Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T17:22:01.232Z Has data issue: false hasContentIssue false

1 - From neuronal activity to scalp potential fields

Published online by Cambridge University Press:  15 December 2009

Christoph M. Michel
Affiliation:
Université de Genève
Thomas Koenig
Affiliation:
University Hospital of Psychiatry, Berne, Switzerland
Daniel Brandeis
Affiliation:
Department of Child and Adolescent Psychiatry, University of Zurich, Switzerland and Central Institute of Mental Health, Mannheim, Grmany
Lorena R. R. Gianotti
Affiliation:
Universität Zürich
Jiří Wackermann
Affiliation:
Institute for Frontier Areas of Psychology and Mental Health, Freiburg im Breisgau, Germany
Get access

Summary

Introduction

The EEG, along with its event-related aspects, reflects the immediate mass action of neural networks from a wide range of brain systems, and thus provides a particularly direct and integrative noninvasive window onto human brain function. During the 80 years since the discovery of the human scalp EEG, our neurophysiological understanding of electrical brain activity has advanced at the microscopic and macroscopic level and has been linked to physical principles, as summarized in standard textbooks. The present introduction builds upon these texts but focuses on spatial aspects of EEG generators, many of which are applicable to both spontaneous and event-related activity. In particular, it is critical for the purpose of electrical neuroimaging to know which neural events are detectable at which spatial scales. As we will show, the spatial characterization of the neural EEG generators, and the advances in spatial signal processing and modeling converge in important aspects and provide a sufficiently sound basis for electrical neuroimaging. Because of the unique high temporal resolution of the EEG, electrical neuroimaging not only concerns the possible neuronal generator of the scalp potential at one given moment in time, but also the possible generators of rhythmic oscillations in different frequency ranges. In fact, understanding the intrinsic rhythmic properties of cortical or subcortical–cortical networks can help to constrain electrical neuroimaging to certain frequency ranges of interest and to perform spatial analysis in the frequency domain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, H. Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 1929;87:527–570.CrossRefGoogle Scholar
Niedermeyer, E, Lopes da Silva, F. Electroencephalography. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
Kandel, ER. Principles of Neural Science. 4th edn. New York: McGraw-Hill; 2000.Google Scholar
Zschocke, S. Klinische Elektroenzephalographie. Berlin: Springer; 1995.Google Scholar
Nunez, PL, Srinivasan, R. Electric Fields of the Brain. 2nd edn. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
Lehmann, D. Principles of spatial analysis. In Remond, A, Gevins, A (eds.), Handbook of Electroencephalography and Clinical Neurophysiology. Vol. 1: Methods of Analysis of Brain Electrical and Magnetic Signals. Amsterdam: Elsevier, 1987, pp. 309–354.Google Scholar
Brandeis, D, Lehmann, D. Event-related potentials of the brain and cognitive processes: approaches and applications. Neuropsychologia 1986;24:151–168.CrossRefGoogle ScholarPubMed
Lehmann, D, Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalography and Clinical Neurophysiology 1980;48:609–621.CrossRefGoogle ScholarPubMed
Lehmann, D, Ozaki, H, Pal, I. Averaging of spectral power and phase via vector diagram best fits without reference electrode or reference channel. Electroencephalography and Clinical Neurophysiology 1986;64:350–363.CrossRefGoogle ScholarPubMed
Lehmann, D, Michel, CM. Intracerebral dipole source localization for FFT power maps. Electroencephalography and Clinical Neurophysiology 1990;76:271–276.CrossRefGoogle ScholarPubMed
Logothetis, NK, Pauls, J, Augath, M, Trinath, T, Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150–157.CrossRefGoogle ScholarPubMed
