Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T13:15:41.782Z Has data issue: false hasContentIssue false

11 - Mechanisms and Clinical Complications of Hemolysis in Sickle Cell Disease and Thalassemia

from SECTION TWO - PATHOPHYSIOLOGY OF HEMOGLOBIN AND ITS DISORDERS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

OVERVIEW OF HEMOLYSIS IN SICKLE CELL DISEASE AND THAL ASSEMIA

Anemia is the most basic clinical characteristic of sickle cell disease and thalassemia. In sickle cell disease, the polymerization of sickle hemoglobin (HbS) causes profound changes in the integrity and viability of the erythrocyte, leading to both extravascular and intravascular hemolysis. The lifespan of the erythrocyte in sickle cell disease is often shortened to less than one-tenth of normal. In β-thalassemia intermedia and major, but not in sickle cell disease, a substantial portion of the hemolysis occurs in the intramedullary space before the developing erythrocytes can even exit the bone marrow, referred to as ineffective erythropoiesis. In either case, erythropoiesis is markedly increased, but insufficient to compensate completely for the accelerated hemolysis, resulting in chronic anemia. This chapter examines the mechanisms that give rise to the accelerated hemolysis characteristic of these hemoglobinopathies and considers emerging data suggesting that chronic intravascular hemolysis produces endothelial dysfunction and a progressive vasculopathy. The latter mechanism of disease contributes to a clinical subphenotype of complications shared by many of the hemolytic anemias, including pulmonary arterial hypertension, cutaneous leg ulceration, priapism, and perhaps stroke. The mechanisms and consequences of hemolysis differ by two main anatomical compartments: extravascular hemolysis, which primarily involves phagocytosis by macrophages in the reticuloendothelial system, and intravascular hemolysis, which occurs within the blood vessel lumen.

Approximately two-thirds of hemolysis in sickle cell disease is extravascular and one-third intravascular.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 201 - 224
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crosby, WH. The metabolism of hemoglobin and bile pigment in hemolytic disease. Am J Med. 1955;18:112–122.CrossRefGoogle Scholar
Franco, RS, Yasin, Z, Lohmann, JM, et al. The survival characteristics of dense sickle cells. Blood. 2000;96:3610–3617.Google ScholarPubMed
Noguchi, CT, Schechter, AN. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood. 1981;58:1057–1068.Google ScholarPubMed
Nagel, RL, Steinberg, MH. Role of epistatic (modifier) genes in the modulation of the phenotypic diversity of sickle cell anemia. Pediatr Pathol Mol Med. 2001;20:123–136.CrossRefGoogle ScholarPubMed
Eaton, JW, Jacob, HS, White, JG. Membrane abnormalities of irreversibly sickled cells. Semin Hematol. 1979;16:52–64.Google ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. Vaso-occlusion by sickle cells: evidence for selective trapping of dense red cells. Blood. 1986;68:1162–1166.Google ScholarPubMed
McCurdy, PR, Sherman, AS. Irreversibly sickled cells and red cell survival in sickle cell anemia: a study with both DF32P and 51CR. Am J Med. 1978;64:253–258.CrossRefGoogle ScholarPubMed
Serjeant, GR, Serjeant, BE, Milner, PF. The irreversibly sickled cell; a determinant of haemolysis in sickle cell anaemia. Br J Haematol. 1969;17:527–533.CrossRefGoogle ScholarPubMed
Noguchi, CT. Polymerization in erythrocytes containing S and non-S hemoglobins. Biophys J. 1984;45:1153–1158.CrossRefGoogle ScholarPubMed
Brittenham, GM, Schechter, AN, Noguchi, CT. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood. 1985;65:183–189.Google ScholarPubMed
Hebbel, RP, Eaton, JW, Balasingam, M, Steinberg, MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982;70:1253–1259.CrossRefGoogle ScholarPubMed
Aslan, M, Ryan, TM, AdlerB, et al B, et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA. 2001;98:15215–15220.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Lefer, DJ, Granger, DN. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic Biol Med. 2006;40:1443–1453.CrossRefGoogle ScholarPubMed
Hsu, LL, Champion, HC, Campbell-Lee, SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. In press.
Hebbel, RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991;77:214–237.Google ScholarPubMed
Shalev, O, Hebbel, RP. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes. Blood. 1996;87:3948–3952.Google ScholarPubMed
Rice-Evans, C, Omorphos, SC, Baysal, E. Sickle cell membranes and oxidative damage. Biochem J. 1986;237:265–269.CrossRefGoogle ScholarPubMed
Rank, BH, Carlsson, J, Hebbel, RP. Abnormal redox status of membrane-protein thiols in sickle erythrocytes. J Clin Invest. 1985;75:1531–1537.CrossRefGoogle ScholarPubMed
Das, SK, Nair, RC. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol. 1980;44:87–92.CrossRefGoogle ScholarPubMed
Hebbel, RP, Miller, WJ. Phagocytosis of sickle erythrocytes: immunologic and oxidative determinants of hemolytic anemia. Blood. 1984;64:733–741.Google ScholarPubMed
Jain, SK, Shohet, SB. A novel phospholipid in irreversibly sickled cells: evidence for in vivo peroxidative membrane damage in sickle cell disease. Blood. 1984;63:362–367.Google ScholarPubMed
Platt, OS, Falcone, JF, Lux, SE. Molecular defect in the sickle erythrocyte skeleton. Abnormal spectrin binding to sickle inside-our vesicles. J Clin Invest. 1985;75:266–271.CrossRefGoogle ScholarPubMed
Schwartz, RS, Rybicki, AC, Heath, RH, Lubin, BH. Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage. J Biol Chem. 1987;262:15666–15672.Google ScholarPubMed
Goodman, SR. The irreversibly sickled cell: a perspective. Cell Mol Biol. 2004;50:53–58.Google ScholarPubMed
Lux, SE, John, KM, Karnovsky, MJ. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976;58:955–963.CrossRefGoogle ScholarPubMed
Lachant, NA, Davidson, WD, Tanaka, KR. Impaired pentose phosphate shunt function in sickle cell disease: a potential mechanism for increased Heinz body formation and membrane lipid peroxidation. Am J Hematol. 1983;15:1–13.CrossRefGoogle ScholarPubMed
Schrader, MC, Simplaceanu, V, Ho, C. Measurement of fluxes through the pentose phosphate pathway in erythrocytes from individuals with sickle cell anemia by carbon-13 nuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1993;1182:179–188.CrossRefGoogle ScholarPubMed
Schrier, SL. Pathophysiology of thalassemia. Curr Opin Hematol. 2002;9:123–126.CrossRefGoogle ScholarPubMed
Amer, J, Ghoti, H, Rachmilewitz, E, et al. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006;132:108–113.CrossRefGoogle ScholarPubMed
