Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T12:55:58.519Z Has data issue: false hasContentIssue false

13 - The Molecular Basis of α Thalassemia

from SECTION THREE - α THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Before describing the various ways in which α-globin expression may be downregulated in patients with α thalassemia, it is worth briefly reviewing the normal structure of the human α-globin cluster and how the genes are expressed throughout erythroid differentiation and development.

The α-globin cluster is located in a gene dense region of the genome close to the telomere of chromosome 16 (16p13.3). The genes are arranged along the chromosome in the order, telomere-ς-ψς-αD-ψα1-α2-α1-θ-centromere (Fig. 13.1). Upstream of the α cluster there are four highly conserved, noncoding sequences multispecies conserved sequences called MCS-R1–R4 that are thought to be important in the regulation of the α-like globin genes. They correspond to previously identified erythroid-specific DNase l hypersensitive sites (DHS) referred to as HS-48, HS-40, HS-33, and HS-10, the coordinates referring to their positions (kb) with respect to the ς-globin mRNA cap site. Of these elements, only MCS-R2 (HS-40) has been shown to be essential for α globin expression (summarized in Higgs et al.). The role(s) of the other MCS sequences are as yet unclear.

It has been shown that as progenitors commit to the erythroid lineage and differentiate to form mature red cells, a subset of the key erythroid transcription factors and cofactors (Chapter 4) progressively bind the upstream elements and the promoters of the α-like globin genes. Finally, RNA polymerase II is recruited to both the upstream regions and the globin promoters as transcription starts in early and intermediate erythroblasts.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 241 - 265
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hughes, JR, Cheng, JF, Ventress, N, et al. Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. Proc Natl Acad Sci USA. 2005;102(28):9830–9835.
Higgs, DR, Wood, WG, Jarman, AP, et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 1990;4(9): 1588–1601.CrossRefGoogle Scholar
Higgs, DR, Sharpe, JA, Wood, WG. Understanding αglobin gene expression: a step towards effective gene therapy. Semin Hematol. 1998;35(2):93–104.Google Scholar
Anguita, E, Hughes, J, Heyworth, C, Blobel, GA, Wood, WG, Higgs, DR. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 2004;23(14):2841–2852.CrossRefGoogle ScholarPubMed
Vernimmen, D, Gobbi, M, Sloane-Stanley, JA, Wood, WG, Higgs, DR. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 2007;26(8):2041–2051.CrossRefGoogle ScholarPubMed
Gobbi, M, Anguita, E, Hughes, J, et al. Tissue-specific histone modification and transcription factor binding in α globin gene expression. Blood. 2007;110(13): 4503–4510.CrossRefGoogle ScholarPubMed
Peschle, C, Mavilio, F, Care, A, et al. Haemoglobin switching in human embryos: asynchrony of ς–α and ε–γ-globin switches in primitive and definite erythropoietic lineage. Nature. 1985;313(5999):235–238.CrossRefGoogle ScholarPubMed
Kingsley, PD, Malik, J, Emerson, RL, et al. “Maturational” globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–1672.CrossRefGoogle ScholarPubMed
Olivier, EN, Qiu, C, Velho, M, Hirsch, RE, Bouhassira, EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 34(12):1635–1642.CrossRef
Hill, AV, Nicholls, RD, Thein, SL, Higgs, DR. Recombination within the human embryonic ς-globin locus: a common ς-ςchromosome produced by gene conversion of the ψς gene. Cell. 1985;42(3):809–819.CrossRefGoogle ScholarPubMed
Chui, DH, Mentzer, WC, Patterson, M, et al. Human embryonic ς-globin chains in fetal and newborn blood. Blood. 1989;74(4):1409–1414.Google ScholarPubMed
Leung, S, Proudfoot, NJ, Whitelaw, E. The gene for θ-globin is transcribed in human fetal erythroid tissues. Nature. 1987;329(6139):551–554.CrossRefGoogle ScholarPubMed
Albitar, M, Peschle, C, Liebhaber, SA. θ, ς, and ε globin messenger RNAs are expressed in adults. Blood. 1989;74(2):629–637.Google Scholar
Ley, TJ, Maloney, KA, Gordon, Jl, Schwartz, AL. Globin gene expression in erythroid human fetal liver cells. J Clin Invest. 1989;83(3):1032–1038.CrossRefGoogle ScholarPubMed
Goh, SH, Lee, YT, Bhanu, NV, et al. A newly discovered human α-globin gene. Blood. 2005;106(4):1466–72.CrossRefGoogle ScholarPubMed
Brown, JM, Leach, J, Reittie, JE, et al. Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol. 2006;172(2):177–187.CrossRefGoogle ScholarPubMed
Waggoner, SA, Liebhaber, SA. Regulation of α-globin mRNA stability. Exp Biol Med (Maywood). 2003;228(4):387–395.CrossRefGoogle ScholarPubMed
Liebhaber, SA, Kan, YW. Differentiation of the mRNA transcripts originating from the α1- and α2-globin loci in normals and α-thalassemics. J Clin Invest. 1981;68(2):439–446.CrossRefGoogle Scholar
Orkin, SH, Goff, SC. The duplicated human α-globin genes: their relative expression as measured by RNA analysis. Cell. 1981;24(2):345–351.CrossRefGoogle ScholarPubMed
Molchanova, TP, Pobedimskaya, DD, Huisman, TH. The differences in quantities of α2- and α1-globin gene variants in heterozygotes. Br J Haematol. 1994;88(2):300–306.CrossRefGoogle Scholar
Shakin, SH, Liebhaber, SA. Translational profiles of α1-, α2-, and β-globin messenger ribonucleic acids in human reticulocytes. J Clin Invest. 1986;78(4):1125–1129.CrossRefGoogle Scholar
Liebhaber, SA, Cash, FE, Ballas, SK. Human α-globin gene expression. The dominant role of the α2-locus in mRNA and protein synthesis. J Biol Chem. 1986;261(32):15327–15333.Google Scholar
Buckle, VJ, Higgs, DR, Wilkie, AO, Super, M, Weatherall, DJ. Localisation of human α globin to 16p13.3 -- -pter. J Med Genet. 1988;25(12):847–849.CrossRefGoogle ScholarPubMed
Wainscoat, JS, Kanavakis, E, Weatherall, DJ, et al. Regional localisation of the human α-globin genes. Lancet. 1981;2 (8241):301–302.CrossRefGoogle ScholarPubMed
Fichera, M, Rappazzo, G, Spalletta, A, et al. Triplicated α-globin gene locus with translocation of the whole telomeric end in association with β-thalassemia trait, results in a severe syndrome. Blood. 1994;84:260a.Google Scholar
Harteveld, CL, Refaldi, C, Cassinerio, E, Cappellini, MD, Giordano, PC. Segmental duplications involving the α-globin gene cluster are causing β-thalassemia intermedia phenotypes in β-thalassemia heterozygous patients. Blood Cell Mol Dis. 2008;40:312–316.CrossRefGoogle ScholarPubMed
Wallace, HA, Marques-Kranc, F, Richardson, M, et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell. 2007 12;128(1):197–209.CrossRefGoogle ScholarPubMed
Higgs, DR, Wilkie, AOM, Vyas, P, Vickers, MA, Buckle, VJ, Harris, PC. Characterization of the telomeric region of human chromosome 16p. Chromosomes Today. 1993;11:35–47.CrossRefGoogle Scholar