Henze, DA, Borhegyi, Z, Csicsvari, Jet al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology 2000;84:390–400.CrossRefGoogle ScholarPubMed
Scherg, M, Cramon, D. A new interpretation of the generators of BAEP waves I-V: Results of a spatio-temporal dipole model. Electroencephalography and Clinical Neurophysiology 1985;62:290–299.CrossRefGoogle ScholarPubMed
Gobbele, R, Buchner, H, Scherg, M, Curio, G. Stability of high-frequency (600 Hz) components in human somatosensory evoked potentials under variation of stimulus rate – evidence for a thalamic origin. Clinical Neurophysiology 1999;110:1659–1663.CrossRefGoogle ScholarPubMed
Steriade, M, McCormick, DA, Sejnowski, TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993;262:679–685.CrossRefGoogle ScholarPubMed
Bragin, A, Wilson, CL, Staba, RJet al. Interictal high-frequency oscillations (80–500 Hz) in the human epileptic brain: entorhinal cortex. Annals of Neurology 2002;52:407–415.CrossRefGoogle ScholarPubMed
Jirsch, JD, Urrestarazu, E, LeVan, Pet al. High-frequency oscillations during human focal seizures. Brain 2006;129:1593–1608.CrossRefGoogle ScholarPubMed
Shah, AS, Bressler, SL, Knuth, KHet al. Neural dynamics and the fundamental mechanisms of event-related brain potentials. Cerebral Cortex 2004;14:476–483.CrossRefGoogle ScholarPubMed
Murakami, S, Okada, Y. Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology 2006;575:925–936.CrossRefGoogle ScholarPubMed
Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews 1985;65:37–100.CrossRefGoogle ScholarPubMed
Schroeder, C, Mehta, A, Givre, S. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cerebral Cortex 1998;8:575–592.CrossRefGoogle ScholarPubMed
Ulbert, I, Heit, G, Madsen, J, Karmos, G, Halgren, E. Laminar analysis of human neocortical interictal spike generation and propagation: current source density and multiunit analysis in vivo. Epilepsia 2004;45 Suppl. 4:48–56.CrossRefGoogle ScholarPubMed
Tenke, CE, Schroeder, CE, Arezzo, JC, Vaughan, HGInterpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential. Experimental Brain Research 1993;94:183–192.CrossRefGoogle ScholarPubMed
Steinschneider, M, Tenke, CE, Schroeder, CEet al. Cellular generators of the cortical auditory evoked potential initial component. Electroencephalography and Clinical Neurophysiology 1992;84:196–200.CrossRefGoogle ScholarPubMed
Megevand, P, Quairiaux, C, Lascano, AM, Kiss, JZ, Michel, CM. A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage 2008;42:591–602.CrossRefGoogle ScholarPubMed
Scherg, M, Vajsar, J, Picton, TW. A source analysis of the late human auditory evoked potential. J Cogn Neurosci 1989;1:336–355.CrossRefGoogle Scholar
Hämäläinen, MS, Hari, R, Ilmoniemi, RJ, Knuutila, JE, Lounasmaa, OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Review of Modern Physics 1993;65:413–497.CrossRefGoogle Scholar
Ioannides, AA, Fenwick, PBC. Imaging cerebellum activity in real time with magnetoencephalographic data. Progress in Brain Research 2004;148:139–150.CrossRefGoogle Scholar
Martin, T, Houck, JM, Pearson Bish, Jet al. MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Human Brain Mapping 2006;27:552–561.CrossRefGoogle ScholarPubMed
Timmermann, L, Gross, J, Dirks, Met al. The cerebral oscillatory network of parkinsonian resting tremor. Brain 2002;126:199–212.CrossRefGoogle Scholar
Attal, Y, Bhattacharjee, M, Yelnik, Jet al. Modeling and detecting deep brain activity with MEG & EEG. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 2007;2007:4937–4940.Google ScholarPubMed
Lantz, G, Grave de Peralta, R, Gonzalez, S, Michel, CM. Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topography 2001;14:139–147.CrossRefGoogle ScholarPubMed
Michel, CM, Lantz, G, Spinelli, Let al. 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. Journal of Clinical Neurophysiology 2004;21:71–83.CrossRefGoogle ScholarPubMed
Smith, DB, Sidman, RD, Henke, JSet al. Scalp and depth recordings of induced deep cerebral potentials. Electroencephalography and Clinical Neurophysiology 1983;55:145–150.CrossRefGoogle ScholarPubMed