Wetterstroem, N, Brewer, GJ, Warth, JA, Mitchinson, A, Near, K. Relationship of glutathione levels and Heinz body formation to irreversibly sickled cells in sickle cell anemia. J Lab Clin Med. 1984;103:589–596.Google ScholarPubMed
Morris, CR, Suh, JH, Hagar, W, et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood. 2008;111:402–410.CrossRefGoogle ScholarPubMed
Chang, TL, Kakhniashvili, DG, Goodman, SR. Spectrin's E2/E3 ubiquitin conjugating/ligating activity is diminished in sickle cells. Am J Hematol. 2005;79:89–96.CrossRefGoogle ScholarPubMed
Hsu, YJ, Zimmer, WE, Goodman, SR. Erythrocyte spectrin's chimeric E2/E3 ubiquitin conjugating/ligating activity. Cell Mol Biol. 2005;51:187–193.Google ScholarPubMed
Ghatpande, SS, Goodman, SR. Ubiquitination of spectrin regulates the erythrocyte spectrin-protein-4.1-actin ternary complex dissociation: implications for the sickle cell membrane skeleton. Cell Mol Biol. 2004;50:67–74.Google ScholarPubMed
Gibson, XA, Shartava, A, McIntyreJ, et al J, et al. The efficacy of reducing agents or antioxidants in blocking the formation of dense cells and irreversibly sickled cells in vitro. Blood. 1998;91:4373–4378.Google ScholarPubMed
Pace, BS, Shartava, A, Pack-Mabien, A, et al. Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol. 2003;73:26–32.CrossRefGoogle ScholarPubMed
Jaja, SI, Aigbe, PE, Gbenebitse, S, Temiye, EO. Changes in erythrocytes following supplementation with alpha-tocopherol in children suffering from sickle cell anaemia. Niger Postgrad Med J. 2005;12:110–114.Google ScholarPubMed
Natta, C, Machlin, L. Plasma levels of tocopherol in sickle cell anemia subjects. Am J Clin Nutr. 1979;32:1359–1362.CrossRefGoogle ScholarPubMed
Hasanato, RM. Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia. Ann Saudi Med. 2006;26:17–21.CrossRefGoogle ScholarPubMed
Walter, PB, Fung, EB, Killilea, DW, et al. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006;135:254–263.CrossRefGoogle ScholarPubMed
Gbenebitse, S, Jaja, SI, Kehinde, MO. Effect of changes in plasma vitamin E level of vascular responses and lipid peroxidation in sickle cell anaemia subjects. Niger Postgrad Med J. 2005;12:81–84.Google ScholarPubMed
Ray, D, Deshmukh, P, Goswami, K, Garg, N. Antioxidant vitamin levels in sickle cell disorders. Natl Med J India. 2007;20:11–13.Google ScholarPubMed
Middelkoop, E, Lubin, BH, Bevers, EM, et al. Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins. Biochim Biophys Acta. 1988;937:281–288.CrossRefGoogle ScholarPubMed
Blumenfeld, N, Zachowski, A, Galacteros, F, Beuzard, Y, Devaux, PF. Transmembrane mobility of phospholipids in sickle erythrocytes: effect of deoxygenation on diffusion and asymmetry. Blood. 1991;77:849–854.Google ScholarPubMed
Kuypers, FA, Jong, K. The role of phosphatidylserine in recognition and removal of erythrocytes. Cell Mol Biol. 2004;50:147–158.Google ScholarPubMed
Jong, K, Geldwerth, D, Kuypers, FA. Oxidative damage does not alter membrane phospholipid asymmetry in human erythrocytes. Biochemistry. 1997;36:6768–6776.CrossRefGoogle Scholar
Lang, KS, Roll, B, Myssina, S, et al. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem. 2002;12:365–372.CrossRefGoogle ScholarPubMed
Kuypers, FA, Yuan, J, Lewis, RA, et al. Membrane phospholipid asymmetry in human thalassemia. Blood. 1998;91:3044–3051.Google ScholarPubMed
Westerman, MP, Diloy-Puray, M, Streczyn, M. Membrane components in the red cells of patients with sickle cell anemia. Relationship to cell aging and to irreversibility of sickling. Biochim Biophys Acta. 1979;557:149–155.CrossRefGoogle ScholarPubMed
Franck, PF, Bevers, EM, Lubin, BH, et al. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest. 1985;75:183–190.CrossRefGoogle Scholar
Liu, SC, Derick, LH, Zhai, S, Palek, J. Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells. Science. 1991;252:574–576.CrossRefGoogle ScholarPubMed
Choe, HR, Schlegel, RA, Rubin, E, Williamson, P, Westerman, MP. Alteration of red cell membrane organization in sickle cell anaemia. Br J Haematol. 1986;63:761–773.CrossRefGoogle ScholarPubMed
Liu, SC, Yi, SJ, Mehta, , et al. Red cell membrane remodeling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies. J Clin Invest. 1996;97:29–36.Google ScholarPubMed
Connor, J, Pak, CC, Schroit, AJ. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem. 1994;269:2399–2404.Google ScholarPubMed
Closse, C, chary-Prigent, J, Boisseau, MR. Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol. 1999;107:300–302.CrossRefGoogle ScholarPubMed
Setty, BN, Kulkarni, S, Stuart, MJ. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002;99:1564–1571.CrossRefGoogle ScholarPubMed
Manodori, AB, Barabino, GA, Lubin, BH, Kuypers, FA. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000;95:1293–1300.Google ScholarPubMed
Ballas, SK, Smith, ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood. 1992;79:2154–2163.Google ScholarPubMed
Fabry, ME, Benjamin, L, Lawrence, C, Nagel, RL. An objective sign in painful crisis in sickle cell anemia: the concomitant reduction of high density red cells. Blood. 1984;64:559–563.Google ScholarPubMed
Allan, D, Limbrick, AR, Thomas, P, Westerman, MP. Release of spectrin-free spicules on reoxygenation of sickled erythrocytes. Nature. 1982;295:612–613.CrossRefGoogle ScholarPubMed
Padilla, F, Bromberg, PA, Jensen, WN. The sickle-unsickle cycle: a cause of cell fragmentation leading to permanently deformed cells. Blood. 1973;41:653–660.Google ScholarPubMed
Platt, OS. Exercise-induced hemolysis in sickle cell anemia: shear sensitivity and erythrocyte dehydration. Blood. 1982;59:1055–1060.Google ScholarPubMed
Diggs, LW, Bibb, J. The erythrocyte in sickle cell anemia: Morphology, size, hemoglobin content, fragility and sedimentation rate. JAMA. 1939;112:695–701.CrossRefGoogle Scholar
Lange, RD, Minnich, V, Moore, CV. Effects of oxygen tension and of pH of the sickling and mechanical fragility of erythrocytes from patients with sickle cell anemia and the sickle cell trait. J Lab Clin Med. 1951;37:789–802.Google Scholar
Shen, SC, Fleming, EM. Experimental and clinical observations on increased mechanical fragility of erythrocytes. Science. 1944;100:387–389.CrossRefGoogle ScholarPubMed
Harris, JW, Brewster, HH, Ham, TH, Castle, WB. Studies on the destruction of red blood cells. X. The biophysics and biology of sickle-cell disease. AMA Arch Intern Med. 1956;97:145–168.CrossRefGoogle ScholarPubMed
Messmann, R, Gannon, S, Sarnaik, S, Johnson, RM. Mechanical properties of sickle cell membranes. Blood. 1990;75:1711–1717.Google ScholarPubMed