Wilkie, AO, Higgs, DR, Rack, KA, et al. Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell. 1991;64(3):595–606.CrossRefGoogle ScholarPubMed
Riethman, H, Ambrosini, A, Paul, S. Human subtelomere structure and variation. Chromosome Res. 2005;13(5):505–515.CrossRefGoogle ScholarPubMed
Galanello, R, Ruggeri, R, Paglietti, E, Addis, M, Melis, MA, Cao, A. A family with segregating triplicated α globin loci and β thalassemia. Blood. 1983;62(5):1035–1040.Google ScholarPubMed
Goossens, M, Dozy, AM, Embury, SH, et al. Triplicated α-globin loci in humans. Proc Natl Acad Sci USA. 1980;77(1):518–521.CrossRefGoogle ScholarPubMed
Gu, YC, Landman, H, Huisman, TH. Two different quadruplicated α globin gene arrangements. Br J Haematol. 1987;66(2):245–250.CrossRefGoogle ScholarPubMed
Higgs, DR, Old, JM, Pressley, L, Clegg, JB, Weatherall, DJ. A novel α-globin gene arrangement in man. Nature. 1980; 284(5757):632–635.CrossRefGoogle ScholarPubMed
Premawardhena, A, Fisher, CA, Olivieri, NF, et al. A novel molecular basis for β thalassemia intermedia poses new questions about its pathophysiology. Blood. 2005;106(9): 3251–3255.CrossRefGoogle ScholarPubMed
Cook, RJ, Hoyer, JD, Highsmith, WE. Quintuple α-globin gene: a novel allele in a Sudanese man. Hemoglobin. 2006;30(1):51–55.CrossRefGoogle Scholar
Camaschella, C, Bertero, MT, Serra, A, et al. A benign form of thalassaemia intermedia may be determined by the interaction of triplicated α locus and heterozygous β-thalassaemia. Br J Haematol. 1987;66(1):103–107.CrossRefGoogle ScholarPubMed
Henni, T, Belhani, M, Morle, F, et al. α globin gene triplication in severe heterozygous β thalassemia. Acta Haematol. 1985;74(4):236–239.CrossRefGoogle ScholarPubMed
Higgs, DR, Clegg, JB, Weatherall, DJ, Serjeant, BE, Serjeant, GR. Interaction of the ααα globin gene haplotype and sickle haemoglobin. Br J Haematol. 1984;57(4):671–678.CrossRefGoogle Scholar
Kulozik, AE, Thein, SL, Wainscoat, JS, Gale, R, Kay, , Wood, JK, et al. Thalassaemia intermedia: interaction of the triple α-globin gene arrangement and heterozygous β-thalassaemia. Br J Haematol. 1987;66(1):109–112.CrossRefGoogle ScholarPubMed
Sampietro, M, Cazzola, M, Cappellini, MD, Fiorelli, G. The triplicated α-gene locus and heterozygous β thalassaemia: a case of thalassaemia intermedia. Br J Haematol. 1983;55(4):709–710.CrossRefGoogle ScholarPubMed
Trent, RJ, Mickleson, KN, Wilkinson, T, et al. α globin gene rearrangements in Polynesians are not associated with malaria. Am J Hematol. 1985;18(4):431–433.CrossRefGoogle Scholar
Ristaldi, MS, Casula, S, Rando, A, Vestri, R. Sheep α-globin gene sequences: implications for their concerted evolution and for the down-regulation of the 3′ genes. J Mol Evol. 1995;40(4):349–353.CrossRefGoogle ScholarPubMed
Felice, AE, Cleek, MP, Marino, EM, et al. Different ς globin gene deletions among black Americans. Hum Genet. 1986;73(3):221–224.CrossRefGoogle Scholar
Titus, EA, Hsia, YE, Hunt, JA. α-thalassemia screening reveals quadruple ς-globin genes in a Laotian family. Hemoglobin. 1988;12(5–6):539–550.CrossRefGoogle Scholar
Trent, RJ, Mickleson, KN, Wilkinson, T, et al. Globin genes in Polynesians have many rearrangements including a recently described γγγγ. Am J Hum Genet. 1986;39(3):350–360.Google Scholar
Winichagoon, P, Higgs, DR, Goodbourn, SE, Lamb, J, Clegg, JB, Weatherall, DJ. Multiple arrangements of the human embryonic ς globin genes. Nucl Acids Res. 1982;10(19):5853–5868.CrossRefGoogle Scholar
Higgs, DR, Wainscoat, JS, Flint, J, et al. Analysis of the human α-globin gene cluster reveals a highly informative genetic locus. Proc Natl Acad Sci USA. 1986;83(14):5165–5169.CrossRefGoogle ScholarPubMed
Rappaport, EF, Schwartz, E, Poncz, M, Surrey, S. Frequent occurrence of a ς-globin-region deletion in American blacks accounts for a previously-described restriction site polymorphism. Biochem Biophys Res Commun. 1984;125(2):817–823.CrossRefGoogle ScholarPubMed
Chan, V, Chan, TK, Cheng, MY, Kan, YW, Todd, D. Organization of the ς-α genes in Chinese. Br J Haematol. 1986;64(1):97–105.CrossRefGoogle ScholarPubMed
Hill, AV, Thein, SL, Mavo, B, Weatherall, DJ, Clegg, JB. Non-deletion haemoglobin H disease in Papua New Guinea. J Med Genet. 1987;24(12):767–771.CrossRefGoogle ScholarPubMed
Strachan, T, Read, AP. Human Molecular Genetics 2. 2nd ed. Oxford: BIOS Scientific Publishers Ltd.; 1999.Google Scholar
Michelson, AM, Orkin, SH. Boundaries of gene conversion within the duplicated human α-globin genes. Concerted evolution by segmental recombination. J Biol Chem. 1983;258(24):15245–15254.Google ScholarPubMed
Proudfoot, NJ, Gil, A, Maniatis, T. The structure of the human ς-globin gene and a closely linked, nearly identical pseudogene. Cell. 1982;31(3 Pt 2):553–563.CrossRefGoogle Scholar
Liebhaber, SA, Rappaport, EF, Cash, FE, Ballas, SK, Schwartz, E, Surrey, S. Hemoglobin I mutation encoded at both α-globin loci on the same chromosome: concerted evolution in the human genome. Science. 1984;226(4681):1449–1451.CrossRefGoogle ScholarPubMed
Law, HY, Luo, HY, Wang, W, et al. Determining the cause of patchwork HBA1 and HBA2 genes: recurrent gene conversion or crossing over fixation events. Haematologica. 2006;91(3):297–302.Google ScholarPubMed
Wang, W, Chan, AY, Chan, LC, Ma, ES, Chong, SS. Unusual rearrangement of the α-globin gene cluster containing both the -α3.7 and αααanti-4.2 crossover junctions: clinical diagnostic implications and possible mechanisms. Clin Chem. 2005;51(11):2167–2170.CrossRefGoogle ScholarPubMed
Collier, S, Tassabehji, M, Sinnott, P, Strachan, T. A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome. Nat Genet. 1993;3(3):260–265.CrossRefGoogle Scholar
Fei, YJ, Fujita, S, Huisman, TH. Two different θ globin gene deletions observed among black newborn babies. Br J Haematol. 1988;68(2):249–53.CrossRefGoogle ScholarPubMed
Higgs, DR, Vickers, MA, Wilkie, AO, Pretorius, IM, Jarman, AP, Weatherall, DJ. A review of the molecular genetics of the human α-globin gene cluster. Blood. 1989;73(5):1081–1104.Google ScholarPubMed
Ballas, SK, Fei, YJ, Huisman, TH. ς and θ1-globin gene deletions located on the same chromosome. Br J Haematol. 1989;73(3):429.CrossRefGoogle Scholar
Fei, YJ, Kutlar, F, Harris, HF 2nd, et al. A search for anomalies in the ς, α, β and γ globin gene arrangements in normal black, Italian, Turkish, and Spanish newborns. Hemoglobin. 1989;13(1):45–65.CrossRefGoogle Scholar
Nakatsuji, T, Landman, H, Huisman, TH. An elongated segment of DNA observed between two human α globin genes. Hum Genet. 1986;74(4):368–371.CrossRefGoogle ScholarPubMed
Sachidanandam, R, Weissman, D, Schmidt, SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001; 409(6822):928–933.CrossRefGoogle ScholarPubMed