Lai, Y, Drongelen, W, Ding, Let al. Estimation of in vivo human brain-toskull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clinical Neurophysiology 2005;116:456–465.CrossRefGoogle ScholarPubMed
Grieve, PG, Emerson, RG, Fifer, WP, Isler, JR, Stark, RI. Spatial correlation of the infant and adult electroencephalogram. Clinical Neurophysiology 2003;114:1594–1608.CrossRefGoogle ScholarPubMed
Lantz, G, Holub, M, Ryding, E, Rosen, I. Simultaneous intracranial and extracranial recording of interictal epileptiform activity in patients with drug resistant partial epilepsy: patterns of conduction and results from dipole reconstructions. Electroencephalography and Clinical Neurophysiology 1996;99:69–78.CrossRefGoogle ScholarPubMed
Nayak, D, Valentin, A, Alarcon, Get al. Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clinical Neurophysiology 2004;115:1423–1435.CrossRefGoogle ScholarPubMed
Tao, JX, Ray, A, Hawes-Ebersole, S, Ebersole, JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 2005;46:669–676.CrossRefGoogle ScholarPubMed
Zumsteg, D, Friedman, A, Wennberg, RA, Wieser, HG. Source localization of mesial temporal interictal epileptiform discharges: Correlation with intracranial foramen ovale electrode recordings. Clinical Neurophysiology 2006;117:562–571.CrossRefGoogle Scholar
Schevon, CA, Cappell, J, Emerson, Ret al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. NeuroImage 2007;35:140–148.CrossRefGoogle ScholarPubMed
Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalography and Clinical Neurophysiology 1965;18:217–228.CrossRefGoogle ScholarPubMed
Kobayashi, K, Yoshinaga, H, Ohtsuka, Y, Gotman, J.Dipole modeling of epileptic spikes can be accurate or misleading. Epilepsia 2005;46:397–408.CrossRefGoogle ScholarPubMed
Zhang, Y, Ding, L, Drongelen, Wet al. A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. Neuroimage 2006;31:1513–1524.CrossRefGoogle ScholarPubMed
Perez-Borja, C, Chatrian, GE, Tyce, FA, Rivers, MH. Electrographic patterns of the occipital lobe in man: a topographic study based on use of implanted electrodes. Electroencephalography and Clinical Neurophysiology 1962;14:171–182.CrossRefGoogle ScholarPubMed
Amzica, F, Steriade, M. Integration of low-frequency sleep oscillations in corticothalamic networks. Acta Neurobiologiae Experimentalis (Warszawa) 2000;60:229–245.Google ScholarPubMed
Steriade, M, Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. Journal of Neuroscience 1995;15:623–642.CrossRefGoogle ScholarPubMed
Sarnthein, J, Morel, A, Stein, A, Jeanmonod, D. Thalamocortical theta coherence in neurological patients at rest and during a working memory task. International Journal of Psychophysiology 2005;57:87–96.CrossRefGoogle ScholarPubMed
Steriade, M, Contreras, D, Amzica, F. Synchronized sleep oscillations and their paroxysmal developments. Trends in Neuroscience 1994;17:199–208.CrossRefGoogle ScholarPubMed
McCormick, DA, Contreras, D. On the cellular and network bases of epileptic seizures. Annual Review of Physiology 2001;63:815–846.CrossRefGoogle ScholarPubMed
Amzica, F, Steriade, M. Spontaneous and artificial activation of neocortical seizures. Journal of Neurophysiology 1999;82:3123–3138.CrossRefGoogle ScholarPubMed
Walter, G. The location of cerebral tumors by electro-encephalography. Lancet 1936;8:305–308.CrossRefGoogle Scholar
,IFSECN. A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalography and Clinical Neurophysiology 1974;37:538–548.CrossRefGoogle Scholar
Kellaway, P, Gol, A, Proler, M. Electrical activity of the isolated cerebral hemisphere and isolated thalamus. Experimental Neurology 1966;14:281–304.CrossRefGoogle ScholarPubMed
Rappelsberger, P, Pockberger, H, Petsche, H. The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit's visual cortex. Electroencephalography and Clinical Neurophysiology 1982;53:254–269.CrossRefGoogle ScholarPubMed
