Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:12:55.494Z Has data issue: false hasContentIssue false

9 - Placental mechanisms and developmental origins of health and disease

Published online by Cambridge University Press:  08 August 2009

Leslie Myatt
Affiliation:
University of Cincinnati
Victoria Roberts
Affiliation:
University of Cincinnati
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The placenta plays a unique role in supporting the fetal allograft throughout gestation, protecting against immune rejection whilst also serving to supply oxygen and nutrients to, and remove carbon dioxide and waste products from, the fetus. As the nutrient interface between mother and fetus, the placenta may passively or actively transfer nutrients to the fetus or metabolise them en route. In addition the placenta produces a variety of peptide and steroid hormones that affect placental, maternal and fetal metabolism and development. The developmental origins of health and adult disease hypothesis proposes that alterations in fetal development, or adaptations of the fetus to alterations in the normal amount or pattern of substrate supply across the placenta, lead somehow to cardiovascular and metabolic disease in adult life. There is now abundant evidence both from human epidemiological studies and from animal studies that maternal nutrition may ‘programme’ the offspring for adult disease. This effect may be direct but it is more likely to be mediated in some manner by placental structure and/or function regulating the amount or composition of nutrients transferred. Does the placenta therefore play an active or a passive role in programming? Reduced fetal and placental weights are both associated with fetal programming. However, it is argued that, rather than reduced placental weight (and function) being linked to reduced fetal weight in a cause-and-effect relationship, reduced weight(s) might be a surrogate marker for an adverse intrauterine experience.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. H., Porras, A., Alonso, G.et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell, 6, 109–16.CrossRefGoogle Scholar
Adelman, D. M., Gertsenstein, M., Nagy, A., Simon, M. C. and Maltepe, E. (2000). Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev., 14, 3191–203.CrossRefGoogle ScholarPubMed
Ahmed, A. W. M. and Khaliq, A. (1997). J. Soc. Gynecol. Investig., 4, A663.
Alfaidy, N., Gupta, S., DeMarco, C., Caniggia, I. and Challis, J. R. (2002). Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J. Clin. Endocrinol. Metab., 87, 4797–805.CrossRefGoogle ScholarPubMed
Ayuk, P. T., Theophanous, D., Souza, S. W., Sibley, C. P. and Glazier, J. D. (2002). L-arginine transport by the microvillous plasma membrane of the syncytiotrophoblast from human placenta in relation to nitric oxide production: effects of gestation, preeclampsia, and intrauterine growth restriction. J. Clin. Endocrinol. Metab., 87, 747–51.CrossRefGoogle ScholarPubMed
Barak, Y., Nelson, M. C., Ong, E. S.et al. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell, 4, 585–95.CrossRefGoogle ScholarPubMed
Bartha, J. L., Romero-Carmona, R., Escobar-Llompart, M., Paloma-Castro, O. and Comino-Delgado, R. (2003). Human chorionic gonadotropin and vascular endothelial growth factor in normal and complicated pregnancies. Obstet. Gynecol., 102, 995–9.Google ScholarPubMed
Benirschke, K. and Kaufmann, P. (2000). Pathology of the Human Placenta. New York, NY: Springer.CrossRefGoogle Scholar
Brosens, I. A., Robertson, W. B. and Dixon, H. G. (1970). The role of the spiral arteries in the pathogenesis of pre-eclampsia. J. Pathol., 101, Pⅵ.Google ScholarPubMed
Burton, G. J., Hempstock, J. and Jauniaux, E. (2001). Nutrition of the human fetus during the first trimester: a review. Placenta, 22 (Suppl. A) S70–7.CrossRefGoogle ScholarPubMed
Cetin, I. (2003). Placental transport of amino acids in normal and growth-restricted pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol., 110 (Suppl. 1), S50–4.CrossRefGoogle ScholarPubMed
Challis, J. R., Sloboda, D. M., Alfaidy, N.et al. (2002). Prostaglandins and mechanisms of preterm birth. Reproduction, 124, 1–17.CrossRefGoogle ScholarPubMed
Charnock-Jones, D. S., Kaufmann, P. and Mayhew, T. M. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta, 25, 103–13.CrossRefGoogle ScholarPubMed
Constancia, M., Hemberger, M., Hughes, J., et al. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945–8.CrossRefGoogle ScholarPubMed
Cooper, J. C., Sharkey, A. M., Charnock-Jones, D. S., Palmer, C. R. and Smith, S. K. (1996).VEGF mRNA levels in placentae from pregnancies complicated by pre-eclampsia. Br. J. Obstet. Gynaecol., 103, 1191–6.CrossRefGoogle ScholarPubMed
Cramer, S., Beveridge, M., Kilberg, M. and Novak, D. (2002). Physiological importance of system A-mediated amino acid transport to rat fetal development. Am. J. Physiol. Cell Physiol., 282, C153–60.CrossRefGoogle ScholarPubMed