Liu, SC, Zhai, S, Palek, J. Detection of hemin release during hemoglobin S denaturation. Blood. 1988;71:1755–1758.Google ScholarPubMed
Petz, LD, Yam, P, Wilkinson, L, et al. Increased IgG molecules bound to the surface of red blood cells of patients with sickle cell anemia. Blood. 1984;64:301–304.Google ScholarPubMed
Bosman, GJ. Erythrocyte aging in sickle cell disease. Cell Mol Biol. 2004;50:81–86.Google ScholarPubMed
Galili, U, Clark, MR, Shohet, SB. Excessive binding of natural anti-alpha-galactosyl immunoglobin G to sickle erythrocytes may contribute to extravascular cell destruction. J Clin Invest. 1986;77:27–33.CrossRefGoogle Scholar
Hebbel, RP, Miller, WJ. Unique promotion of erythrophagocytosis by malondialdehyde. Am J Hematol. 1988;29:222–225.CrossRefGoogle ScholarPubMed
Low, PS, Waugh, SM, Zinke, K, Drenckhahn, D. The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science. 1985;227:531–533.CrossRefGoogle ScholarPubMed
Schluter, K, Drenckhahn, D. Co-clustering of denatured hemoglobin with band 3: its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes. Proc Natl Acad Sci USA. 1986;83:6137–6141.CrossRefGoogle ScholarPubMed
Green, GA, Kalra, VK. Sickling-induced binding of immunoglobulin to sickle erythrocytes. Blood. 1988;71:636–639.Google ScholarPubMed
Test, ST, Woolworth, VS. Defective regulation of complement by the sickle erythrocyte: evidence for a defect in control of membrane attack complex formation. Blood. 1994;83:842–852.Google ScholarPubMed
Liu, C, Marshall, P, Schreibman, I, et al. Interaction between terminal complement proteins C5b-7 and anionic phospholipids. Blood. 1999;93:2297–2301.Google ScholarPubMed
Schroit, AJ, Tanaka, Y, Madsen, J, Fidler, IJ. The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymmetry. Biol Cell. 1984;51:227–238.CrossRefGoogle ScholarPubMed
Boas, FE, Forman, L, Beutler, E. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA. 1998;95:3077–3081.CrossRefGoogle ScholarPubMed
Kean, LS, Brown, , Nichols, JW, et al. Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol. 2002;30:394–402.CrossRefGoogle ScholarPubMed
Wood, BL, Gibson, DF, Tait, JF. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood. 1996;88:1873–1880.Google ScholarPubMed
Atichartakarn, V, Angchaisuksiri, P, Aryurachai, K, et al. Relationship between hypercoagulable state and erythrocyte phosphatidylserine exposure in splenectomized haemoglobin E/beta-thalassaemic patients. Br J Haematol. 2002;118:893–898.CrossRefGoogle ScholarPubMed
Borenstain-Ben, Y, Barenholz, Y, Hy-Am, E, Rachmilewitz, EA, Eldor, A. Phosphatidylserine in the outer leaflet of red blood cells from beta-thalassemia patients may explain the chronic hypercoagulable state and thrombotic episodes. Am J Hematol. 1993;44:63–65.Google Scholar
Wang, RH, Phillips, G, Medof, ME, Mold, C. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J Clin Invest. 1993;92:1326–1335.CrossRefGoogle ScholarPubMed
Pearson, HA, Spencer, RP, Cornelius, EA. Functional asplenia in sickle-cell anemia. N Engl J Med. 1969;281:923–926.CrossRefGoogle ScholarPubMed
Powars, DR, Pegelow, CH. The spleen in sickle cell disease and thalassemia. Am J Pediatr Hematol Oncol. 1979;1:343–353.Google ScholarPubMed
Zimmerman, SA, Ware, RE. Palpable splenomegaly in children with haemoglobin SC disease: haematological and clinical manifestations. Clin Lab Haematol. 2000;22:145–150.CrossRefGoogle ScholarPubMed
Wright, JG, Hambleton, IR, Thomas, PW, et al. Postsplenectomy course in homozygous sickle cell disease. J Pediatr. 1999;134:304–309.CrossRefGoogle ScholarPubMed
Al Salem, AH, Qaisaruddin, S, Nasserallah, Z, al Dabbous, I, al Jam'a, A. Splenectomy in patients with sickle-cell disease. Am J Surg. 1996;172:254–258.CrossRefGoogle ScholarPubMed
Badaloo, A, Emond, A, Venugopal, S, Serjeant, G, Jackson, AA. The effect of splenectomy on whole body protein turnover in homozygous sickle cell disease. Acta Paediatr Scand. 1991;80:103–105.CrossRefGoogle ScholarPubMed
Robinson, SH. Degradation of hemoglobin. In: Williams, WJ, Beutler, E, Erslev, AJ, Lichtman, MA, eds. Hematology. New York: McGraw-Hill; 1983:388–395.Google Scholar
Schaer, DJ, Alayash, AI, Buehler, PW. Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a Scavenger Receptor. Antioxid Redox Signal. 2007;9:991–999.CrossRefGoogle ScholarPubMed
Philippidis, P, Mason, JC, Evans, BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–126.CrossRefGoogle ScholarPubMed
Jison, ML, Munson, PJ, Barb, JJ, et al. Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease. Blood. 2004;104:270–280.CrossRefGoogle ScholarPubMed
Ryter, SW, Otterbein, , Morse, D, Choi, AM. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem. 2002;234–235:249–263.CrossRefGoogle ScholarPubMed
Belcher, JD, Mahaseth, H, Welch, TE, et al. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J Clin Invest. 2006;116:808–816.CrossRefGoogle ScholarPubMed
Sedlak, TW, Snyder, SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics. 2004;113:1776–1782.CrossRefGoogle ScholarPubMed
Giblett, ER, Coleman, DH, Pirzio-Biroli, G, et al. Erythrokinetics: quantitative measurements of red cell production and destruction in normal subjects and patients with anemia. Blood. 1956;11:291–309.Google ScholarPubMed
Nielsen, MJ, Petersen, SV, Jacobsen, C, et al. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein. Blood. 2006.Google ScholarPubMed
Tizianello, A, Pannacciulli, I. The effect of splenomegaly on dilution curves of tagged erythrocytes and red blood cell volume. Coparative studies on normal, anaemic and splenomegalic patients. Acta Haematol. 1959;21:346–359.CrossRefGoogle ScholarPubMed
Nomof, N, Hopper, J, Brown, E, Scott, K, Wennesland, R. Simultaneous determinations of the total volume of red blood cells by use of carbon monoxide and chromium in healthy and diseased human subjects. J Clin Invest. 1954;33:1382–1387.CrossRefGoogle ScholarPubMed
Huff, RL, Feller, DD. Relation of circulating red cell volume to body density and obesity. J Clin Invest. 1956;35:1–10.CrossRefGoogle ScholarPubMed
Palmer, RM, Ashton, DS, Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–666.CrossRefGoogle ScholarPubMed
Lancaster, JRA tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide. 1997;1:18–30.CrossRefGoogle ScholarPubMed
Wink, DA, Mitchell, JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434–456.CrossRefGoogle ScholarPubMed
Quyyumi, AA, Dakak, N, Andrews, NP, et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest. 1995;95:1747–1755.CrossRefGoogle ScholarPubMed
Cannon, RO, Schechter, AN, Panza, JA, et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Invest. 2001;108:279–287.CrossRefGoogle ScholarPubMed
