, FS, Parks, LA, Coon, HG: Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 1980;77:34553459.Google Scholar
Fusco, A, Portella, G, Di Fiore, PP, Berlingieri, MT, Di Lauro, R, Schneider, AB, Vecchio, G: A mos oncogene-containing retrovirus, myeloproliferative sarcoma virus, transforms rat thyroid epithelial cells and irreversibly blocks their differentiation pattern. J Virol 1985;56:284292.Google Scholar
Bjorklund, P, Akerstrom, G, Westin, G: Activated beta-catenin in the novel human parathyroid tumor cell line sHPT-1. Biochem Biophys Res Commun 2007;352:532536.Google Scholar
Sakaguchi, K, Santora, A, Zimering, M, Curcio, F, Aurbach, GD, Brandi, ML: Functional epithelial cell line cloned from rat parathyroid glands. Proc Natl Acad Sci USA 1987;84:32693273.Google Scholar
Greene, LA, Tischler, AS: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976;73:24242428.Google Scholar
Powers, JF, Evinger, MJ, Tsokas, P, Bedri, S, Alroy, J, Shahsavari, M, Tischler, AS: Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res 2000;302:309320.Google Scholar
Gazdar, AF, Oie, HK, Shackleton, CH, Chen, TR, Triche, TJ, Myers, CE, Chrousos, GP, Brennan, MF, Stein, CA, La Rocca, RV: Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 1990;50:54885496.Google Scholar
Gueli, N, Toto, G, Palmieri, G, Delfino, A, Ferrini, U: In vitro growth of a cell line originated from a human insulinoma J Exp Clin Cancer Res 1987;4:281285.Google Scholar
Gazdar, AF, Chick, WL, Oie, HK, Sims, HL, King, DL, Weir, GC, Lauris, V: Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci USA 1980;77:35193523.CrossRefGoogle ScholarPubMed
Bhathena, SJ, Awoke, S, Voyles, NR, Wilkins, SD, Recant, L, Oie, HK, Gazdar, AF: Insulin, glucagon, and somatostatin secretion by cultured rat islet cell tumor and its clones. Proc Soc Exp Biol Med 1984;175:3538.Google Scholar
Efrat, S, Linde, S, Kofod, H, Spector, D, Delannoy, M, Grant, S, Hanahan, D, Baekkeskov, S: Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 1988;85:90379041.CrossRefGoogle ScholarPubMed
Miyazaki, J, Araki, K, Yamato, E, Ikegami, H, Asano, T, Shibasaki, Y, Oka, Y, Yamamura, K: Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 1990;127:126132.Google Scholar
Radvanyi, F, Christgau, S, Baekkeskov, S, Jolicoeur, C, Hanahan, D: Pancreatic beta cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol Cell Biol 1993;13:42234232.Google Scholar
Parekh, D, Ishizuka, J, Townsend, CM Jr., Haber, B, Beauchamp, RD, Karp, G, Kim, SW, Rajaraman, S, Greeley, G Jr., Thompson, JC: Characterization of a human pancreatic carcinoid in vitro: morphology, amine and peptide storage, and secretion. Pancreas 1994;9:8390.Google Scholar
Pettengill, OS, Sorenson, GD, Wurster-Hill, DH, Curphey, TJ, Noll, WW, Cate, CC, Maurer, LH: Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer 1980;45:906918.Google Scholar
Ishikawa, M, Kimura, K, Tachibana, T, Hashimoto, H, Shimojo, M, Ueshiba, H, Tsuboi, K, Shibuya, K, Yoshino, G: Establishment and characterization of a novel cell line derived from a human small cell lung carcinoma that secretes parathyroid hormone, parathyroid hormone-related protein, and pro-opiomelanocortin. Hum Cell 2010;23:5864.Google Scholar
Pfragner, R, Behmel, A, Hoger, H, Beham, A, Ingolic, E, Stelzer, I, Svejda, B, Moser, VA, Obenauf, AC, Siegl, V, Haas, O, Niederle, B: Establishment and characterization of three novel cell lines – P-STS, L-STS, H-STS – derived from a human metastatic midgut carcinoid. Anticancer Res 2009;29:19511961.Google Scholar