McCormick, DA, Pape, HC. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. Journal of Physiology 1990;431:291–318.CrossRefGoogle ScholarPubMed
Leresche, N, Jassik-Gerschenfeld, D, Haby, M, Soltesz, I, Crunelli, V. Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neuroscience Letters 1990;113:72–77.CrossRefGoogle ScholarPubMed
Steriade, M, Dossi, RC, Nunez, A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. Journal of Neuroscience 1991;11:3200–3217.CrossRefGoogle ScholarPubMed
Nita, DA, Steriade, M, Amzica, F. Hyperpolarisation rectification in cat lateral geniculate neurons modulated by intact corticothalamic projections. Journal of Physiology 2003;552:325–332.CrossRefGoogle ScholarPubMed
Villablanca, J. Role of the thalamus in sleep control: sleep-wakefulness studies in chronic diencephalic and athalamic cats. In Petre-Quadens, O, Schlag, J, eds. Basic Sleep Mechanisms. New York: Academic Press; 1974, pp. 51–81.Google Scholar
Ball, GJ, Gloor, P, Schaul, N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalography and Clinical Neurophysiology 1977;43:346–361.CrossRefGoogle ScholarPubMed
Steriade, M, Gloor, P, Llinas, RR, Lopes de Silva, FH, Mesulam, MM. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology 1990;76:481–508.CrossRefGoogle ScholarPubMed
Steriade, M, Amzica, F, Contreras, D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. Journal of Neuroscience 1996;16:392–417.CrossRefGoogle ScholarPubMed
Amzica, F, Steriade, M. The K-complex: its slow (< 1-Hz) rhythmicity and relation to delta waves. Neurology 1997;49:952–959.CrossRefGoogle ScholarPubMed
Achermann, P, Borbely, AA. Lowfrequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 1997;81:213–222.CrossRefGoogle Scholar
Molle, M, Marshall, L, Gais, S, Born, J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. Journal of Neuroscience 2002;22:10941–10947.CrossRefGoogle ScholarPubMed
Simon, NR, Manshanden, I, Lopes da Silva, FH. A MEG study of sleep. Brain Research 2000;860:64–76.CrossRefGoogle Scholar
Massimini, M, Rosanova, M, Mariotti, M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. Journal of Neurophysiology 2003;89:1205–1213.CrossRefGoogle ScholarPubMed
Steriade, M, Nunez, A, Amzica, F. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience 1993;13:3266–3283.CrossRefGoogle ScholarPubMed
Timofeev, I, Contreras, D, Steriade, M. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. Journal of Physiology 1996;494 (Pt 1):265–278.CrossRefGoogle ScholarPubMed
Sanchez-Vives, MV, McCormick, DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience 2000;3:1027–1034.CrossRefGoogle ScholarPubMed
Steriade, M, Nunez, A, Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience 1993;13:3252–3265.CrossRefGoogle ScholarPubMed
Contreras, D, Timofeev, I, Steriade, M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology 1996;494 (Pt 1):251–264.CrossRefGoogle ScholarPubMed
Massimini, M, Amzica, F. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. Journal of Neurophysiology 2001;85:1346–1350.CrossRefGoogle ScholarPubMed
Contreras, D, Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience 1995;15:604–622.CrossRefGoogle ScholarPubMed
Amzica, F, Neckelmann, D. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. Journal of Neurophysiology 1999;82:2731–2746.CrossRefGoogle ScholarPubMed
Amzica, F, Steriade, M. Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. Journal of Neurophysiology 1995;73:20–38.CrossRefGoogle Scholar
Amzica, F, Massimini, M, Manfridi, A. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. Journal of Neuroscience 2002;22:1042–1053.CrossRefGoogle ScholarPubMed
Amzica, F, Massimini, M. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cerebral Cortex 2002;12:1101–1113.CrossRefGoogle ScholarPubMed
Orkand, RK, Nicholls, JG, Kuffler, SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology 1966;29:788–806.CrossRefGoogle ScholarPubMed
Kettenmann, H, Ransom, BR. Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1988;1:64–73.CrossRefGoogle ScholarPubMed