De, CR, Libby, P, PengHB, et al HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995;96:60–68.Google Scholar
Rother, RP, Bell, L, Hillmen, P, Gladwin, MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293:1653–1662.CrossRefGoogle ScholarPubMed
Wong, J, Fineman, JR, Heymann, MA. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr Res. 1994;35:664–670.CrossRefGoogle ScholarPubMed
Black, SM, Mata-Greenwood, E, Dettman, RW, et al. Emergence of smooth muscle cell endothelin B-mediated vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation. 2003;108:1646–1654.CrossRefGoogle ScholarPubMed
Schechter, AN, Gladwin, MT. Hemoglobin and the paracrine and endocrine functions of nitric oxide. N Engl J Med. 2003;348:1483–1485.CrossRefGoogle ScholarPubMed
Doherty, DH, Doyle, MP, Curry, SR, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol. 1998;16:672–676.CrossRefGoogle ScholarPubMed
Dou, Y, Maillett, DH, Eich, RF, Olson, JS. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys Chem. 2002;98:127–148.CrossRefGoogle ScholarPubMed
Reiter, CD, Wang, X, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8:1383–1389.CrossRefGoogle ScholarPubMed
Kim-Shapiro, DB, Schechter, AN, Gladwin, MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26:697–705.CrossRefGoogle ScholarPubMed
Jeffers, A, Gladwin, MT, Kim-Shapiro, DB. Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias. Free Radic Biol Med. 2006;41:1557–1565.CrossRefGoogle ScholarPubMed
Coin, JT, Olson, JS. The rate of oxygen uptake by human red blood cells. J Biol Chem. 1979;254:1178–1190.Google ScholarPubMed
Liu, X, Miller, MJ, Joshi, MS, et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem. 1998;273:18709–18713.CrossRefGoogle ScholarPubMed
Butler, AR, Megson, IL, Wright, PG. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta. 1998;1425:168–176.CrossRefGoogle ScholarPubMed
Liao, JC, Hein, TW, Vaughn, MW, Huang, KT, Kuo, L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci USA. 1999;96:8757–8761.CrossRefGoogle ScholarPubMed
Vaughn, MW, Kuo, L, Liao, JC. Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol. 1998;274:H1705–H1714.Google ScholarPubMed
Han, TH, Hyduke, DR, Vaughn, MW, Fukuto, JM, Liao, JC. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc Natl Acad Sci USA. 2002;99:7763–7768.CrossRefGoogle ScholarPubMed
Huang, KT, Han, TH, Hyduke, DR, et al. Modulation of nitric oxide bioavailability by erythrocytes. Proc Natl Acad Sci USA. 2001;98:11771–11776.CrossRefGoogle ScholarPubMed
Vaughn, MW, Huang, KT, Kuo, L, Liao, JC. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J Biol Chem. 2000;275:2342–2348.CrossRefGoogle ScholarPubMed
Savitsky, JP, Doczi, J, Black, J, Arnold, JD. A clinical safety trial of stroma-free hemoglobin. Clin Pharmacol Ther. 1978;23:73–80.CrossRefGoogle ScholarPubMed
Carmichael, FJ, Ali, AC, Campbell, JA, et al. A phase I study of oxidized raffinose cross-linked human hemoglobin. Crit Care Med. 2000;28:2283–2292.CrossRefGoogle ScholarPubMed
Lamy, ML, Daily, EK, Brichant, JF, et al. Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. The DCLHb Cardiac Surgery Trial Collaborative Group. Anesthesiology. 2000;92:646–656.CrossRefGoogle ScholarPubMed
Viele, MK, Weiskopf, RB, Fisher, D. Recombinant human hemoglobin does not affect renal function in humans: analysis of safety and pharmacokinetics. Anesthesiology. 1997;86:848–858.CrossRefGoogle Scholar
Saxena, R, Wijnhoud, AD, Carton, H, et al. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke. 1999;30:993–996.CrossRefGoogle ScholarPubMed
Saxena, R, Wijnhoud, AD, Man in ‘t Veld, AJ, et al. Effect of diaspirin cross-linked hemoglobin on endothelin-1 and blood pressure in acute ischemic stroke in man. J Hypertens. 1998;16:1459–1465.CrossRefGoogle ScholarPubMed
Przybelski, RJ, Daily, EK, Kisicki, JC, et al. Phase I study of the safety and pharmacologic effects of diaspirin cross-linked hemoglobin solution. Crit Care Med. 1996;24:1993–2000.CrossRefGoogle ScholarPubMed
Reah, G, Bodenham, AR, Mallick, A, Daily, EK, Przybelski, RJ. Initial evaluation of diaspirin cross-linked hemoglobin (DCLHb) as a vasopressor in critically ill patients. Crit Care Med. 1997;25:1480–1488.CrossRefGoogle ScholarPubMed
Lamuraglia, GM, O'Hara, PJ, Baker, WH, et al. The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-based solution. J Vasc Surg. 2000;31:299–308.CrossRefGoogle ScholarPubMed
Olson, JS, Foley, EW, Rogge, C, et al. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med. 2004;36:685–697.CrossRefGoogle ScholarPubMed
Murray, JA, Ledlow, A, Launspach, J, et al. The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology. 1995;109:1241–1248.CrossRefGoogle ScholarPubMed
Olsen, SB, Tang, DB, Jackson, MR, et al. Enhancement of platelet deposition by cross-linked hemoglobin in a rat carotid endarterectomy model. Circulation. 1996;93:327–332.CrossRefGoogle Scholar
Schafer, A, Wiesmann, F, Neubauer, S, et al. Rapid regulation of platelet activation in vivo by nitric oxide. Circulation. 2004;109:1819–1822.CrossRefGoogle ScholarPubMed
Simionatto, CS, Cabal, R, Jones, RL, Galbraith, RA. Thrombophlebitis and disturbed hemostasis following administration of intravenous hematin in normal volunteers. Am J Med. 1988;85:538–540.CrossRefGoogle ScholarPubMed
Villagra, J, Shiva, S, Hunter, , et al. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110:2166–2172.CrossRefGoogle ScholarPubMed
Sloan, EP, Koenigsberg, M, BrunettPH, et al PH, et al. Post hoc mortality analysis of the efficacy trial of diaspirin cross-linked hemoglobin in the treatment of severe traumatic hemorrhagic shock. J Trauma. 2002;52:887–895.Google ScholarPubMed
Sloan, EP, Koenigsberg, M, Gens, D, et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA. 1999;282:1857–1864.CrossRefGoogle ScholarPubMed
Gladwin, MT, Lancaster, JR, Freeman, BA, Schechter, AN. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med. 2003;9:496–500.CrossRefGoogle ScholarPubMed
Panza, JA, Casino, PR, Kilcoyne, CM, Quyyumi, AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468–1474.CrossRefGoogle ScholarPubMed
Gladwin, MT. Deconstructing endothelial dysfunction: soluble guanylyl cyclase oxidation and the NO resistance syndrome. J Clin Invest. 2006;116:2330–2332.CrossRefGoogle ScholarPubMed
Gladwin, MT, Schechter, AN, Ognibene, FP, et al. Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation. 2003;107:271–278.CrossRefGoogle ScholarPubMed
Eberhardt, RT, McMahon, L, Duffy, SJ, et al. Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels. Am J Hematol. 2003;74:104–111.CrossRefGoogle ScholarPubMed