Schweppe, RE, Klopper, JP, Korch, C, Pugazhenthi, H, Benezra, M, Knauf, JA, Fagin, JA, Marlow, LA, Copland, JA, Smallridge, RC, Haugen, BR: Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross‐contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 2008;93:43314341.Google Scholar
Gordon, MN, Schechter, JE, Felicio, LS, Finch, CE: Spontaneous tumors in aging female mice are more prevalent in the lateral pituitary zones. Neurobiol Aging 1987;8:6770.CrossRefGoogle ScholarPubMed
Shultz, LD, Brehm, MA, Garcia-Martinez, JV, Greiner, DL: Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786798.Google Scholar
Jaenisch, R, Mintz, B: Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 1974;71:12501254.Google Scholar
Metzger, D, Clifford, J, Chiba, H, Chambon, P: Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 1995;92:69916995.Google Scholar
Lohr, H, Hammerschmidt, M: Zebrafish in endocrine systems: recent advances and implications for human disease. Annu Rev Physiol 2011;73:183211.CrossRefGoogle ScholarPubMed
Ezzat, S, Zheng, L, Winer, D, Asa, SL: Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006;20:29652975.Google Scholar
Yamashita, M, Oki, Y, Iino, K, Hayashi, C, Yogo, K, Matsushita, F, Sasaki, S, Nakamura, H: The role of store-operated Ca2+ channels in adrenocorticotropin release by rat pituitary cells. Regul Pept 2009;156:5764.Google Scholar
Gruszka, A, Ren, SG, Dong, J, Culler, MD, Melmed, S: Regulation of growth hormone and prolactin gene expression and secretion by chimeric somatostatin-dopamine molecules. Endocrinology 2007;148:61076114.Google Scholar
Drouin, J, Labrie, F: Selective effect of androgens on LH and FSH release in anterior pituitary cells in culture. Endocrinology 1976;98:15281534.Google Scholar
Allen, RG, Herbert, E, Hinman, M, Shibuya, H, Pert, CB: Coordinate control of corticotropin, beta-lipotropin, and beta-endorphin release in mouse pituitary cell cultures. Proc Natl Acad Sci USA 1978;75:49724976.Google Scholar
Billestrup, N, Swanson, LW, Vale, W: Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986;83:68546857.Google Scholar
Tateno, T, Asa, SL, Zheng, L, Mayr, T, Ullrich, A, Ezzat, S: The FGFR4G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLOS Genet 2011;7:e1002400.Google Scholar
Dorman, K, Shen, Z, Yang, C, Ezzat, S, Asa, SL: CtBP1 interacts with Ikaros and modulates pituitary tumor cell survival and response to hypoxia. Mol Endocrinol 2012;26:447457.Google Scholar
Ezzat, S, Zhu, X, Loeper, S, Fischer, S, Asa, SL: Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006;20:29762986.Google Scholar
Liu, W, Asa, SL, Ezzat, S: Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002;12:412419.Google Scholar
Zhu, X, Lee, K, Asa, SL, Ezzat, S: Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007;170:16181628.CrossRefGoogle ScholarPubMed
Loeper, S, Asa, SL, Ezzat, S: Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008;68:37153723.Google Scholar
Leung, CK, Paterson, JA, Imai, Y, Shiu, RP: Transplantation of ACTH-secreting pituitary tumor cells in athymic nude mice. Virchows Arch A Pathol Anat Histol 1982;396:303312.Google Scholar
Giacomini, D, Paez-Pereda, M, Theodoropoulou, M, Labeur, M, Refojo, D, Gerez, J, Chervin, A, Berner, S, Losa, M, Buchfelder, M, Renner, U, Stalla, GK, Arzt, E: Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology 2006;147:247256.Google Scholar