Harteveld, CL, Muglia, M, Passarino, G, Kielman, MF, Bernini, LF. Genetic polymorphism of the major regulatory element HS-40 upstream of the human α-globin gene cluster. Br J Haematol. 2002;119(3):848–854.CrossRefGoogle ScholarPubMed
Goodbourn, SE, Higgs, DR, Clegg, JB, Weatherall, DJ. Molecular basis of length polymorphism in the human ς-globin gene complex. Proc Natl Acad Sci USA. 1983;80(16):5022–5026.CrossRefGoogle ScholarPubMed
Higgs, DR, Goodbourn, SE, Wainscoat, JS, Clegg, JB, Weatherall, DJ. Highly variable regions of DMA flank the human α globin genes. Nucl Acids Res. 1981;9(17):4213–4224.CrossRefGoogle Scholar
Jeffreys, AJ, Barber, R, Bois, P, et al. Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis. 1999;20(8):1665–1675.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Flint, J, Thomas, K, Micklem, G, et al. The relationship between chromosome structure and function at a human telomeric region. Nat Genet. 1997;15(3):252–257.CrossRefGoogle Scholar
Royle, NJ, Clarkson, RE, Wong, Z, Jeffreys, AJ. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics. 1988;3(4):352–360.CrossRefGoogle ScholarPubMed
Fowler, SJ, Gill, P, Werrett, DJ, Higgs, DR. Individual specific DNA fingerprints from a hypervariable region probe: α-globin 3′HVR. Hum Genet. 1988;79(2):142–146.CrossRefGoogle ScholarPubMed
Jeffreys, AJ. Highly variable minisatellites and DNA fingerprints. Biochem Soc Trans. 1987;15(3):309–317.CrossRefGoogle ScholarPubMed
Hess, JF, Schmid, CW, Shen, CK. A gradient of sequence divergence in the human adult α-globin duplication units. Science. 1984;226(4670):67–70.CrossRefGoogle ScholarPubMed
Lauer, J, Shen, CK, Maniatis, T. The chromosomal arrangement of human α-like globin genes: sequence homology and α-globin gene deletions. Cell. 1980;20(1):119–130.CrossRefGoogle ScholarPubMed
Zimmer, EA, Martin, SL, Beverley, SM, Kan, YW, Wilson, AC. Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci USA. 1980;77(4):2158–2162.CrossRefGoogle ScholarPubMed
Embury, SH, Miller, JA, Dozy, AM, Kan, YW, Chan, V, Todd, D. Two different molecular organizations account for the single α-globin gene of the α-thalassemia-2 genotype. J Clin Invest. 1980;66(6):1319–1325.CrossRefGoogle ScholarPubMed
Higgs, DR, Hill, AV, Bowden, DK, Weatherall, DJ, Clegg, JB. Independent recombination events between the duplicated human α globin genes; implications for their concerted evolution. Nucl Acids Res. 1984;12(18):6965–6977.CrossRefGoogle ScholarPubMed
Trent, RJ, Higgs, DR, Clegg, JB, Weatherall, DJ. A new triplicated α-globin gene arrangement in man. Br J Haematol. 1981;49(1):149–152.CrossRefGoogle ScholarPubMed
Angioletti, M, Lacerra, G, Castaldo, C, et al. ααααanti-3.7 type II: a new α-globin gene rearrangement suggesting that the α-globin gene duplication could be caused by intrachromosomal recombination. Hum Genet. 1992;89(1):37–41.CrossRefGoogle ScholarPubMed
Flint, J, Hill, AV, Bowden, DK, et al. High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature. 1986;321(6072):744–750.CrossRefGoogle ScholarPubMed
Winichagoon, P, Higgs, DR, Goodbourn, SE, Clegg, JB, Weatherall, DJ, Wasi, P. The molecular basis of α-thalassaemia in Thailand. EMBO J. 1984;3(8):1813–1818.Google ScholarPubMed
Thein, SL, Wallace, RB, Pressley, L, Clegg, JB, Weatherall, DJ, Higgs, DR. The polyadenylation site mutation in the α-globin gene cluster. Blood. 1988;71(2):313–319.Google ScholarPubMed
Han, LL, Keller, MP, Navidi, W, Chance, PF, Arnheim, N. Unequal exchange at the c13-87519-Tooth disease type 1A recombination hot-spot is not elevated above the genome average rate. Hum Mol Genet. 2000;9(12):1881–1889.CrossRefGoogle Scholar
Lopes, J, Tardieu, S, Silander, K, et al. Homologous DNA exchanges in humans can be explained by the yeast double-strand break repair model: a study of 17p11.2 rearrangements associated with CMT1A and HNPP. Hum Mol Genet. 1999;8(12):2285–2292.CrossRefGoogle ScholarPubMed
Reiter, LT, Hastings, PJ, Nelis, E, Jonghe, P, Broeckhoven, C, Lupski, JR. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet. 1998;62(5):1023–1033.CrossRefGoogle ScholarPubMed
Jinks-Robertson, S, Michelitch, M, Ramcharan, S. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1993;13(7):3937–3950.CrossRefGoogle ScholarPubMed
Lam, KW, Jeffreys, AJ. Processes of copy-number change in human DNA: the dynamics of α-globin gene deletion. Proc Natl Acad Sci USA. 2006;103(24):8921–8927.CrossRefGoogle ScholarPubMed
Lam, KW, Jeffreys, AJ. Processes of de novo duplication of human α-globin genes. Proc Natl Acad Sci USA. 2007; 104(26):10950–10955.CrossRefGoogle ScholarPubMed
Kulozik, AE, Kar, BC, Serjeant, GR, Serjeant, BE, Weatherall, DJ. The molecular basis of α thalassemia in India. Its interaction with the sickle cell gene. Blood. 1988;71(2):467–472.Google ScholarPubMed
Zhao, JB, Zhao, L, Fei, YJ, Liu, JC, Huisman, TH. A novel α-thalassemia-2 (-2.7-kb) observed in a Chinese patient with Hb H disease. Am J Hematol. 1991;38(3):248–249.CrossRefGoogle Scholar
Eng, B, Walsh, R, Walker, L, Patterson, M, Waye, JS. Characterization of a rare single α-globin gene deletion in a Chinese woman with Hb H disease. Hemoglobin. 2005;29(4):297–299.CrossRefGoogle Scholar
Poodt, J, Martens, HA, Walsh, IB, Felix-Schollaart, B, Hermans, MH. A newly identified deletion of 970 bp at the α-globin locus that removes the promoter region of the α1gene. Hemoglobin. 2006;30(4):471–477.CrossRefGoogle Scholar
Lacerra, G, Fioretti, G, Angioletti, M, et al. (α)α 5.3: a novel α+-thalassemia deletion with the breakpoints in the α2-globin gene and in close proximity to an Alu family repeat between the ψα2- and ψα1-globin genes. Blood. 1991;78(10):2740–2746.Google Scholar
Harteveld, CL, Delft, P, Wijermans, PW, et al. A novel 7.9 kb deletion causing α+-thalassaemia in two independent families of Indian origin. Br J Haematol. 2003;120(2):364–366.CrossRefGoogle ScholarPubMed
Bowden, DK, Hill, AV, Higgs, DR, Oppenheimer, SJ, Weatherall, DJ, Clegg, JB. Different hematologic phenotypes are associated with the leftward (-α4.2) and rightward (-α3.7) α+-thalassemia deletions. J Clin Invest. 1987;79(1):39–43.CrossRefGoogle Scholar
Liebhaber, SA, Cash, FE, Main, DM. Compensatory increase in α1-globin gene expression in individuals heterozygous for the α-thalassemia-2 deletion. J Clin Invest. 1985;76(3):1057–1064.CrossRefGoogle Scholar
Proudfoot, NJ. Transcriptional interference and termination between duplicated α-globin gene constructs suggests a novel mechanism for gene regulation. Nature. 1986; 322(6079):562–565.CrossRefGoogle ScholarPubMed
Chui, DH, Wong, SC, Chung, SW, Patterson, M, Bhargava, S, Poon, MC. Embryonic ς-globin chains in adults: a marker for α-thalassemia-1 haplotype due to a greater than 17.5-kb deletion. N Engl J Med. 1986;314(2):76–79.CrossRefGoogle ScholarPubMed
Kutlar, F, Gonzalez-Redondo, JM, Kutlar, A, et al. The levels of ς, γ and δ chains in patients with Hb H disease. Hum Genet. 1989;82(2):179–186.CrossRefGoogle Scholar