Nath, KA, Shah, V, Haggard, JJ, et al. Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1949–R1955.CrossRefGoogle Scholar
Kaul, DK, Liu, XD, Fabry, ME, Nagel, RL. Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse. Am J Physiol Heart Circ Physiol. 2000;278:H1799–H1806.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Chang, HY, Nagel, RL, Fabry, ME. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest. 2004;114:1136–1145.CrossRefGoogle ScholarPubMed
Aslan, M, Ryan, TM, TownesTM, et al TM, et al. Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization. J Biol Chem. 2003;278:4194–4204.CrossRefGoogle ScholarPubMed
Pritchard, KA, Ou, J, Ou, Z, et al. Hypoxia-induced acute lung injury in murine models of sickle cell disease. Am J Physiol Lung Cell Mol Physiol. 2004;286:L705–L714.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Granger, DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J. 2005;19:989–991.CrossRefGoogle ScholarPubMed
Hsu, LL, Champion, HC, Campbell-Lee, SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2007;109:3088–3098.Google ScholarPubMed
Minneci, PC, Deans, KJ, Zhi, H, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005;115:3409–3417.CrossRefGoogle ScholarPubMed
Siegler, RL, Pysher, TJ, Tesh, VL, et al. Reduced nitric oxide bioavailability in a baboon model of Shiga toxin mediated hemolytic uremic syndrome (HUS). Renal Fail. 2005;27:635–641.CrossRefGoogle Scholar
Gramaglia, I, Sobolewski, P, Meays, D, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med. 2006;12:1417–1422.CrossRefGoogle ScholarPubMed
Sobolewski, P, Gramaglia, I, Frangos, J, Intaglietta, M, Heyde, HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21:415–422.CrossRefGoogle ScholarPubMed
Azizi, E, Dror, Y, Wallis, K. Arginase activity in erythrocytes of healthy and ill children. Clin Chim Acta. 1970;28:391–396.CrossRefGoogle ScholarPubMed
Morris, CR, Morris, SM, Hagar, W, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease?Am J Respir Crit Care Med. 2003;168:63–69.CrossRefGoogle ScholarPubMed
Morris, CR, Kato, GJ, Poljakovic, M, et al. Dysregulated Arginine Metabolism, Hemolysis-Associated Pulmonary Hypertension and Mortality in Sickle Cell Disease. JAMA. 2005;294:81–90.CrossRefGoogle ScholarPubMed
Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004;350:886–895.CrossRefGoogle ScholarPubMed
Radomski, MW, Palmer, RM, Moncada, S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2:1057–1058.CrossRefGoogle ScholarPubMed
Radomski, MW, Palmer, RM, Moncada, S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92:181–187.CrossRefGoogle ScholarPubMed
Setty, BN, Stuart, MJ, Dampier, C, Brodecki, D, Allen, JL. Hypoxaemia in sickle cell disease: biomarker modulation and relevance to pathophysiology. Lancet. 2003;362:1450–1455.CrossRefGoogle ScholarPubMed
Quinn, CT, Ahmad, N. Clinical correlates of steady-state oxyhaemoglobin desaturation in children who have sickle cell disease. Br J Haematol. 2005;131:129–134.CrossRefGoogle ScholarPubMed
Atichartakarn, V, Likittanasombat, K, Chuncharunee, S, et al. Pulmonary arterial hypertension in previously splenectomized patients with beta-thalassemic disorders. Int J Hematol. 2003;78:139–145.CrossRefGoogle ScholarPubMed
Chou, R, DeLoughery, TG. Recurrent thromboembolic disease following splenectomy for pyruvate kinase deficiency. Am J Hematol. 2001;67:197–199.CrossRefGoogle ScholarPubMed
Hayag-Barin, JE, Smith, RE, Tucker, FCHereditary spherocytosis, thrombocytosis, and chronic pulmonary emboli: a case report and review of the literature. Am J Hematol. 1998;57:82–84.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D, Deftereos, S, et al. Cardiovascular effects of splenomegaly and splenectomy in beta-thalassemia. Ann Hematol. 2005;84:353–357.CrossRefGoogle ScholarPubMed
Vichinsky, EP. Pulmonary hypertension in sickle cell disease. N Engl J Med. 2004;350:857–859.CrossRefGoogle ScholarPubMed
Westerman, MP, Pizzey, A, Hirschmann, JV, et al. Plasma ‘free’ HB is related to red cell derived vesicle numbers in sickle cell anemia and thalassemia intermedia: implications for nitric oxide (NO) scavenging and pulmonary hypertension [abstract]. Blood. 2004;104:465a.Google Scholar
Kisanuki, A, Kietthubthew, S, Asada, Y, et al. Intravenous injection of sonicated blood induces pulmonary microthromboembolism in rabbits with ligation of the splenic artery. Thromb Res. 1997;85:95–103.CrossRefGoogle ScholarPubMed
Kietthubthew, S, Kisanuki, A, Asada, Y, et al. Pulmonary microthromboembolism by injection of sonicated autologous blood in rabbits with splenic artery ligations. Southeast Asian J Trop Med Public Health. 1997;28(Suppl 3):138–140.Google ScholarPubMed
Platt, OS, Brambilla, DJ, Rosse, WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–1644.CrossRefGoogle ScholarPubMed
Platt, OS. Sickle cell anemia as an inflammatory disease. J Clin Invest. 2000;106:337–338.CrossRefGoogle ScholarPubMed
Kaul, DK, Hebbel, RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest. 2000;106:411–420.CrossRefGoogle ScholarPubMed
Nolan, VG, Wyszynski, DF, Farrer, , Steinberg, MH. Hemolysis-associated priapism in sickle cell disease. Blood. 2005;106:3264–3267.CrossRefGoogle ScholarPubMed
Kato, GJ, McGowan, VR, Machado, RF, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension and death in patients with sickle cell disease. Blood. 2006;107:2279–2285.CrossRefGoogle ScholarPubMed
Kato, GJ, Hsieh, M, Machado, R, et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol. 2006;81:503–510.CrossRefGoogle ScholarPubMed
Kato, GJ, Gladwin, MT, Steinberg, MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21:37–47.CrossRefGoogle ScholarPubMed
Collins, FS, Orringer, EP. Pulmonary hypertension and cor pulmonale in the sickle hemoglobinopathies. Am J Med. 1982;73:814–821.CrossRefGoogle ScholarPubMed
Powars, D, Weidman, JA, Odom-Maryon, T, Niland, JC, Johnson, C. Sickle cell chronic lung disease: prior morbidity and the risk of pulmonary failure. Medicine (Baltimore). 1988;67:66–76.CrossRefGoogle ScholarPubMed
Sutton, LL, Castro, O, Cross, DJ, Spencer, JE, Lewis, JF. Pulmonary hypertension in sickle cell disease. Am J Cardiol. 1994;74:626–628.CrossRefGoogle ScholarPubMed
Castro, O. Systemic fat embolism and pulmonary hypertension in sickle cell disease. Hematol Oncol Clin North Am. 1996;10:1289–1303.CrossRefGoogle ScholarPubMed
Simmons, BE, Santhanam, V, Castaner, A, et al. Sickle cell heart disease. Two-dimensional echo and Doppler ultrasonographic findings in the hearts of adult patients with sickle cell anemia. Arch Intern Med. 1988;148:1526–1528.CrossRefGoogle ScholarPubMed