Steriade, M, Amzica, F. Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Research Online 1998;1:1–10.Google ScholarPubMed
Sarnthein, J, Morel, A, Stein, A, Jeanmonod, D. Thalamocortical theta coherence in neurological patients at rest and during a working memory task. International Journal of Psychophysiology 2005;57:87–96.CrossRefGoogle ScholarPubMed
Ingvar, DH, Sjolund, B, Ardo, A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalography and Clinical Neurophysiology 1976;41:268–276.CrossRefGoogle ScholarPubMed
Saunders, MG, Westmoreland, BF. The EEG in evaluation of disorders affecting the brain diffusely. In Klass, DW, Daly, DD, eds. Current Practice of Clinical Electroencephalography. New York: Raven Press; 1979; pp. 343–379.Google Scholar
Tsujimoto, T, Shimazu, H, Isomura, Y. Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. Journal of Neurophysiology 2006;95:2987–3000.CrossRefGoogle ScholarPubMed
Raghavachari, S, Lisman, JE, Tully, Met al. Theta oscillations in human cortex during a working-memory task: evidence for local generators. Journal of Neurophysiology 2006;95:1630–1638.CrossRefGoogle ScholarPubMed
Meltzer, JA, Zaveri, HP, Goncharova, IIet al. Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex 2008;18:1843–1855.CrossRefGoogle ScholarPubMed
Lakatos, P, Shah, AS, Knuth, KHet al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology 2005;94:1904–1911.CrossRefGoogle ScholarPubMed
Green, JD, Arduini, AA. Hippocampal electrical activity in arousal. Journal of Neurophysiology 1954;17:533–557.CrossRefGoogle ScholarPubMed
Buzsaki, G. The hippocampo-neocortical dialogue. Cerebral Cortex 1996;6:81–92.CrossRefGoogle ScholarPubMed
Jouvet, M. Paradoxical sleep – a study of its nature and mechanisms. In Akert, K, Bally, C, Schadé, JP, eds. Progress in Brain Research, Vol. 18, Sleep Mechanisms. Amsterdam: Elsevier; 1965, pp. 20–57.Google Scholar
Petsche, H, Gogolak, G, Vanzwieten, PA. Rhythmicity of septal cell discharges at various levels of reticular excitation. Electroencephalography and Clinical Neurophysiology 1965;19:25–33.CrossRefGoogle ScholarPubMed
Petsche, H, Stumpf, C, Gogolak, G. The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. The control of hippocampus arousal activity by septum cells. Electroencephalography and Clinical Neurophysiology 1962;14:202–211.CrossRefGoogle ScholarPubMed
Alonso, A, Garcia-Austt, E. Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials. Experimental Brain Research 1987;67:493–501.CrossRefGoogle ScholarPubMed
Mitchell, SJ, Ranck, JBGeneration of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Research 1980;189:49–66.CrossRefGoogle ScholarPubMed
Boeijinga, PH, Lopes da Silva, FH. Differential distribution of beta and theta EEG activity in the entorhinal cortex of the cat. Brain Research 1988;448:272–286.CrossRefGoogle ScholarPubMed
Buzsaki, G, Czopf, J, Kondakor, I, Kellenyi, L. Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Research 1986;365:125–137.CrossRefGoogle ScholarPubMed
Soltesz, I, Deschenes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. Journal of Neurophysiology 1993;70:97–116.CrossRefGoogle ScholarPubMed
Bland, BH, Anderson, P, Ganes, T. Two generators of hippocampal theta activity in rabbits. Brain Research 1975;94:199–218.CrossRefGoogle ScholarPubMed
Green, JD, Maxwell, DS, Schindler, WJ, Stumpf, C.Rabbit, EEG“theta” rhythm: its anatomical source and relation to activity in single neurons. Journal of Neurophysiology 1960;23:403–420.CrossRefGoogle Scholar
Winson, J. Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalography and Clinical Neurophysiology 1974;36:291–301.CrossRefGoogle ScholarPubMed
Fujita, Y, Sato, T. Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity. Journal of Neurophysiology 1964;27:1012–1025.CrossRefGoogle ScholarPubMed
Nunez, A, Garcia-Austt, E, Buno, WIntracellular theta-rhythm generation in identified hippocampal pyramids. Brain Research 1987;416:289–300.CrossRefGoogle ScholarPubMed