Tang, W, Luo, HY, Albitar, M, et al. Human embryonic ς-globin chain expression in deletional α-thalassemias. Blood. 1992;80(2):517–522.Google ScholarPubMed
Fischel-Ghodsian, N, Higgs, DR, Beyer, EC. Function of a new globin gene. Nature. 1987;329(6138):397.CrossRefGoogle ScholarPubMed
Daniels, RJ, Peden, JF, Lloyd, C, et al. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Hum Mol Genet. 2001;10(4):339–352.CrossRefGoogle ScholarPubMed
,International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–945.CrossRefGoogle Scholar
Nicholls, RD, Fischel-Ghodsian, N, Higgs, DR. Recombination at the human α-globin gene cluster: sequence features and topological constraints. Cell. 1987;49(3):369–378.CrossRefGoogle ScholarPubMed
Indrak, K, Gu, YC, Novotny, J, Huisman, TH. A new α-thalassemia-2 deletion resulting in microcytosis and hypochromia and in vitro chain imbalance in the heterozygote. Am J Hematol. 1993;43(2):144–145.CrossRefGoogle ScholarPubMed
Barbour, VM, Tufarelli, C, Sharpe, JA, et al. α-thalassemia resulting from a negative chromosomal position effect. Blood. 2000;96(3):800–807.Google ScholarPubMed
Tufarelli, C, Stanley, JA, Garrick, D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet. 2003;34(2): 157–165.CrossRefGoogle ScholarPubMed
Jarman, AP, Wood, WG, Sharpe, JA, Gourdon, G, Ayyub, H, Higgs, DR. Characterization of the major regulatory element upstream of the human α-globin gene cluster. Mol Cell Biol. 1991;11(9):4679–4689.CrossRefGoogle ScholarPubMed
Strauss, EC, Andrews, NC, Higgs, DR, Orkin, SH. In vivo footprinting of the human α-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction. Mol Cell Biol. 1992;12(5):2135–2142.CrossRefGoogle ScholarPubMed
Hatton, CS, Wilkie, AO, Drysdale, HC, et al. α-thalassemia caused by a large (62 kb) deletion upstream of the human α globin gene cluster. Blood. 1990;76(1):221–227.Google ScholarPubMed
Bernet, A, Sabatier, S, Picketts, DJ, Ouazana, R, Morle, F, Higgs, DR, et al. Targeted inactivation of the major positive regulatory element (HS-40) of the human α–globin gene locus. Blood. 1995;86(3):1202–1211.Google ScholarPubMed
Flint, J, Rochette, J, Craddock, CF, et al. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. Hum Mol Genet. 1996;5(8):1163–1169.CrossRefGoogle ScholarPubMed
Flint, J, Craddock, CF, Villegas, A, et al. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet. 1994;55(3):505–512.Google ScholarPubMed
Chan, SR, Blackburn, EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci. 2004;359(1441):109–121.CrossRefGoogle ScholarPubMed
Kan, YW, Dozy, AM, Trecartin, R, Todd, D. Identification of a nondeletion defect in α-thalassemia. N Engl J Med. 1977;297(20):1081–1084.CrossRefGoogle ScholarPubMed
Higgs, DR, Pressley, L, Aldridge, B, et al. Genetic and molecular diversity in nondeletion Hb H disease. Proc Natl Acad Sci USA. 1981;78(9):5833–5837.CrossRefGoogle ScholarPubMed
Felber, BK, Orkin, SH, Hamer, DH. Abnormal RNA splicing causes one form of α thalassemia. Cell. 1982;29(3):895–902.CrossRefGoogle ScholarPubMed
Harteveld, CL, Heister, JG, Giordano, PC, et al. An IVS1–116 (A→G) acceptor splice site mutation in the α2 globin gene causing α+ thalassaemia in two Dutch families. Br J Haematol. 1996;95(3):461–466.CrossRefGoogle Scholar
Harteveld, CL, Wijermans, PW, Delft, P, Rasp, E, Haak, HL, Giordano, PC. An α-thalassemia phenotype in a Dutch Hindustani, caused by a new point mutation that creates an alternative splice donor site in the first exon of the α2-globin gene. Hemoglobin. 2004;28(3):255–259.CrossRefGoogle Scholar
Harteveld, CL, Beijer, C, Delft, P, Zanardini, R, Bernini, LF, Giordano, PC. α-thalassaemia as a result of a novel splice donor site mutation of the αl-globin gene. Br J Haematol. 2000;110(3):694–698.CrossRefGoogle ScholarPubMed
Noguera, Nl, Gonzalez, FA, Davoli, RA, Milani, AC, Villegas, A. A novel splice acceptor site mutation of the α2-globin gene causing α-thalassemia. Hemoglobin. 2001;25(3):311–315.CrossRefGoogle ScholarPubMed
Whitelaw, E, Proudfoot, N. α-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human α2 globin gene. EMBO J. 1986;5(11):2915–2922.Google Scholar
Pressley, L, Higgs, DR, Clegg, JB, Perrine, RP, Pembrey, ME, Weatherall, DJ. A new genetic basis for hemoglobin-H disease. N Engl J Med. 1980;303(24):1383–1388.CrossRefGoogle ScholarPubMed
Molchanova, TP, Smetanina, NS, Huisman, TH. A second, elongated, α2-globin mRNA is present in reticulocytes from normal persons and subjects with terminating codon or poly A mutations. Biochem Biophys Res Commun. 1995;214(3):1184–1190.CrossRefGoogle ScholarPubMed
Traeger-Synodinos, J, Papassotiriou, I, Karagiorga, M, Premetis, E, Kanavakis, E, Stamoulakatou, A. Unusual phenotypic observations associated with a rare HbH disease genotype (--Med/αTSaudiα): implications for clinical management. Br J Haematol. 2002;119(1):265–267.CrossRefGoogle ScholarPubMed
Viprakasit, V, Green, S, Height, S, Ayyub, H, Higgs, DR. Hb H hydrops fetalis syndrome associated with the interaction of two common determinants of α thalassaemia (--MED/αTSaudiα). Br J Haematol. 2002;117(3):759–762.CrossRefGoogle Scholar
Tamary, H, Klinger, G, Shalmon, L, et al. α-thalassemia caused by a 16 bp deletion in the 3′ untranslated region of the α2-globin gene including the first nucleotide of the poly A signal sequence. Hemoglobin. 1997;21(2):121–130.CrossRefGoogle Scholar
Fei, YJ, Liu, JC, Walker, EL 3rd, Huisman TH. A new gene deletion involving the α2-, α1-, and θ1-globin genes in a black family with Hb H disease. Am J Hematol. 1992;39(4):299–300.CrossRefGoogle Scholar
Yuregir, GT, Aksoy, K, Curuk, MA, et al. Hb H disease in a Turkish family resulting from the interaction of a deletional α-thalassaemia-1 and a newly discovered poly A mutation. Br J Haematol. 1992;80(4):527–532.CrossRefGoogle Scholar
Harteveld, CL, Losekoot, M, Haak, H, Heister, GA, Giordano, PC, Bernini, LF. A novel polyadenylation signal mutation in the α2-globin gene causing α thalassaemia. Br J Haematol. 1994;87(1):139–143.CrossRefGoogle Scholar
Henderson, S, Chappie, M, Rugless, M, Fisher, C, Kinsey, S, Old, J. Haemoglobin H hydrops fetalis syndrome associated with homozygosity for the α2-globin gene polyadenylation signal mutation AATAAA→AATA. Br J Haematol. 2006;135(5):743–745.CrossRefGoogle Scholar
Olivieri, NF, Chang, LS, Poon, AO, Michelson, AM, Orkin, SH. An α-globin gene initiation codon mutation in a black family with HbH disease. Blood. 1987;70(3):729–732.Google Scholar
Morle, F, Lopez, B, Henni, T, Godet, J. α-Thalassaemia associated with the deletion of two nucleotides at position -2 and -3 preceding the AUG codon. EMBO J. 1985;4(5):1245–1250.Google ScholarPubMed