Haque, AK, Gokhale, S, Rampy, BA, et al. Pulmonary hypertension in sickle cell hemoglobinopathy: a clinicopathologic study of 20 cases. Hum Pathol. 2002;33:1037–1043.CrossRefGoogle ScholarPubMed
Castro, O, Hoque, M, Brown, BD. Pulmonary hypertension in sickle cell disease: cardiac catheterization results and survival. Blood. 2003;101:1257–1261.CrossRefGoogle Scholar
Boussaada, R, Boubaker, K, Mourali, S, et al. [Pulmonary hypertension in sickle cell anemia. A case report]. Tunis Med. 2004;82(Suppl 1):180–184.Google ScholarPubMed
Ataga, KI, Sood, N, De, GG, et al. Pulmonary hypertension in sickle cell disease. Am J Med. 2004;117:665–669.CrossRefGoogle ScholarPubMed
Wu, TJ, Tseng, CD, Tseng, YZ, et al. [A case of beta-thalassemia major with mediastinal hematopoietic tumor and pulmonary hypertension]. Taiwan Yi Xue Hui Za Zhi. 1986;85:315–320.Google Scholar
Aessopos, A, Stamatelos, G, Skoumas, V, et al. Pulmonary hypertension and right heart failure in patients with beta-thalassemia intermedia. Chest. 1995;107:50–53.CrossRefGoogle ScholarPubMed
Jootar, P, Fucharoen, S. Cardiac involvement in beta-thalassemia/hemoglobin E disease: clinical and hemodynamic findings. Southeast Asian J Trop Med Public Health. 1990;21:269–273.Google Scholar
Grisaru, D, Rachmilewitz, EA, Mosseri, M, et al. Cardiopulmonary assessment in beta-thalassemia major. Chest. 1990;98:1138–1142.CrossRefGoogle ScholarPubMed
Finazzo, M, Midiri, M, D'Angelo, P, et al. [The heart of the patient with beta thalassemia major. Study with magnetic resonance]. Radiol Med (Torino). 1998;96:462–465.Google ScholarPubMed
Derchi, G, Fonti, A, Forni, GL, et al. Pulmonary hypertension in patients with thalassemia major. Am Heart J. 1999;138:384.CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D, Karagiorga, M, et al. Cardiac involvement in thalassemia intermedia: a multicenter study. Blood. 2001;97:3411–3416.CrossRefGoogle ScholarPubMed
Zakynthinos, E, Vassilakopoulos, T, Kaltsas, P, et al. Pulmonary hypertension, interstitial lung fibrosis, and lung iron deposition in thalassaemia major. Thorax. 2001;56:737–739.CrossRefGoogle ScholarPubMed
Morris, CR, Kuypers, FA, Kato, GJ, et al. Hemolysis-associated pulmonary hypertension in thalassemia. Ann NY Acad Sci. 2005;1054:481–485.CrossRefGoogle ScholarPubMed
Uchida, T, Miyake, T, Matsuno, M, et al. [Fatal pulmonary thromboembolism in a patient with paroxysmal nocturnal hemoglobinuria]. Rinsho Ketsueki. 1998;39:150–152.Google Scholar
Heller, PG, Grinberg, AR, Lencioni, M, Molina, MM, Roncoroni, AJ. Pulmonary hypertension in paroxysmal nocturnal hemoglobinuria. Chest. 1992;102:642–643.CrossRefGoogle ScholarPubMed
Hill, A, Richards, SJ, Hillmen, P. Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2007;137:181–192.CrossRefGoogle ScholarPubMed
Hayag-Barin, JE, Smith, RE, Tucker, FCHereditary spherocytosis, thrombocytosis, and chronic pulmonary emboli: a case report and review of the literature. Am J Hematol. 1998;57:82–84.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Verresen, D, Backer, W, Meerbeeck, J, et al. Spherocytosis and pulmonary hypertension coincidental occurrence or causal relationship?Eur Respir J. 1991;4:629–631.Google ScholarPubMed
Stewart, GW, Amess, JA, Eber, SW, et al. Thrombo-embolic disease after splenectomy for hereditary stomatocytosis. Br J Haematol. 1996;93:303–310.CrossRefGoogle ScholarPubMed
Jais, X, Till, SJ, Cynober, T, et al. An extreme consequence of splenectomy in dehydrated hereditary stomatocytosis: gradual thrombo-embolic pulmonary hypertension and lung-heart transplantation. Hemoglobin. 2003;27:139–147.CrossRefGoogle ScholarPubMed
Murali, B, Drain, A, Seller, D, Dunning, J, Vuylsteke, A. Pulmonary thromboendarterectomy in a case of hereditary stomatocytosis. Br J Anaesth. 2003;91:739–741.CrossRefGoogle Scholar
Jardine, DL, Laing, AD. Delayed pulmonary hypertension following splenectomy for congenital spherocytosis. Intern Med J. 2004;34:214–216.Google ScholarPubMed
Smedema, JP, Louw, VJ. Pulmonary arterial hypertension after splenectomy for hereditary spherocytosis. Cardiovasc J S Afr. 2007;18:84–89.Google ScholarPubMed
Alvarez, NR, Marin, R. [Severe maternal complications associated with pre-eclampsia: an almost forgotten pathology?]. Nefrologia. 2001;21:565–573.Google Scholar
Stuard, ID, Heusinkveld, RS, Moss, AJ. Microangiopathic hemolytic anemia and thrombocytopenia in primary pulmonary hypertension. N Engl J Med. 1972;287:869–870.CrossRefGoogle ScholarPubMed
McCarthy, JT, Staats, BA. Pulmonary hypertension, hemolytic anemia, and renal failure. A mitomycin-associated syndrome. Chest. 1986;89:608–611.CrossRefGoogle ScholarPubMed
Jubelirer, SJ. Primary pulmonary hypertension. Its association with microangiopathic hemolytic anemia and thrombocytopenia. Arch Intern Med. 1991;151:1221–1223.CrossRefGoogle ScholarPubMed
Suzuki, H, Nakasato, M, Sato, S, et al. Microangiopathic hemolytic anemia and thrombocytopenia in a child with atrial septal defect and pulmonary hypertension. Tohoku J Exp Med. 1997;181:379–384.CrossRefGoogle Scholar
Labrune, P, Zittoun, J, Duvaltier, I, et al. Haemolytic uraemic syndrome and pulmonary hypertension in a patient with methionine synthase deficiency. Eur J Pediatr. 1999;158:734–739.CrossRefGoogle Scholar
Fischer, EG, Marek, JM, Morris, A, Nashelsky, MB. Cholesterol granulomas of the lungs associated with microangiopathic hemolytic anemia and thrombocytopenia in pulmonary hypertension. Arch Pathol Lab Med. 2000;124:1813–1815.Google ScholarPubMed
Chou, R, DeLoughery, TG. Recurrent thromboembolic disease following splenectomy for pyruvate kinase deficiency. Am J Hematol. 2001;67:197–199.CrossRefGoogle ScholarPubMed
Zhang, Y, Qui, Y, Zhu, J, Gao, D. Pulmonary hypertension associated with autoimmune hemolytic anemia: a case report. Int J Cardiol. 2007;115:e1–e2.CrossRefGoogle ScholarPubMed
Lode, HN, Krings, G, Schulze-Neick, I, et al. Pulmonary hypertension in a case of Hb-Mainz hemolytic anemia. J Pediatr Hematol Oncol. 2007;29:173–177.CrossRefGoogle Scholar
Huchzermeyer, FW. Avian pulmonary hypertension syndrome. IV. Increased right ventricular mass in turkeys experimentally infected with Plasmodium durae. Onderstepoort J Vet Res. 1988;55:107–108.Google ScholarPubMed
Saissy, JM, Rouvin, B, Koulmann, P. [Severe malaria in intensive care units in 2003]. Med Trop (Mars.). 2003;63:258–266.Google Scholar
Ehrhardt, S, Mockenhaupt, FP, Anemana, SD, et al. High levels of circulating cardiac proteins indicate cardiac impairment in African children with severe Plasmodium falciparum malaria. Microbes Infect. 2005;7:1204–1210.CrossRefGoogle ScholarPubMed