Niedermeyer, E. The normal EEG of the waking adult. In Niedermeyer, E, Lopes da Silva, FH, eds. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Baltimore: Lippincott, Williams & Wilkins; 2005, pp. 167–192.Google Scholar
Andersen, P, Andersson, SA. Physiological Basis of the Alpha Rhythm. New York: Appleton-Century-Crofts; 1968.Google Scholar
Creutzfeld, O, Grünvald, G, Simonova, O, Schmitz, H. Changes of the basic rhythms of the EEG during the performance of mental and visuomotor tasks. In Evans, CR, Mulholland, TB, eds. Attention in Neurophysiology. London: Butterworth; 1969, pp. 148–168.Google Scholar
Ray, WJ, Cole, HW. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 1985;228:750–752.CrossRefGoogle ScholarPubMed
Lopes da Silva, FH, Lierop, THMT, Schrijer, CFM, Storm Van Leeuwen, W. Organization of thalamic and cortical alpha rhythm: spectra and coherences. Electroencephalography and Clinical Neurophysiology 1973;35:627–639.CrossRefGoogle Scholar
Lopes da Silva, FH, Storm Van Leeuwen, W. The cortical alpha rhythm in dog: depth and surface profile of phase. In Brazier, MAB, Petsche, H, eds. Architecture of the Cerebral Cortex, IBRO Monograph Series, Vol. 3. New York: New York; 1978, pp. 319–333.Google Scholar
Lopes da Silva, FH, Vos, JE, Mooibroek, J, Rotterdam, A. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalography and Clinical Neurophysiology 1980;50:449–456.CrossRefGoogle ScholarPubMed
Morison, RS, Bassett, DL. Electrical activity of the thalamus and basal ganglia in decorticate cats. Journal of Neurophysiology 1945;8:309–314.CrossRefGoogle Scholar
Steriade, M, Llinas, RR. The functional states of the thalamus and the associated neuronal interplay. Physiological Review 1988;68:649–742.CrossRefGoogle ScholarPubMed
Steriade, M. Cellular substrates of brain rhythms. In Niedermeyer, E, Lopes da Silva, FH, eds. Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 5th edn. Baltimore: Lippincott Williams & Wilkins; 2005, pp. 31–84.Google Scholar
Jones, EG. The Thalamus. New York: Plenum; 1985.CrossRefGoogle Scholar
Domich, L, Oakson, G, Deschenes, M, Steriade, M. Thalamic and cortical spindles during early ontogenesis in kittens. Brain Research 1987;428:140–142.CrossRefGoogle ScholarPubMed
Steriade, M, Deschenes, M, Domich, L, Mulle, C. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology 1985;54:1473–1497.CrossRefGoogle ScholarPubMed
Leung, LW, Borst, JG. Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior. Brain Research 1987;407:68–80.CrossRefGoogle Scholar
Steriade, M, Domich, L, Oakson, G, Deschenes, M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology 1987;57:260–273.CrossRefGoogle ScholarPubMed
Contreras, D, Steriade, M. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. Journal of Physiology 1996;490 (Pt 1):159–179.CrossRefGoogle Scholar
Contreras, D, Destexhe, A, Sejnowski, TJ, Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 1996;274:771–774.CrossRefGoogle ScholarPubMed
Contreras, D, Destexhe, A, Sejnowski, TJ, Steriade, M. Spatiotemporal patterns of spindle oscillations in cortex and thalamus. Journal of Neuroscience 1997;17:1179–1196.CrossRefGoogle ScholarPubMed
Finelli, , Borbely, AA, Achermann, P. Functional topography of the human non REM sleep electroencephalogram. European Journal of Neuroscience 2001;13:2282–2290.CrossRefGoogle Scholar
Sanford, AJ. A periodic basis for perception and action. In Colquhoun, WP, ed. Biological Rhythms and Human Perception. New York: Academic Press; 1971, pp. 179–209.Google Scholar
Moruzzi, G, Magoun, HW. Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology 1949;1:455–473.CrossRefGoogle ScholarPubMed
Hu, B, Steriade, M, Deschenes, M. The cellular mechanism of thalamic ponto-geniculo-occipital waves. Neuroscience 1989;31:25–35.CrossRefGoogle ScholarPubMed
McCormick, DA, Prince, DA. Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 1986;319:402–405.CrossRefGoogle ScholarPubMed
McCormick, DA, Wang, Z. Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. Journal of Physiology 1991;442:235–255.CrossRefGoogle ScholarPubMed