Morle, F, Starck, J, Godet, J. α-thalassemia due to the deletion of nucleotides -2 and -3 preceding the AUG initiation codon affects translation efficiency both in vitro and in vivo. Nucl Acids Res. 1986;14(8):3279–3292.CrossRefGoogle ScholarPubMed
Tabone, P, Henni, T, Belhani, M, Colonna, P, Verdier, G, Godet, J. Hemoglobin H disease from Algeria: genetic and molecular characterization. Acta Haematol. 1981;65(1):26–31.CrossRefGoogle ScholarPubMed
Cao, A, Rosatelli, C, Pirastu, M, Galanello, R. Thalassemias in Sardinia: molecular pathology, phenotype-genotype correlation, and prevention. Am J Pediatr Hematol Oncol. 1991;13(2):179–188.CrossRefGoogle Scholar
Galanello, R, Aru, B, Dessi, C, et al. HbH disease in Sardinia: molecular, hematological and clinical aspects. Acta Haematol. 1992;88(1):1–6.CrossRefGoogle ScholarPubMed
Moi, P, Cash, FE, Liebhaber, SA, Cao, A, Pirastu, M. An initiation codon mutation (AUG→GUG) of the human α1-globin gene. Structural characterization and evidence for a mild thalassemic phenotype. J Clin Invest. 1987;80(5):1416–1421.CrossRefGoogle Scholar
Eng, B, Patterson, M, Walker, L, et al. Three new α-thalassemia point mutations ascertained through newborn screening. Hemoglobin. 2006;30(2):149–153.CrossRefGoogle ScholarPubMed
Harteveld, CL, Yavarian, M, Zorai, A, Quakkelaar, ED, Delft, P, Giordano, PC. Molecular spectrum of α-thalassemia in the Iranian population of Hormozgan: three novel point mutation defects. Am J Hematol. 2003;74(2):99–103.CrossRefGoogle ScholarPubMed
Liebhaber, SA, Coleman, MB, Adams, JG 3rd, Cash, FE, Steinberg, MH. Molecular basis for nondeletion α-thalassemia in American blacks. Alpha 2(116GAG→DAG). J Clin Invest. 1987;80(1):154–159.CrossRefGoogle Scholar
Siala, H, Fattoum, S, Messaoud, T, Ouali, F, Gerard, N, Krishnamoorthy, R. A novel α-thalassemia nonsense mutation in codon 23 of the α2-globin gene (GAG→TAG) in a Tunisian family. Hemoglobin. 2004;28(3):249–254.CrossRefGoogle Scholar
Twomey, AP, Brasch, JM, Betheras, FR, Bowden, DK. A new α2-globin gene codon 90 (AAG→TAG) nonsense mutation. Hemoglobin. 2003;27(4):261–265.CrossRefGoogle ScholarPubMed
Luo, HY, Adewoye, AH, Pilichowska, M, Li, MY, Basran, RK, Steinberg, MH, et al. Two new α-thalassemia frameshift mutations. Hemoglobin. 2007;31(2):135–139.CrossRefGoogle ScholarPubMed
Pereira, FJ, Ceu Silva, M, Picanco, I, et al. Human α2-globin nonsense-mediated mRNA decay induced by a novel α-thalassaemia frameshift mutation at codon 22. Br J Haematol. 2006;133(1):98–102.CrossRefGoogle ScholarPubMed
Viprakasit, V, Tanphaichitr, VS, Veerakul, G, et al. Co-inheritance of Hb Pak Num Po, a novel α1 gene mutation, and αO thalassemia associated with transfusion-dependent Hb H disease. Am J Hematol. 2004;75(3):157–163.CrossRefGoogle Scholar
Safaya, S, Rieder, RF. Dysfunctional α-globin gene in hemoglobin H disease in blacks. A dinucleotide deletion produces a frameshift and a termination codon. J Biol Chem. 1988;263(9):4328–4332.Google Scholar
Ayala, S, Colomer, D, Aymerich, M, Abella, E, Vives Corrons, JL. First description of a frameshift mutation in the α1-globin gene associated with α-thalassaemia. Br J Haematol. 1997;98(1):47–50.CrossRefGoogle ScholarPubMed
Ayala, S, Colomer, D, Pujades, A, Aymerich, M, Vives Corrons, JL. Haemoglobin Lleida: a new α2-globin variant (12 bp deletion) with mild thalassaemic phenotype. Br J Haematol. 1996;94(4):639–644.CrossRefGoogle Scholar
Weatherall, DJ, Clegg, JB. The α-chain-termination mutants and their relation to the alpha-thalassaemias. Philos Trans R Soc Lond B Biol Sci. 1975;271(913):411–455.CrossRefGoogle ScholarPubMed
Schrier, SL, Bunyaratvej, A, Khuhapinant, A, et al. The unusual pathobiology of hemoglobin constant spring red blood cells. Blood. 1997;89(5):1762–1769.Google ScholarPubMed
Lie-lnjo, , Ganesan, J, Clegg, JB, Weatherall, DJ. Homozygous state for Hb Constant Spring (slow-moving Hb X components). Blood. 1974;43(2):251–259.Google Scholar
Pootrakul, P, Winichagoon, P, Fucharoen, S, Pravatmuang, P, Piankijagum, A, Wasi, P. Homozygous haemoglobin Constant Spring: a need for revision of concept. Hum Genet. 1981;59(3):250–255.CrossRefGoogle ScholarPubMed
Fucharoen, S, Winichagoon, P, Pootrakul, P, Piankijagum, A, Wasi, P. Differences between two types of Hb H disease, α-thalassemia 1/α-thalassemia 2 and α-thalassemia 1/Hb constant spring. Birth Defects Orig Artic Ser. 1987;23(5A):309–315.Google ScholarPubMed
Vichinsky, EP, MacKlin, EA, Waye, JS, Lorey, F, Olivieri, NF. Changes in the epidemiology of thalassemia in North America: a new minority disease. Pediatrics. 2005;116(6):e818–825.CrossRefGoogle ScholarPubMed
Hunt, DM, Higgs, DR, Winichagoon, P, Clegg, JB, Weatherall, DJ. Haemoglobin Constant Spring has an unstable alpha chain messenger RNA. Br J Haematol. 1982;51(3):405–413.CrossRefGoogle ScholarPubMed
Kan, YW, Todd, D, Dozy, AM. Haemoglobin Constant Spring synthesis in red cell precursors. Br J Haematol. 1974;28(1):103–107.CrossRefGoogle ScholarPubMed
Weiss, IM, Liebhaber, SA. Erythroid cell-specific determinants of α-globin mRNA stability. Mol Cell Biol. 1994;14(12):8123–8132.CrossRefGoogle ScholarPubMed
Gobbi, M, Viprakasit, V, Hughes, JR, et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science. 2006;312(5777):1215–1217.CrossRefGoogle ScholarPubMed
Chan, V, Chan, VW, Tang, M, Lau, K, Todd, D, Chan, TK. Molecular defects in Hb H hydrops fetalis. Br J Haematol. 1997;96(2):224–228.CrossRefGoogle ScholarPubMed
Old, JM, Higgs, DR. Gene analysis. In: Weatherall, DJ, ed. The Thalassemias, Methods in Hematology. Edinburgh: Churchill Livingstone; 1983:74–102.Google Scholar
Harteveld, CL, Voskamp, A, Phylipsen, M, et al. Nine unknown rearrangements in 16p13.3 and 11p15.4 causing α- and β-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. J Med Genet. 2005;42(12):922–931.CrossRefGoogle ScholarPubMed
Chong, SS, Boehm, CD, Higgs, DR, Cutting, GR. Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood. 2000;95(1):360–362.Google ScholarPubMed
Steinberg, MH, Coleman, MB, Adams, JG 3rd, Hartmann, RC, Saba, H, Anagnou, NP. A new gene deletion in the α-like globin gene cluster as the molecular basis for the rare α-thalassemia-1 (--/αα) in blacks: HbH disease in sickle cell trait. Blood. 1986;67(2):469–473.Google Scholar
Sabath, , Detter, JC, Tait, JF. A novel deletion of the entire α globin locus causing α-thalassemia-1 in a northern European family. Am J Clin Pathol. 1994;102(5):650–654.CrossRefGoogle Scholar
Honig, GR, Shamsuddin, M, Vida, LN, et al. Hemoglobin Evanston (α14 Trp→Arg). An unstable α-chain variant expressed as α -thalassemia. J Clin Invest. 1984;73(6):1740–1749.CrossRefGoogle Scholar
Moo-Penn, WF, Baine, RM, Jue, DL, et al. Hemoglobin Evanston: α14(A12) Trp leads to Arg. A variant hemoglobin associated with α-thalassemia-2. Biochim Biophys Acta. 1983;747:65–70.CrossRefGoogle Scholar