Strauss, E, Da Costa Gayotto, LC, Antonelli, R, et al. Systemic surgical shunts and splenomegaly as causes of haemolysis in portal hypertension in mansonic schistosomiasis. Evaluation through serum levels of haptoglobin, hemopexin and bilirubins. J Hepatol. 1986;2:340–350.CrossRefGoogle ScholarPubMed
de CR, Herman, P, Pugliese, V, et al. Prevalence of pulmonary hypertension in patients with hepatosplenic Mansonic schistosomiasis–prospective study. Hepatogastroenterology. 2003;50:2028–2030.Google Scholar
Kyllonen, K, Mattila, T, Hartikainen, M, Tala, P. Mitral valve replacement with ball and tilting disc valve prosthesis. A clinical and haemodynamic study. Scand J Thorac Cardiovasc Surg. 1976;10:15–20.CrossRefGoogle ScholarPubMed
Iwaki, H, Kuraoka, S, Tatebe, S. [Hemolytic anemia due to aortic valve regurgitation after mitral valve replacement]. Kyobu Geka. 2003;56:124–128.Google Scholar
Chukwuemeka, AO, Turtle, MR, Trivedi, UH, Venn, GE, Chambers, DJ. A clinical evaluation of platelet function, haemolysis and oxygen transfer during cardiopulmonary bypass comparing the Quantum HF-6700 to the HF-5700 hollow fibre membrane oxygenator. Perfusion. 2000;15:479–484.CrossRefGoogle ScholarPubMed
Pierangeli, A, Masieri, V, Bruzzi, F, et al. Haemolysis during cardiopulmonary bypass: how to reduce the free haemoglobin by managing the suctioned blood separately. Perfusion. 2001;16:519–524.CrossRefGoogle ScholarPubMed
Gerrah, R, Shargal, Y, Elami, A. Impaired oxygenation and increased hemolysis after cardiopulmonary bypass in patients with glucose-6-phosphate dehydrogenase deficiency. Ann Thorac Surg. 2003;76:523–527.CrossRefGoogle ScholarPubMed
Takami, Y, Makinouchi, K, Nakazawa, T, et al. Hemolytic characteristics of a pivot bearing supported Gyro centrifugal pump (C1E3) simulating various clinical applications. Artif Organs. 1996;20:1042–1049.CrossRefGoogle ScholarPubMed
Jackson, N, Franklin, IM, Hughes, MA. Recurrent priapism following splenectomy for thalassaemia intermedia. Br J Surg. 1986;73:678.CrossRefGoogle ScholarPubMed
Rao, KR, Patel, AR. Priapism and thalassaemia intermedia. Br J Surg. 1986;73:1048.CrossRefGoogle ScholarPubMed
Macchia, P, Massei, F, Nardi, M, et al. Thalassemia intermedia and recurrent priapism following splenectomy. Haematologica. 1990;75:486–487.Google ScholarPubMed
Dore, F, Bonfigli, S, Pardini, S, Pirozzi, F, Longinotti, M. Priapism in thalassemia intermedia. Haematologica. 1991;76:523.Google ScholarPubMed
Andrieu, V, Dumonceau, O, Grange, MJ. Priapism in a patient with unstable hemoglobin: hemoglobin Koln. Am J Hematol. 2003;74:73–74.CrossRefGoogle Scholar
Gyan, E, Darre, S, Jude, B, et al. Acute priapism in a patient with unstable hemoglobin Perth and Factor V Leiden under effective oral anticoagulant therapy. Hematol J. 2001;2:210–211.CrossRefGoogle Scholar
Thuret, I, Bardakdjian, J, Badens, C, et al. Priapism following splenectomy in an unstable hemoglobin: hemoglobin Olmsted beta 141 (H19) Leu–>Arg. Am J Hematol. 1996;51:133–136.3.0.CO;2-Z>CrossRefGoogle Scholar
Goulding, FJ. Priapism caused by glucose phosphate isomerase deficiency. J Urol. 1976;116:819–820.CrossRefGoogle ScholarPubMed
Edney, MT, Schned, AR, Cendron, M, Chaffee, S, Ellsworth, PI. Priapism in a 15-year-old boy with congenital dyserythropoietic anemia type II (hereditary erythroblastic multinuclearity with positive acidified serum lysis test). J Urol. 2002;167:309–310.CrossRefGoogle Scholar
Nolan, VG, Baldwin, C, Ma, Q, et al. Association of single nucleotide polymorphisms in klotho with priapism in sickle cell anaemia. Br J Haematol. 2005;128:266–272.CrossRefGoogle ScholarPubMed
Christakis, J, Vavatsi, N, Hassapopoulou, H, et al. Comparison of homozygous sickle cell disease in northern Greece and Jamaica. Lancet. 1990;335:637–640.CrossRefGoogle ScholarPubMed
Champion, HC, Bivalacqua, TJ, Takimoto, E, Kass, DA, Burnett, AL. Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci USA. 2005;102:1661–1666.CrossRefGoogle ScholarPubMed
Sawhney, H, Weedon, J, Gillette, P, Solomon, W, Braverman, A. Predilection of hemolytic anemia-associated leg ulcers for the medial malleolus. Vasa. 2002;31:191–193.CrossRefGoogle ScholarPubMed
Fucharoen, S, Ketvichit, P, Pootrakul, P, et al. Clinical manifestation of beta-thalassemia/hemoglobin E disease. J Pediatr Hematol Oncol. 2000;22:552–557.CrossRefGoogle ScholarPubMed
Eckman, JR. Leg ulcers in sickle cell disease. Hematol Oncol Clin North Am. 1996;10:1333–1344.CrossRefGoogle ScholarPubMed
Koshy, M, Entsuah, R, Koranda, A, et al. Leg ulcers in patients with sickle cell disease. Blood. 1989;74:1403–1408.Google ScholarPubMed
Levy, . Foot and ankle ulcers associated with hematologic disorders. Clin Podiatry. 1985;2:631–637.Google ScholarPubMed
Gimmon, Z, Wexler, MR, Rachmilewitz, EA. Juvenile leg ulceration in beta-thalassemia major and intermedia. Plast Reconstr Surg. 1982;69:320–325.CrossRefGoogle ScholarPubMed
Daneshmend, TK, Peachey, RD. Leg ulcers in alpha-thalassaemia (haemoglobin H disease). Br J Dermatol. 1978;98:233–235.CrossRefGoogle Scholar
Stevens, DM, Shupack, JL, Javid, J, Silber, R. Ulcers of the leg in thalassemia. Arch Dermatol. 1977;113:1558–1560.CrossRefGoogle ScholarPubMed
Leverkus, M, Schwaaf, A, Brocker, EB, Runger, TM. Recurrent hemolysis-associated pseudoerysipelas of the lower legs in a patient with congenital spherocytosis. J Am Acad Dermatol. 2004;51:1019–1023.CrossRefGoogle Scholar
Giraldi, S, Abbage, KT, Marinoni, LP, et al. Leg ulcer in hereditary spherocytosis. Pediatr Dermatol. 2003;20:427–428.CrossRefGoogle ScholarPubMed
Lawrence, P, Aronson, I, Saxe, N, Jacobs, P. Leg ulcers in hereditary spherocytosis. Clin Exp Dermatol. 1991;16:28–30.CrossRefGoogle ScholarPubMed
Vanscheidt, W, Leder, O, Vanscheidt, E, et al. Leg ulcers in a patient with spherocytosis: a clinicopathological report. Dermatologica. 1990;181:56–59.CrossRefGoogle Scholar
Rivera-Biaschoechea, ZA. Hereditary spherocytosis with leg ulcer and unaffected parents or siblings. Report of one case. Bol Asoc Med P R. 1964;56:109–114.Google Scholar
Nolan, VG, Adewoye, A, Baldwin, C, et al. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol. 2006;133:570–578.CrossRefGoogle ScholarPubMed
Kato, GJ, Hsieh, M, Machado, R, et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol. 2006;81:503–510.CrossRefGoogle ScholarPubMed
Pegelow, CH, Colangelo, L, Steinberg, M, et al. Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med. 1997;102:171–177.CrossRefGoogle ScholarPubMed
Buchanan, GR, DeBaun, MR, Quinn, CT, Steinberg, MH. Sickle cell disease. Hematology Am Soc Hematol Educ Program. 200:435–447.