Ezzat, S, Mader, R, Yu, S, Ning, T, Poussier, P, Asa, SL: Ikaros integrates endocrine and immune system development. J Clin Invest 2005;115:10211029.Google Scholar
Ezzat, S, Yu, S, Asa, SL: The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2005;19:10041011.Google Scholar
Asa, SL: Transgenic and knockout mouse models clarify pituitary development, function and disease. Brain Pathol 2001, 11:371383.CrossRefGoogle ScholarPubMed
Ezzat, S, Mader, R, Fischer, S, Yu, S, Ackerley, C, Asa, SL: An essential role for the hematopoietic transcription factor Ikaros in hypothalamic–pituitary-mediated somatic growth. Proc Natl Acad Sci USA 2006;103:22142219.Google Scholar
Lin, SC, Lin, CR, Gukovsky, I, Lusis, AJ, Sawchenko, PE, Rosenfeld, MG: Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 1993;364:208213.Google Scholar
Ryther, RC, McGuinness, LM, Phillips, JA 3rd, Moseley, CT, Magoulas, CB, Robinson, IC, Patton, JG: Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet 2003;113:140148.Google Scholar
Sun, Y, Bak, B, Schoenmakers, N, van Trotsenburg, AS, Oostdijk, W, Voshol, P, Cambridge, E, White, JK, le Tissier, P, Gharavy, SN, Martinez-Barbera, JP, Stokvis-Brantsma, WH, Vulsma, T, Kempers, MJ, Persani, L, Campi, I, Bonomi, M, Beck-Peccoz, P, Zhu, H, Davis, TM, Hokken-Koelega, AC, Del Blanco, DG, Rangasami, JJ, Ruivenkamp, CA, Laros, JF, Kriek, M, Kant, SG, Bosch, CA, Biermasz, NR, Appelman-Dijkstra, NM, Corssmit, EP, Hovens, GC, Pereira, AM, den Dunnen, JT, Wade, MG, Breuning, MH, Hennekam, RC, Chatterjee, K, Dattani, MT, Wit, JM, Bernard, DJ: Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet 2012;44:13751381.Google Scholar
Jacks, T, Fazeli, A, Schmitt, EM, Bronson, RT, Goodell, MA, Weinberg, RA: Effects of an Rb mutation in the mouse. Nature 1992;359:295300.Google Scholar
Yamasaki, L, Bronson, R, Williams, BO, Dyson, NJ, Harlow, E, Jacks, T: Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nat Genet 1998;18:360364.Google Scholar
Lee, EY, Cam, H, Ziebold, U, Rayman, JB, Lees, JA, Dynlacht, BD: E2F4 loss suppresses tumorigenesis in R−b mutant mice. Cancer Cell 2002;2:463472.Google Scholar
Kiyokawa, H, Kineman, RD, Manova-Todorova, KO, Soares, VC, Hoffman, ES, Ono, M, Khanam, D, Hayday, AC, Frohman, LA, Koff, A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85:721732.Google Scholar
Nakayama, K, Ishida, N, Shirane, M, Inomata, A, Inoue, T, Shishido, N, Horii, I, Loh, DY, Nakayama, K: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707720.Google Scholar
Chesnokova, V, Kovacs, K, Castro, AV, Zonis, S, Melmed, S: Pituitary hypoplasia in Pttg−/− mice is protective for Rb+/− pituitary tumorigenesis. Mol Endocrinol 2005;19:23712379.Google Scholar
Eicher, EM, Beamer, WG: Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J Hered 1976;67:8791.Google Scholar
Parks, JS, Herd, JE, Wurzel, JM, Martial, JA: Structural analysis of rodent growth hormone genes: application to genetic forms of hypopituitarism. Endocrinology 1982;110:16721675.Google Scholar
Lew, D, Brady, H, Klausing, K, Yaginuma, K, Theill, LE, Stauber, C, Karin, M, Mellon, PL: GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes Dev 1993;7:683693.Google Scholar
Shariat, N, Ryther, RC, Phillips, JA 3rd, Robinson, IC, Patton, JG: Rescue of pituitary function in a mouse model of isolated growth hormone deficiency type II by RNA interference. Endocrinology 2008;149:580586.CrossRefGoogle Scholar