Liebhaber, SA, Cash, FE. Locus assignment of α-globin structural mutations by hybrid-selected translation. J Clin Invest. 1985;75(1):64–70.CrossRefGoogle ScholarPubMed
Senno, L, Bernard, F, Marchetti, G, et al. Organization of α-globin genes and mRNA translation in subjects carrying haemoglobin Hasharon (α47 Asp replaced by His) from the Ferrara Region (Northern Italy). Eur J Biochem. 1980;111(1):125–130.CrossRefGoogle Scholar
Giglioni, B, Comi, P, Taramelli, R, et al. Organization of α-globin genes in Hb Hasharon (α47 Asp replaced by His) carriers. Blood. 1980;56(6):1145–1149.Google Scholar
Mavilio, F, Marinucci, M, Massa, A, Fontanarosa, PP, Tentori, L, Cappellozza, G. Hemoglobin Hasharon [α247 (CD5)Asp leads to His β2] linked to α-thalassemia in northern Italian carriers. Hematological and biosynthetic studies. Acta Haematol. 1980;63(6):305–311.CrossRefGoogle Scholar
Pich, PG, Gallo, E, Mazza, U, Ricco, G. [Study on a case of double heterozygosis between Hb-C and β-thalassemia]. Boll Soc Ital Biol Sper. 1973;49(9):507–512.Google Scholar
Bruzdzinski, CJ, Sisco, KL, Ferrucci, SJ, Rucknagel, DL. The occurrence of the αG-Philadelphia-globin allele on a double-locus chromosome. Am J Hum Genet. 1984;36(1):101–109.Google ScholarPubMed
Hill, AV, Bowden, DK, Trent, RJ, et al. Melanesians and Polynesians share a unique α-thalassemia mutation. Am J Hum Genet. 1985;37(3):571–580.Google Scholar
Sancar, GB, Tatsis, B, Cedeno, MM, Rieder, RF. Proportion of hemoglobin G Philadelphia (α268 Asn leads to Lys β2) in heterozygotes is determined by α-globin gene deletions. Proc Natl Acad Sci USA. 1980;77(11):6874–6878.CrossRefGoogle Scholar
Sciarratta, GV, Sansone, G, Ivaldi, G, Felice, AE, Huisman, TH. Alternate organization of αG-Philadelphia globin genes among U.S. black and Italian Caucasian heterozygotes. Hemoglobin. 1984;8(6):537–547.CrossRefGoogle ScholarPubMed
Surrey, S, Ohene-Frempong, K, Rappaport, E, Atwater, J, Schwartz, E. Linkage of αG-Philadelphia to α-thalassemia in African-Americans. Proc Natl Acad Sci USA. 1980;77(8):4885–4889.CrossRefGoogle ScholarPubMed
Higgs, DR, Hunt, DM, Drysdale, HC, Clegg, JB, Pressley, L, Weatherall, DJ. The genetic basis of Hb Q-H disease. Br J Haematol. 1980;46(3):387–400.CrossRefGoogle ScholarPubMed
Lie-lnjo, , Dozy, AM, Kan, YW, Lopes, M, Todd, D. The α-globin gene adjacent to the gene for HbQ-α74 Asp replaced by His is deleted, but not that adjacent to the gene for HbG-α30 Glu replaced by Gln; three-fourths of the α-globin genes are deleted in HbQ-α-thalassemia. Blood. 1979 Dec;54(6):1407–1416.Google Scholar
Liang, S, Tang, Z, Su, C, et al. Hb Duan α75(EF4)Asp – -Ala], Hb Westmead[α122(H5)His -- -Gln], and α-thalassemia-2 (-4.2 Kb deletion) in a Chinese family. Hemoglobin. 1988;12(1):13–21.CrossRefGoogle Scholar
Costa, FF, Sonati, MF, Zago, MA. Hemoglobin Stanleyville II (α78 Asn→Lys) is associated with a 3.7-kb α-globin gene deletion. Hum Genet. 1991;86(3):319–320.CrossRefGoogle Scholar
Honig, GR, Shamsuddin, M, Mason, RG, Vida, LN, Tremaine, LM, Tarr, GE, et al. Hemoglobin Nigeria (α-81 Ser replaced by Lys): a new variant associated with α-thalassemia. Blood. 1980;55(1):131–137.Google Scholar
Lambridis, AJ, Ramsay, M, Jenkins, T. The haematological puzzle of Hb J Cape Town is partly solved. Br J Haematol. 1986;63(2):363–367.CrossRefGoogle ScholarPubMed
Old, JM, Clegg, JB, Weatherall, DJ, Booth, PB. Haemoglobin J Tongariki is associated with α thalassaemia. Nature. 1978;273(5660):319–320.CrossRefGoogle ScholarPubMed
Harteveld, CL, Jebbink, MC, Lely, N, et al. α-thalassemia phenotype induced by the new IVS-ll-2 (T→A) splice donor site mutation on the α2-globin gene. Hemoglobin. 2006;30(1):3–7.CrossRefGoogle ScholarPubMed
Harteveld, CL, Giordano, PC, Losekoot, M, Heister, JG, Batelaan, D, Delft, P, et al. Hb Utrecht [α2 129(H12)Leu→Pro], a new unstable α2-chain variant associated with a mild α-thalassaemic phenotype. Br J Haematol. 1996;94(3):483–485.CrossRefGoogle Scholar
Curuk, MA, Baysal, E, Gupta, RB, Sharma, S, Huisman, TH. An IVS-l-117 (G→A) acceptor splice site mutation in the α1-globin gene is a nondeletional α-thalassaemia-2 determinant in an Indian population. Br J Haematol. 1993;85(1):148–152.CrossRefGoogle Scholar
Higgs, DR, Goodbourn, SE, Lamb, J, Clegg, JB, Weatherall, DJ, Proudfoot, NJ. α-thalassaemia caused by a polyadenylation signal mutation. Nature. 1983;306(5941):398–400.CrossRefGoogle ScholarPubMed
Ma, ES, Chow, EY, Chan, AY, Chan, LC. Interaction between (--SEA) α-thalassemia deletion and uncommon non-deletional α-globin gene mutations in Chinese patients. Haematologica. 2001;86(5):539–540.Google ScholarPubMed
Hall, GW, Higgs, DR, Murphy, P, Villegas, A, Miguel, A. A mutation in the polyadenylation signal of the α2 globin gene (AATAAA→AATA--) as a cause of α thalassaemia in Asian Indians. Br J Haematol. 1994;88(1):225–227.CrossRefGoogle Scholar
Laosombat, V, Fucharoen, S, Wiriyasateinkul, A. Interaction of the α2 polyadenylation signal mutation (AATAAA→AATA--) and αo-thalassemia (-SEA), resulting in Hb H disease in a Thai patient. Hemoglobin. 2001;25(4):383–389.CrossRefGoogle Scholar
Viprakasit, V, Ayyub, H, May, A. Dinucleotide deletion in -α3.7 allele causes a severe form of α+ thalassaemia. Eur J Haematol. 2003;71(2):133–136.CrossRefGoogle ScholarPubMed
Pirastu, M, Saglio, G, Chang, JC, Cao, A, Kan, YW. Initiation codon mutation as a cause of α thalassemia. J Biol Chem. 1984;259(20):12315–12317.Google ScholarPubMed
Waye, JS, Eng, B, Patterson, M, et al. Novel mutation of the α2-globin gene intiation codon (ATG→A-G) in a Vietnamese girl with HbH disease. Blood. 1996;88:28b.Google Scholar
Paglietti, E, Galanello, R, Moi, P, Pirastu, M, Cao, A. Molecular pathology of haemoglobin H disease in Sardinians. Br J Haematol. 1986;63(3):485–496.CrossRefGoogle ScholarPubMed
Oron-Karni, V, Filon, D, Rund, D, Oppenheim, A. A novel mechanism generating short deletion/insertions following slippage is suggested by a mutation in the human α2-globin gene. Hum Mol Genet. 1997;6(6):881–885.CrossRefGoogle ScholarPubMed
Oron-Karni, V, Filon, D, Shifrin, Y, et al. Diversity of α-globin mutations and clinical presentation of α-thalassemia in Israel. Am J Hematol. 2000;65(3):196–203.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Clegg, JB, Weatherall, DJ, Milner, PF. Haemoglobin Constant Spring–a chain termination mutant? Nature. 1971; 234(5328):337–340.CrossRefGoogle ScholarPubMed
Clegg, JB, Weatherall, DJ, Contopolou-Griva, I, Caroutsos, K, Poungouras, P, Tsevrenis, H. Haemoglobin Icaria, a new chain-termination mutant with causes α thalassaemia. Nature. 1974;251(5472):245–247.CrossRefGoogle ScholarPubMed
Efremov, GD, Josifovska, O, Nikolov, N, et al. Hb Icaria-Hb H disease: identification of the Hb Icaria mutation through analysis of amplified DNA. Br J Haematol. 1990 Jun;75(2):250–253.CrossRefGoogle Scholar