Steinberg, MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129:465–481.CrossRefGoogle ScholarPubMed
Ohene-Frempong, K, Weiner, SJ, Sleeper, , et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–294.Google ScholarPubMed
Lezcano, NE, Odo, N, Kutlar, A, Brambilla, D, Adams, RJ. Regular transfusion lowers plasma free hemoglobin in children with sickle-cell disease at risk for stroke. Stroke. 2006;37:1424–1426.CrossRefGoogle ScholarPubMed
Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004;350:886–895.CrossRefGoogle ScholarPubMed
Graham, JK, Mosunjac, M, Hanzlick, RL, Mosunjac, M. Sickle cell lung disease and sudden death: a retrospective/prospective study of 21 autopsy cases and literature review. Am J Forensic Med Pathol. 2007;28:168–172.CrossRefGoogle ScholarPubMed
Aessopos, A, Stamatelos, G, Skoumas, V, et al. Pulmonary hypertension and right heart failure in patients with beta-thalassemia intermedia. Chest. 1995;107:50–53.CrossRefGoogle ScholarPubMed
Wu, KH, Chang, JS, Su, BH, Peng, CT. Tricuspid regurgitation in patients with beta-thalassemia major. Ann Hematol. 2004;83:779–783.CrossRefGoogle ScholarPubMed
Singer, ST, Kuypers, FA, Styles, L, et al. Pulmonary hypertension in thalassemia: Association with platelet activation and hypercoagulable state. Am J Hematol. 2006;81:670–675.CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D, Deftereos, S, et al. Thalassemia heart disease: a comparative evaluation of thalassemia major and thalassemia intermedia. Chest. 2005;127:1523–1530.CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D, Hatziliami, A, et al. Cardiac status in well-treated patients with thalassemia major. Eur J Haematol. 2004;73:359–366.CrossRefGoogle ScholarPubMed
Ataga, KI, Sood, N, De, GG, et al. Pulmonary hypertension in sickle cell disease. Am J Med. 2004;117:665–669.CrossRefGoogle ScholarPubMed
Castro, LM, Jonassaint, JC, Graham, FL, Ashley-Koch, A, Telen, MJ. Pulmonary hypertension associated with sickle cell disease: Clinical and laboratory endpoints and disease outcomes. Am J Hematol. 2008;83:19–25.CrossRefGoogle ScholarPubMed
Ataga, KI, Sood, N, De, GG, et al. Pulmonary hypertension in sickle cell disease. Am J Med. 2004;117:665–669.CrossRefGoogle ScholarPubMed
Ataga, KI, Moore, CG, Jones, S, et al. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. Br J Haematol. 2006;134:109–115.CrossRefGoogle ScholarPubMed
Taylor, JG, Woods, GM, Machado, R, Kato, GJ, Gladwin, MT. Severe pulmonary hypertension in an adolescent with sickle cell disease. Am J Hematol. 2007;83:71–72.CrossRefGoogle Scholar
Kato, GJ, Onyekwere, OC, Gladwin, MT. Pulmonary hypertension in sickle cell disease: relevance to children. Pediatr Hematol Oncol. 2007;24:159–170.CrossRefGoogle Scholar
Young, EM, Zilberman, MV, Du, W, Sarnaik, SA. Pulmonary hypertension in pediatric patients with sickle cell disease: a retrospective study. Blood. 2004;104:23b.Google Scholar
Onyekwere, OC, Campbell, AD, Teshome, M, et al. Pulmonary hypertension in sickle cell disease children and adolescents. Pediatr Cardiol. 2007;24:159–170.Google Scholar
Ambrusko, SJ, Gunawardena, S, Sakara, A, et al. Elevation of tricuspid regurgitant jet velocity, a marker for pulmonary hypertension in children with sickle cell disease. Pediatr Blood Cancer. 2006;47:907–913.CrossRefGoogle ScholarPubMed
Liem, RI, Young, LT, Thompson, AA. Tricuspid regurgitant jet velocity is associated with hemolysis in children and young adults with sickle cell disease evaluated for pulmonary hypertension. Haematologica. 2007;92:1549–1552.CrossRefGoogle Scholar
Minniti, CP, Sable, C, Campbell, A, et al. Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease: association with hemolysis and hemoglobin oxygen desaturation. Br J Haematol. In press.
Sedrak, A, Rao, SP, Miller, ST, Hekmet, V, Rao, M. Pulmonary hypertension in children and adolescents with sickle cell disease. Blood. 2006;108:21b–22b.Google Scholar
Deem, S, Kim, SS, Min, JH, et al. Pulmonary vascular effects of red blood cells containing S-nitrosated hemoglobin. Am J Physiol Heart Circ Physiol. 2004;287:H2561–H2568.CrossRefGoogle ScholarPubMed
Sachdev, V, Machado, RF, Shizukuda, Y, et al. Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol. 2007;49:472–479.CrossRefGoogle ScholarPubMed
Anthi, A, Machado, RF, Jison, ML, et al. Hemodynamic and functional assessment of patients with sickle cell disease and pulmonary hypertension. Am J Respir Crit Care Med. 2007;175:1272–1279.CrossRefGoogle ScholarPubMed
Machado, RF, Mack, AK, Martyr, S, et al. Severity of pulmonary hypertension during vaso-occlusive pain crisis and exercise in patients with sickle cell disease. Br J Haematol. 2007;136:319–325.CrossRefGoogle ScholarPubMed
Bossone, E, Rubenfire, M, Bach, DS, Ricciardi, M, Armstrong, WF. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33:1662–1666.CrossRefGoogle Scholar
Little, JA, McGowan, VR, Kato, GJ, et al. Combination erythropoietin-hydroxyurea therapy in sickle cell disease: experience from the National Institutes of Health and a literature review. Haematologica. 2006;91:1076–1083.Google Scholar
Machado, RF, Martyr, S, Kato, GJ, et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol. 2005;130:445–453.CrossRefGoogle ScholarPubMed
Machado, RF, Gladwin, MT. Chronic sickle cell lung disease: new insights into the diagnosis, pathogenesis and treatment of pulmonary hypertension. Br J Haematol. 2005;129:449–464.CrossRefGoogle ScholarPubMed
Lin, EE, Rodgers, GP, Gladwin, MT. Hemolytic anemia-associated pulmonary hypertension in sickle cell disease. Curr Hematol Rep. 2005;4:117–125.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×