McCormick, DA, Pape, HC. Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. Journal of Physiology 1990;431:319–342.CrossRefGoogle ScholarPubMed
Steriade, M, Amzica, F, Nunez, A. Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology 1993;70:1385–1400.CrossRefGoogle ScholarPubMed
Buzsaki, G, Bickford, RG, Ponomareff, Get al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Journal of Neuroscience 1988;8:4007–4026.CrossRefGoogle ScholarPubMed
Bremer, F, Stoupel, N, Reeth, PC. Nouvelles recherches sur la facilitation et l'inhibition des potentiels évoqués corticaux dans l'éveil réticulaire. Archives Italiennes de Biologie 1960;98:229–247.Google Scholar
Lopes da Silva, FH, Rotterdam, A, Storm van Leeuwen, W, Tielen, AM. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalography and Clinical Neurophysiology 1970;29:260–268.CrossRefGoogle ScholarPubMed
Freeman, WJ, Dijk, BW. Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Research 1987;422:267–276.CrossRefGoogle Scholar
Murthy, VN, Fetz, EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Science USA 1992;89:5670–5674.CrossRefGoogle ScholarPubMed
Bouyer, JJ, Montaron, MF, Vahnee, JM, Albert, MP, Rougeul, A. Anatomical localization of cortical beta rhythms in cat. Neuroscience 1987;22:863–869.CrossRefGoogle ScholarPubMed
Freeman, WJ. Mass Action in the Nervous System. New York: Academic Press; 1975.Google Scholar
Eckhorn, R, Bauer, R, Jordan, Wet al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biological Cybernetics 1988;60:121–130.CrossRefGoogle ScholarPubMed
Engel, AK, Konig, P, Gray, CM, Singer, W. Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by crosscorrelation analysis. European Journal of Neuroscience 1990;2:588–606.CrossRefGoogle Scholar
Gray, CM, Konig, P, Engel, AK, Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989;338:334–337.CrossRefGoogle ScholarPubMed
Gray, CM, Engel, AK, Konig, P, Singer, W. Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. European Journal of Neuroscience 1990;2:607–619.CrossRefGoogle ScholarPubMed
Gray, CM, Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences USA 1989;86:1698–1702.CrossRefGoogle ScholarPubMed
der Malsburg, C, Schneider, W. A neural cocktail-party processor. Biological Cybernetics 1986;54:29–40.CrossRefGoogle Scholar
Steriade, M, Contreras, D, Amzica, F, Timofeev, I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. Journal of Neuroscience 1996;16:2788–2808.CrossRefGoogle ScholarPubMed
Yuval-Greenberg, S, Tomer, O, Keren, AS, Nelken, I, Deouell, LY. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 2008;58:429–441.CrossRefGoogle ScholarPubMed
Llinas, RR, Grace, AA, Yarom, Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proceedings of the National Academy of Sciences USA 1991;88:897–901.CrossRefGoogle ScholarPubMed
Nunez, A, Amzica, F, Steriade, M. Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons. Neuroscience 1992;51:7–10.CrossRefGoogle ScholarPubMed
Steriade, M, Dossi, RC, Pare, D, Oakson, G. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proceedings of the National Academy of Sciences USA 1991;88:4396–4400.CrossRefGoogle ScholarPubMed
Cunningham, ET, Jr., Levay, S. Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat. Journal of Comparative Neurology 1986;254:66–77.Google ScholarPubMed
Chagnac-Amitai, Y, Connors, BW. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. Journal of Neurophysiology 1989;62:1149–1162.CrossRefGoogle ScholarPubMed
Steriade, M, Amzica, F. Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proceedings of the National Academy of Sciences USA 1996;93:2533–2538.CrossRefGoogle ScholarPubMed
Llinás, RR. Intrinsic electrical properties of mammalian neurons and CNS function. Fidia Research Foundation Neuroscience Award Lectures. New York: Raven Press; 1990, pp. 175–194.Google Scholar
Seigneur, J, Kroeger, D, Nita, DA, Amzica, F. Cholinergic action on cortical glial cells in vivo. Cerebral Cortex 2006;16:655–668.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×