Herzog, W, Zeng, X, Lele, Z, Sonntag, C, Ting, JW, Chang, CY, Hammerschmidt, M: Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev Biol 2003;254:3649.CrossRefGoogle ScholarPubMed
Sbrogna, JL, Barresi, MJ, Karlstrom, RO: Multiple roles for hedgehog signaling in zebrafish pituitary development. Dev Biol 2003;254:1935.Google Scholar
Liu, NA, Huang, H, Yang, Z, Herzog, W, Hammerschmidt, M, Lin, S, Melmed, S: Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. Mol Endocrinol 2003;17:959966.Google Scholar
Russfield, AB: Experimental endocrinopathies. Meth Achiev Exp Pathol 1975;7:132148.Google Scholar
Zhu, X, Lin, CR, Prefontaine, GG, Tollkuhn, J, Rosenfeld, MG: Genetic control of pituitary development and hypopituitarism. Curr Opin Genet Dev 2005;15:332340.Google Scholar
Pogoda, HM, Hammerschmidt, M: Molecular genetics of pituitary development in zebrafish. Semin Cell Dev Biol 2007;18:543558.Google Scholar
Cohen, Y, Xing, M, Mambo, E, Guo, Z, Wu, G, Trink, B, Beller, U, Westra, WH, Ladenson, PW, Sidransky, D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003;95:625627.Google Scholar
Davies, H, Bignell, GR, Cox, C, Stephens, P, Edkins, S, Clegg, S, Teague, J, Woffendin, H, Garnett, MJ, Bottomley, W, Davis, N, Dicks, E, Ewing, R, Floyd, Y, Gray, K, Hall, S, Hawes, R, Hughes, J, Kosmidou, V, Menzies, A, Mould, C, Parker, A, Stevens, C, Watt, S, Hooper, S, Wilson, R, Jayatilake, H, Gusterson, BA, Cooper, C, Shipley, J, Hargrave, D, Pritchard-Jones, K, Maitland, N, Chenevix-Trench, G, Riggins, GJ, Bigner, DD, Palmieri, G, Cossu, A, Flanagan, A, Nicholson, A, Ho, JW, Leung, SY, Yuen, ST, Weber, BL, Seigler, HF, Darrow, TL, Paterson, H, Marais, R, Marshall, CJ, Wooster, R, Stratton, MR, Futreal, PA: Mutations of the BRAF gene in human cancer. Nature 2002;417:949954.Google Scholar
Saavedra, HI, Knauf, JA, Shirokawa, JM, Wang, J, Ouyang, B, Elisei, R, Stambrook, PJ, Fagin, JA: The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000;19:39483954.Google Scholar
Mitsutake, N, Knauf, JA, Mitsutake, S, Mesa, C Jr., Zhang, L, Fagin, JA: Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 2005;65:24652473.Google Scholar
Knauf, JA, Ouyang, B, Knudsen, ES, Fukasawa, K, Babcock, G, Fagin, JA: Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem 2006;281:38003809.CrossRefGoogle ScholarPubMed
Logan, A, Black, EG, Gonzalez, AM, Buscaglia, M, Sheppard, MC: Basic fibroblast growth factor: an autocrine mitogen of rat thyroid follicular cells? Endocrinology 1992;130:23632372.Google Scholar
Isozaki, O, Emoto, N, Tsushima, T, Sato, Y, Shizume, K, Demura, H, Akamizu, T, Kohn, LD: Opposite regulation of deoxyribonucleic acid synthesis and iodide uptake in rat thyroid cells by basic fibroblast growth factor: correlation with opposite regulation of c-fos and thyrotropin receptor gene expression. Endocrinology 1992;131:27232732.CrossRefGoogle ScholarPubMed
St. Bernard, R, Zheng, L, Liu, W, Winer, D, Asa, SL, Ezzat, S: Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 2005;146:11451153.Google Scholar
Kondo, T, Zheng, L, Liu, W, Kurebayashi, J, Asa, SL, Ezzat, S: Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res 2007;67:54615470.Google Scholar
Kondo, T, Zhu, X, Asa, SL, Ezzat, S: The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin Cancer Res 2007;13:47134720.Google Scholar
Liu, W, Cheng, S, Asa, SL, Ezzat, S: The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 2008;68:81048112.Google Scholar