Jong, WW, Meera Khan, P, Bernini, LF. Hemoglobin Koya Dora: high frequency of a chain termination mutant. Am J Hum Genet. 1975;27(1):81–90.Google ScholarPubMed
Bradley, TB, Wohl, RC, Smith, GJ. Elongation of the α-globin chain in a Black family: interaction with HbG Philadelphia. Clin Res. 1975;23:131A.Google Scholar
Merritt, D, Jones, RT, Head, C, et al. Hb Seal Rock [(α2)142 term→Glu, codon 142 TAA→GAA]: an extended α chain variant associated with anemia, microcytosis, and α-thalassemia-2 (-3.7 Kb). Hemoglobin. 1997;21(4):331–344.CrossRefGoogle Scholar
Viprakasit, V, Tanphaichitr, VS, Pung-Amritt, P, et al. Clinical phenotypes and molecular characterization of Hb H-Pakse disease. Haematologica. 2002;87(2):117–125.Google ScholarPubMed
Waye, JS, Eng, B, Patterson, M, Chui, DH, Olivieri, NF. Identification of a novel termination codon mutation (TAA→TAT, Term→Tyr) in the α2 globin gene of a Laotian girl with hemoglobin H disease. Blood. 1994;83(11):3418–3420.Google Scholar
Harteveld, CL, Helden, WC, Boxma, GL, et al. Hb Zoetermeer: a new mutation on the α2gene inducing an Ala→Ser substitution at codon 21 is possibly associated with a mild thalassemic phenotype. Hemoglobin. 2007;31(3):325–332.CrossRefGoogle ScholarPubMed
Hall, GW, Thein, SL, Newland, AC, et al. A base substitution (T→C) in codon 29 of the α2-globin gene causes α thalassaemia. Br J Haematol. 1993;85(3):546–552.CrossRefGoogle Scholar
Chen, FE, Ooi, C, Ha, SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. N Engl J Med. 2000;343(8):544–550.CrossRefGoogle ScholarPubMed
Harteveld, CL, Vervloet, M, Zweegman, S, et al. Hb Amsterdam [α32(B13)Met-lle (α2)]: a new unstable variant associated with an α-thalassemia phenotype and a new African polymorphism. Hemoglobin. 2005;29(4):257–262.CrossRefGoogle Scholar
Gomes, S, Picanco, I, Miranda, A, et al. Hb Evora [α2–35 (B16), Ser→Pro], a novel hemoglobin variant associated with an α-thalassemia phenotype. Haematologica. 2007;92(2):252–253.CrossRefGoogle Scholar
Lorey, F, Charoenkwan, P, Witkowska, HE, et al. Hb H hydrops foetalis syndrome: a case report and review of literature. Br J Haematol. 2001;115(1):72–78.CrossRefGoogle ScholarPubMed
Prehu, C, Mazurier, E, Riou, J, et al. A new unstable α2-globin gene variant: Hb Chartres [α33(B14)Phe→Ser]. Hemoglobin. 2003;27(2):111–115.CrossRefGoogle Scholar
Traeger-Synodinos, J, Papassotiriou, I, Metaxotou-Mavrommati, A, Vrettou, C, Stamoulakatou, A, Kanavakis, E. Distinct phenotypic expression associated with a new hyperunstable alpha globin variant (Hb Heraklion, α1cd37(C2)Pro>0): comparison to other α-thalassemic hemoglobinopathies. Blood Cells Mol Dis. 2000;26(4):276–284.CrossRefGoogle ScholarPubMed
Ayala, S, Colomer, D, Gelpi, JL, Corrons, JL. α-thalassaemia due to a single codon deletion in the α1-globin gene. Computational structural analysis of the new α-chain variant. Mutations in brief no. 132. Hum Mutat. 1999;11(5).Google Scholar
Traeger-Synodinos, J, Harteveld, CL, Kanavakis, E, Giordano, PC, Kattamis, C, Bernini, LF. Hb Aghia Sophia [α62(E11)Val→0 (α1)], an “in-frame” deletion causing α-thalassemia. Hemoglobin. 1999;23(4):317–324.CrossRefGoogle ScholarPubMed
Waye, JS, Eng, B, Patterson, M, et al. Identification of two new α-thalassemia mutations in exon 2 of the αl -globin gene. Hemoglobin. 2001;25(4):391–396.CrossRefGoogle Scholar
McBride, KL, Snow, K, Kubik, KS, et al. Hb Dartmouth [α66(E15)Leu→Pro (α2) (CTG→CCG)]: a novel α2-globin gene mutation associated with severe neonatal anemia when inherited in trans with Southeast Asian α-thalassemia-1. Hemoglobin. 2001;25(4):375–382.CrossRefGoogle ScholarPubMed
Lacerra, G, Testa, R, Angioletti, M, Schiliro, G, Carestia, C. Hb Bronte or α93(FG5)Val→Gly: a new unstable variant of the α2-globin gene, associated with a mild α+-thalassemia phenotype. Hemoglobin. 2003;27(3):149–159.CrossRefGoogle ScholarPubMed
Harteveld, CL, Steen, G, Vlasveld, LT, Delft, P, Giordano, PC. Hb Bronovo, a new globin gene mutation at α2 103 (His→Leu) associated with an α thalassemia phenotype. Haematologica. 2006;91(4):570–571.Google ScholarPubMed
Khan, SN, Butt, Fl, Riazuddin, S, Galanello, R. Hb Sallanches [α104(G11)Cys→Tyr]: a rare α2-globin chain variant found in the homozygous state in three members of a Pakistani family. Hemoglobin. 2000;24(1):31–35.CrossRefGoogle Scholar
Morle, F, Francina, A, Ducrocq, R, et al. A new α chain variant Hb Sallanches [α2 104(G11) Cys→Tyr] associated with HbH disease in one homozygous patient. Br J Haematol. 1995;91(3):608–611.CrossRefGoogle ScholarPubMed
Harteveld, CL, Rozendaal, L, Blom, NA, et al. Hb Oegstgeest [α104(G11)Cys→Ser (α1)]. A new hemoglobin variant associated with a mild α-thalassemia phenotype. Hemoglobin. 2005;29(3):165–169.CrossRefGoogle ScholarPubMed
Harteveld, CL, Versteegh, FG, Kok, PJ, Rooijen-Nijdam, IH, Delft, P, Giordano, PC. Hb Bleuland [αl08(G15)Thr→Asn, ACC→AAC (α2)]: a new abnormal hemoglobin associated with a mild α-thalassemia phenotype. Hemoglobin. 2006;30(3):349–354.CrossRefGoogle Scholar
Sanguansermsri, T, Matragoon, S, Changloah, L, Flatz, G. Hemoglobin Suan-Dok (α2 109 (G16) Leu replaced by Arg β2): an unstable variant associated with α-thalassemia. Hemoglobin. 1979;3(2–3):161–174.CrossRefGoogle Scholar
Honig, GR, Shamsuddin, M, Zaizov, R, Steinherz, M, Solar, I, Kirschmann, C. Hemoglobin Petah Tikva (α110 ala replaced by asp): a new unstable variant with α-thalassemia-like expression. Blood. 1981;57(4):705–711.Google Scholar
Harteveld, CL, Delft, P, Plug, R, et al. Hb Groene Hart: a new Pro→Ser amino acid substitution at position 119 of the α1-globin chain is associated with a mild α-thalassemia phenotype. Hemoglobin. 2002;26(3):255–260.CrossRefGoogle ScholarPubMed
Giordano, PC, Zweegman, S, Akkermans, N, et al. The first case of Hb Groene Hart [α119(H2)Pro→Ser, CCT→TCT (α1)] homozygosity confirms that a thalassemia phenotype is associated with this abnormal hemoglobin variant. Hemoglobin. 2007;31(2):179–182.CrossRefGoogle Scholar
Goossens, M, Lee, KY, Liebhaber, SA, Kan, YW. Globin structural mutant α125Leu leads to Pro is a novel cause of α-thalassaemia. Nature. 1982;296(5860):864–865.CrossRefGoogle ScholarPubMed
Darbellay, R, Mach-Pascual, S, Rose, K, Graf, J, Beris, P. Haemoglobin Tunis-Bizerte: a new α1 globin 129 Leu→Pro unstable variant with thalassaemic phenotype. Br J Haematol. 1995;90(1):71–76.CrossRefGoogle Scholar
Harkness, M, Harkness, DR, Kutlar, F, Kutlar, A, Wilson, JB, Webber, BB, et al. Hb Sun Prairie or α(2)130(H13)Ala – Pro beta 2, a new unstable variant occurring in low quantities. Hemoglobin. 1990;14(5):479–489.CrossRefGoogle ScholarPubMed
Rochette, J, Barnetson, R, Thein, SL, Varet, B, Valensi, F. Hb Questembert is due to a base substitution (T→C) in codon 131 of the α2-globin gene and has an α-thalassemia biosynthetic ratio. Am J Hematol. 1995;48(4):289–290.CrossRefGoogle Scholar