Guo, M, Liu, W, Serra, S, Asa, SL, Ezzat, S: FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012;72:20172027.Google Scholar
Liu, W, Asa, SL, Fantus, IG, Walfish, PG, Ezzat, S: Vitamin D arrests thyroid carcinoma cell growth and induces p27 dephosphorylation and accumulation through PTEN/akt-dependent and -independent pathways. Am J Pathol 2002;160:511519.Google Scholar
Dackiw, AP, Ezzat, S, Huang, P, Liu, W, Asa, SL: Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Endocrinology 2004;145:58405846.Google Scholar
Liu, W, Wei, W, Winer, D, Bamberger, AM, Bamberger, C, Wagener, C, Ezzat, S, Asa, SL: CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene 2007;26:27472758.CrossRefGoogle ScholarPubMed
Ahn, SH, Henderson, Y, Kang, Y, Chattopadhyay, C, Holton, P, Wang, M, Briggs, K, Clayman, GL: An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch Otolaryngol Head Neck Surg 2008;134:190197.Google Scholar
Knauf, JA, Ma, X, Smith, EP, Zhang, L, Mitsutake, N, Liao, XH, Refetoff, S, Nikiforov, YE, Fagin, JA: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:42384245.Google Scholar
Jhiang, SM, Sagartz, JE, Tong, Q, Parker-Thornburg, J, Capen, CC, Cho, JY, Xing, S, Ledent, C: Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996;137:375378.Google Scholar
Henderson, YC, Toro-Serra, R, Chen, Y, Ryu, J, Frederick, MJ, Zhou, G, Gallick, GE, Lai, SY, Clayman, GL: Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck 2014;;36:375384.Google Scholar
Ezzat, S, Huang, P, Dackiw, A, Asa, SL: Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res 2005;11:13361341.Google Scholar
De Falco, V, Buonocore, P, Muthu, M, Torregrossa, L, Basolo, F, Billaud, M, Gozgit, JM, Carlomagno, F, Santoro, M: Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab 2013;98:E811E819.Google Scholar
Rose, NR: The genetics of autoimmune thyroiditis: the first decade. J Autoimmun 2011;37:8894.Google Scholar
Kawahara, M, Iwasaki, Y, Sakaguchi, K, Taguchi, T, Nishiyama, M, Nigawara, T, Kambayashi, M, Sawada, T, Jing, X, Miyajima, M, Terada, Y, Hashimoto, K, Suda, T: Involvement of GCMB in the transcriptional regulation of the human parathyroid hormone gene in a parathyroid-derived cell line PT-r: effects of calcium and 1,25(OH)2D3. Bone 2010;47:534541.Google Scholar
Flynn, JC, Gardas, A, Wan, Q, Gora, M, Alsharabi, G, Wei, WZ, Giraldo, AA, David, CS, Kong, YM, Banga, JP: Superiority of thyroid peroxidase DNA over protein immunization in replicating human thyroid autoimmunity in HLA-DRB1*0301 (DR3) transgenic mice. Clin Exp Immunol 2004;137:503512.Google Scholar
Flynn, JC, Gilbert, JA, Meroueh, C, Snower, DP, David, CS, Kong, YC, Banga, JP: Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice. Immunology 2007;122:261267.Google Scholar
Fujii, Y, Tomic, M, Stojilkovic, SS, Iida, T, Brandi, ML, Ogino, Y, Sakaguchi, K: Effects of endothelin-1 on Ca2+ signaling and secretion in parathyroid cells. J Bone Miner Res 1995;10:716725.Google Scholar
Ho, C, Conner, DA, Pollak, MR, Ladd, DJ, Kifor, O, Warren, HB, Brown, EM, Seidman, JG, Seidman, CE: A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11:389394.CrossRefGoogle ScholarPubMed
Yoshizawa, T, Handa, Y, Uematsu, Y, Takeda, S, Sekine, K, Yoshihara, Y, Kawakami, T, Arioka, K, Sato, H, Uchiyama, Y, Masushige, S, Fukamizu, A, Matsumoto, T, Kato, S: Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391396.Google Scholar
Meir, T, Levi, R, Lieben, L, Libutti, S, Carmeliet, G, Bouillon, R, Silver, J, Naveh-Many, T: Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am J Physiol Renal Physiol 2009;297:F1192F1198.Google Scholar
Urakawa, I, Yamazaki, Y, Shimada, T, Iijima, K, Hasegawa, H, Okawa, K, Fujita, T, Fukumoto, S, Yamashita, T: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444:770774.Google Scholar
Tischler, AS, Powers, JF, Alroy, J: Animal models of pheochromocytoma. Histol Histopathol 2004;19:883895.Google Scholar
Bayley, JP, van Minderhout, I, Hogendoorn, PC, Cornelisse, CJ, van der Wal, A, Prins, FA, Teppema, L, Dahan, A, Devilee, P, Taschner, PE: SDHD and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. PLOS ONE 2009;4:e7987.Google Scholar
Weismann, D, Briese, J, Niemann, J, Gruneberger, M, Adam, P, Hahner, S, Johanssen, S, Liu, W, Ezzat, S, Saeger, W, Bamberger, AM, Fassnacht, M, Schulte, HM, Asa, SL, Allolio, B, Bamberger, CM: Osteopontin stimulates invasion of NCI-h295 cells but is not associated with survival in adrenocortical carcinoma. J Pathol 2009;218:232240.Google Scholar
Gaujoux, S, Hantel, C, Launay, P, Bonnet, S, Perlemoine, K, Lefevre, L, Guillaud-Bataille, M, Beuschlein, F, Tissier, F, Bertherat, J, Rizk-Rabin, M, Ragazzon, B: Silencing mutated beta-catenin inhibits cell proliferation and stimulates apoptosis in the adrenocortical cancer cell line H295R. PLOS ONE 2013;8:e55743.Google Scholar
Matzuk, MM, Finegold, MJ, Su, JG, Hsueh, AJ, Bradley, A: Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 1992;360:313319.Google Scholar
Rilianawati, Paukku T, Kero, J, Zhang, FP, Rahman, N, Kananen, K, Huhtaniemi, I: Direct luteinizing hormone action triggers adrenocortical tumorigenesis in castrated mice transgenic for the murine inhibin alpha-subunit promoter/simian virus 40 T-antigen fusion gene. Mol Endocrinol 1998;12:801809.Google Scholar
Vuorenoja, S, Rivero-Muller, A, Ziecik, AJ, Huhtaniemi, I, Toppari, J, Rahman, NA: Targeted therapy for adrenocortical tumors in transgenic mice through their LH receptor by Hecate-human chorionic gonadotropin beta conjugate. Endocr Relat Cancer 2008;15:635648.Google Scholar
Berthon, A, Sahut-Barnola, I, Lambert-Langlais, S, de Joussineau, C, Damon-Soubeyrand, C, Louiset, E, Taketo, MM, Tissier, F, Bertherat, J, Lefrancois-Martinez, AM, Martinez, A, Val, P: Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 2010;19:15611576.Google Scholar
Stovold, R, Meredith, SL, Bryant, JL, Babur, M, Williams, KJ, Dean, EJ, Dive, C, Blackhall, FH, White, A: Neuroendocrine and epithelial phenotypes in small-cell lung cancer: implications for metastasis and survival in patients. Br J Cancer 2013;108:17041711.Google Scholar
Tateno, T, Kato, M, Tani, Y, Yoshimoto, T, Oki, Y, Hirata, Y: Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene. J Endocrinol Invest 2010;33:113117.Google Scholar
Picon, A, Leblond-Francillard, M, Raffin-Sanson, ML, Lenne, F, Bertagna, X, de Keyzer, Y: Functional analysis of the human pro-opiomelanocortin promoter in the small cell lung carcinoma cell line DMS-79. J Mol Endocrinol 1995;15:187194.Google Scholar
Bertagna, XY, Nicholson, WE, Pettengill, OS, Sorenson, GD, Mount, CD, Orth, DN: Ectopic production of high molecular weight calcitonin and corticotropin by human small cell carcinoma cells in tissue culture: evidence for separate precursors. J Clin Endocrinol Metab 1978;47:13901393.Google Scholar