Wajcman, H, Vasseur, C, Blouquit, Y, et al. Unstable α-chain hemoglobin variants with factitious β-thalassemia biosynthetic ratio: Hb Questembert (α131[H14]Ser→Pro) and Hb Caen (α132[H15]Val→Gly). Am J Hematol. 1993;42(4):367–374.CrossRefGoogle Scholar
Prchal, JT, Adler, B, Wilson, JB, et al. Hb Bibba or α2 136(H19)Leu→Pro β2 in a Caucasian family from Alabama. Hemoglobin. 1995;19(3–4):151–164.CrossRefGoogle Scholar
Vickers, MA, Higgs, DR. A novel deletion of the entire α-globin gene cluster in a British individual. Br J Haematol. 1989;72(3):471–473.CrossRefGoogle Scholar
Fortina, P, Dianzani, I, Serra, A, Gottardi, E, Saglio, G, Farinasso, L, et al. A newly-characterized α-thalassaemia-1 deletion removes the entire α-like globin gene cluster in an Italian family. Br J Haematol. 1991;78(4):529–534.CrossRefGoogle Scholar
Harteveld, KL, Losekoot, M, Fodde, R, Giordano, PC, Bernini, LF. The involvement of Alu repeats in recombination events at the α-globin gene cluster: characterization of two αo-thalassaemia deletion breakpoints. Hum Genet. 1997;99(4):528–534.CrossRefGoogle ScholarPubMed
Eng, B, Patterson, M, Borys, S, Chui, DH, Waye JS. PCR-based diagnosis of the Filipino (--FIL) and Thai (--THAI) α-thalassemia-1 deletions. Am J Hematol. 2000;63(1):54–56.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Fischel-Ghodsian, N, Vickers, MA, Seip, M, Winichagoon, P, Higgs, DR. Characterization of two deletions that remove the entire human ς-α globin gene complex (--THAI and --FIL). Br J Haematol. 1988;70(2):233–238.CrossRefGoogle Scholar
Sarkar, AA, Banerjee, S, Chandra, S, et al. A novel 33.3 kb deletion (--KOL) in the α-globin gene cluster: a brief report on deletional α-thalassaemia in the heterogeneous eastern Indian population. Br J Haematol. 2005;130(3):454–457.CrossRefGoogle ScholarPubMed
Higgs, DR, Ayyub, H, Clegg, JB, et al. Alpha thalassaemia in British people. Br Med J. 1985;290(6478):1303–1306.CrossRefGoogle ScholarPubMed
Gonzalez-Redondo, JM, Gilsanz, F, Ricard, P. Characterization of a new α-thalassemia-1 deletion in a Spanish family. Hemoglobin. 1989;13(2):103–116.CrossRefGoogle Scholar
Villegas, A, Sanchez, J, Carreno, DL, Ropero, P, Gonzalez, FA, Espinos, D, et al. Molecular characterization of a new family with α-thalassemia-1 (--MA mutation). Am J Hematol. 1995;49(4):294–298.CrossRefGoogle Scholar
Shaji, RV, Eunice, SE, Baidya, S, Srivastava, A, Chandy, M. Determination of the breakpoint and molecular diagnosis of a common α-thalassaemia-1 deletion in the Indian population. Br J Haematol. 2003;123(5):942–947.CrossRefGoogle ScholarPubMed
Vandenplas, S, Higgs, DR, Nicholls, RD, Bester, AJ, Mathew, CG. Characterization of a new αo thalassaemia defect in the South African population. Br J Haematol. 1987;66(4):539–542.CrossRefGoogle Scholar
Pressley, L, Higgs, DR, Clegg, JB, Weatherall, DJ. Gene deletions in α thalassemia prove that the 5′ ς locus is functional. Proc Natl Acad Sci USA. 1980;77(6):3586–3589.CrossRefGoogle Scholar
Villegas, A, Sanchez, J, Ricard, P, et al. Characterization of a new α-thalassemia-1 mutation in a Spanish family. Hemoglobin. 1994;18(1):29–37.CrossRefGoogle Scholar
Villegas, A, Calero, F, Vickers, MA, Ayyub, H, Higgs, DR. Alpha thalassaemia in two Spanish families. Eur J Haematol. 1990;44(2):109–115.Google ScholarPubMed
Fortina, P, Parrella, T, Sartore, M, et al. Interaction of rare illegitimate recombination event and a poly A addition site mutation resulting in a severe form of α thalassemia. Blood. 1994;83(11):3356–3362.Google Scholar
Pressley, L, Higgs, DR, Aldridge, B, Metaxatou-Mavromati, A, Clegg, JB, Weatherall, DJ. Characterisation of a new α thalassemia 1 defect due to a partial deletion of the α globin gene complex. Nucl Acids Res. 1980;8(21):4889–4898.CrossRefGoogle ScholarPubMed
Harris, PC, Barton, NJ, Higgs, DR, Reeders, ST, Wilkie, AO. A long-range restriction map between the α-globin complex and a marker closely linked to the polycystic kidney disease 1 (PKD1) locus. Genomics. 1990;7(2):195–206.CrossRefGoogle Scholar
Horsley, SW, Daniels, RJ, Anguita, E, et al. Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects. Eur J Hum Genet. 2001;9(3):217–225.CrossRefGoogle ScholarPubMed
Waye, JS, Eng, B, Chui, DH. Identification of an extensive ς-α globin gene deletion in a Chinese individual. Br J Haematol. 1992;80(3):378–380.CrossRefGoogle Scholar
Harteveld, KL, Losekoot, M, Heister, AJ, Wielen, M, Giordano, PC, Bernini LF. α-Thalassemia in The Netherlands: a heterogeneous spectrum of both deletions and point mutations. Hum Genet. 1997;100(3–4):465–471.CrossRefGoogle ScholarPubMed
Huisman, TH, Gu, LH, Liu, JC, Fei, YJ, Walker EL 3rd. Black α-thalassemia-1: partial characterization of an approximately 80 kb deletion which includes the ς- and α-globin genes. Hemoglobin. 1993;17(4):345–353.CrossRefGoogle Scholar
Nooitgedagt, JE, Harteveld, CL, Starreveld, JS, Versteegh, FG, Giordano, PC. A new deletion defect leading to α-thalassaemia in a large Dutch Caucasian family. Br J Haematol. 2007;136(4):662–665.CrossRefGoogle Scholar
Lamb, J, Wilkie, AO, Harris, PC, Buckle, VJ, Lindenbaum, RH, Barton, NJ, et al. Detection of breakpoints in submicroscopic chromosomal translocation, illustrating an important mechanism for genetic disease. Lancet. 1989;2(8667):819–824.CrossRefGoogle ScholarPubMed
Shalmon, L, Kirschmann, C, Zaizov, R. A new deletional α-thalassemia detected in Yemenites with hemoglobin H disease. Am J Hematol. 1994;45(3):201–204.CrossRefGoogle ScholarPubMed
Gonzalez-Redondo, JM, Diaz-Chico, JC, Malcorra-Azpiazu, JJ, Balda-Aguirre Ml, , Huisman, TH. Characterization of a newly discovered α-thalassaemia-1 in two Spanish patients with Hb H disease. Br J Haematol. 1988;70(4):459–463.CrossRefGoogle ScholarPubMed
Viprakasit, V, Kidd, AM, Ayyub, H, Horsley, S, Hughes, J, Higgs, DR. De novo deletion within the telomeric region flanking the human α globin locus as a cause of α thalassaemia. Br J Haematol. 2003;120(5):867–875.CrossRefGoogle ScholarPubMed
Romao, L, Osorio-Almeida, L, Higgs, DR, Lavinha, J, Liebhaber, SA. Alpha-thalassemia resulting from deletion of regulatory sequences far upstream of the α-globin structural genes. Blood. 1991;78(6):1589–1595.Google ScholarPubMed
Wilkie, AO, Lamb, J, Harris, PC, Finney, RD, Higgs, DR. A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990;346(6287):868–871.CrossRefGoogle ScholarPubMed
Liebhaber, SA, Griese, EU, Weiss, I, et al. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster. Proc Natl Acad Sci USA. 1990;87(23):9431–9435.CrossRefGoogle ScholarPubMed
Viprakasit, V, Harteveld, CL, Ayyub, H, et al. A novel deletion causing α thalassemia clarifies the importance of the major human α globin regulatory element. Blood. 2006;107(9):3811–3812.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×