Bertagna, XY, Nicholson, WE, Sorenson, GD, Pettengill, OS, Mount, CD, Orth, DN: Corticotropin, lipotropin, and beta-endorphin production by a human nonpituitary tumor in culture: evidence for a common precursor. Proc Natl Acad Sci USA 1978;75:51605164.Google Scholar
Vieau, D, Seidah, NG, Mbikay, M, Chretien, M, Bertagna, X: Expression of the prohormone convertase PC2 correlates with the presence of corticotropin-like intermediate lobe peptide in human adrenocorticotropin-secreting tumors. J Clin Endocrinol Metab 1994;79:15031506.Google Scholar
Ray, DW, Littlewood, AC, Clark, AJ, Davis, JR, White, A: Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J Clin Invest 1994;93:16251630.Google Scholar
Serra, S, Zheng, L, Hassan, M, Phan, AT, Woodhouse, LJ, Yao, JC, Ezzat, S, Asa, SL: The FGFR4–G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res 2012;72:56835691.CrossRefGoogle ScholarPubMed
Michiels, FM, Chappuis, S, Caillou, B, Pasini, A, Talbot, M, Monier, R, Lenoir, GM, Feunteun, J, Billaud, M: Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci USA 1997;94:33303335.Google Scholar
Crabtree, JS, Scacheri, PC, Ward, JM, Garrett-Beal, L, Emmert-Buck, MR, Edgemon, KA, Lorang, D, Libutti, SK, Chandrasekharappa, SC, Marx, SJ, Spiegel, AM, Collins, FS: A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001;98:11181123.Google Scholar
Bertolino, P, Tong, WM, Galendo, D, Wang, ZQ, Zhang, CX: Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003;17:18801892.CrossRefGoogle ScholarPubMed
Harding, B, Lemos, MC, Reed, AA, Walls, GV, Jeyabalan, J, Bowl, MR, Tateossian, H, Sullivan, N, Hough, T, Fraser, WD, Ansorge, O, Cheeseman, MT, Thakker, RV: Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr Relat Cancer 2009;16:13131327.Google Scholar
Crabtree, JS, Scacheri, PC, Ward, JM, McNally, SR, Swain, GP, Montagna, C, Hager, JH, Hanahan, D, Edlund, H, Magnuson, MA, Garrett-Beal, L, Burns, AL, Ried, T, Chandrasekharappa, SC, Marx, SJ, Spiegel, AM, Collins, FS: Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23:60756085.Google Scholar
Shen, HC, Ylaya, K, Pechhold, K, Wilson, A, Adem, A, Hewitt, SM, Libutti, SK: Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology 2010;151:40244030.Google Scholar
Libutti, SK, Crabtree, JS, Lorang, D, Burns, AL, Mazzanti, C, Hewitt, SM, O'Connor, S, Ward, JM, Emmert-Buck, MR, Remaley, A, Miller, M, Turner, E, Alexander, HR, Arnold, A, Marx, SJ, Collins, FS, Spiegel, AM: Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 2003;63:80228028.Google ScholarPubMed
Walls, GV, Lemos, MC, Javid, M, Bazan-Peregrino, M, Jeyabalan, J, Reed, AA, Harding, B, Tyler, DJ, Stuckey, DJ, Piret, S, Christie, PT, Ansorge, O, Clarke, K, Seymour, L, Thakker, RV: MEN1 gene replacement therapy reduces proliferation rates in a mouse model of pituitary adenomas. Cancer Res 2012;72:50605068.CrossRefGoogle Scholar
Quinn, TJ, Yuan, Z, Adem, A, Geha, R, Vrikshajanani, C, Koba, W, Fine, E, Hughes, DT, Schmid, HA, Libutti, SK: Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery 2012;152:10681077.Google Scholar
Pellegata, NS, Quintanilla-Martinez, L, Siggelkow, H, Samson, E, Bink, K, Hofler, H, Fend, F, Graw, J, Atkinson, MJ: Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103:1555815563.Google Scholar
Suga, H, Kadoshima, T, Minaguchi, M, Ohgushi, M, Soen, M, Nakano, T, Takata, N, Wataya, T, Muguruma, K, Miyoshi, H, Yonemura, S, Oiso, Y, Sasai, Y: Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011;480:5762.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×