Dao, D., Frank, D., Qian, N.et al. (1998). IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum. Mol. Genet., 7, 597–608.CrossRefGoogle ScholarPubMed
Fernandez-Twinn, D. S., Ozanne, S. E., Ekizoglou, S.et al. (2003). The maternal endocrine environment in the low-protein model of intra-uterine growth restriction. Br. J. Nutr., 90, 815–22.CrossRefGoogle ScholarPubMed
Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. and Fisher, S. J. (1996). Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest., 97, 540–50.CrossRefGoogle ScholarPubMed
Genbacev, O., Zhou, Y., Ludlow, J. W. and Fisher, S. J. (1997). Regulation of human placental development by oxygen tension. Science, 277, 1669–72.CrossRefGoogle ScholarPubMed
Giugliano, D., Ceriello, A. and Paolisso, G. (1996). Oxidative stress and diabetic vascular complications. Diabetes Care, 19, 257–67.CrossRefGoogle ScholarPubMed
Godfrey, K. M. (1998). Maternal regulation of fetal development and health in adult life. Eur. J. Obstet. Gynecol. Reprod. Biol., 78, 141–50.CrossRefGoogle ScholarPubMed
Gratton, R. J., Asano, H. and Han, V. K. (2002). The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta, 23, 303–10.CrossRefGoogle ScholarPubMed
Hahn, T., Barth, S., Graf, R.et al. (1999). Placental glucose transporter expression is regulated by glucocorticoids. J. Clin. Endocrinol. Metab., 84, 1445–52.Google ScholarPubMed
Harrington, K. F., Campbell, S., Bewley, S. and Bower, S. (1991). Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur. J. Obstet. Gynecol. Reprod. Biol., 42 (Suppl.) S14–20.Google ScholarPubMed
Hauguel-de Mouzon, S. and Shafrir, E. (2001). Carbohydrate and fat metabolism and related hormonal regulation in normal and diabetic placenta. Placenta, 22, 619–27.CrossRefGoogle ScholarPubMed
Illsley, N. P. (2000).Placental glucose transport in diabetic pregnancy. Clin. Obstet. Gynecol., 43, 116–26.CrossRefGoogle ScholarPubMed
Irwin, J. C., Suen, L. F., Martina, N. A., Mark, S. P. and Giudice, L. C. (1999). Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum. Reprod., 14 (Suppl. 2), 90–6.CrossRefGoogle ScholarPubMed
Jansson, T. and Powell, T. L. (2000). Placental nutrient transfer and fetal growth. Nutrition, 16, 500–2.CrossRefGoogle ScholarPubMed
Jansson, T., Scholtbach, V. and Powell, T. L. (1998). Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr. Res., 44, 532–7.CrossRefGoogle ScholarPubMed
Jansson, T., Wennergren, M. and Powell, T. L. (1999). Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am. J. Obstet. Gynecol., 180, 163–8.CrossRefGoogle ScholarPubMed
Jansson, T., Ekstrand, Y., Wennergren, M. and Powell, T. L. (2001). Placental glucose transport in gestational diabetes mellitus. Am. J. Obstet. Gynecol., 184, 111–16.CrossRefGoogle ScholarPubMed
Jansson, T., Ekstrand, Y., Bjorn, C., Wennergren, M. and Powell, T. L. (2002). Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes, 51, 2214–19.CrossRefGoogle ScholarPubMed
Jansson, N., Greenwood, S. L., Johansson, B. R., Powell, T. L. and Jansson, T. (2003). Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J. Clin. Endocrinol. Metab., 88, 1205–11.CrossRefGoogle ScholarPubMed
Jauniaux, E. (1996). Intervillous circulation in the first trimester: the phantom of the color Doppler obstetric opera. Ultrasound Obstet. Gynecol., 8, 73–6.CrossRefGoogle ScholarPubMed
Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N. and Burton, G. J. (2000). Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am. J. Pathol., 157, 2111–22.CrossRefGoogle ScholarPubMed
Jauniaux, E., Greenwold, N., Hempstock, J. and Burton, G. J. (2003). Comparison of ultrasonographic and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil. Steril., 79, 100–6.CrossRefGoogle ScholarPubMed
Kaminsky, S., Sibley, C. P., Maresh, M., Thomas, C. R. and Souza, S. W. (1991a). The effects of diabetes on placental lipase activity in the rat and human. Pediatr. Res., 30, 541–3.CrossRefGoogle Scholar
Kaminsky, S., Souza, S. W., Massey, R. F., Smart, J. L. and Sibley, C. P. (1991b). Effects of maternal undernutrition and uterine artery ligation on placental lipase activities in the rat. Biol. Neonate, 60, 201–6.CrossRefGoogle Scholar
Kaufmann, P., Mayhew, T. M. and Charnock-Jones, D. S. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta, 25, 114–26.CrossRefGoogle ScholarPubMed
Kingdom, J. C. and Kaufmann, P. (1997). Oxygen and placental villous development: origins of fetal hypoxia. Placenta, 18, 613–21; discussion 623–6.CrossRefGoogle ScholarPubMed
Kossenjans, W., Eis, A., Sahay, R., Brockman, D. and Myatt, L. (2000). Role of peroxynitrite in altered fetal–placental vascular reactivity in diabetes or preeclampsia. Am. J. Physiol. Heart. Circ. Physiol., 278, H1311–19.CrossRefGoogle ScholarPubMed
Krozowski, Z., MaGuire, J. A., Stein-Oakley, A. N., Dowling, J., Smith, R. E. and Andrews, R. K. (1995). Immunohistochemical localization of the 11 beta-hydroxysteroid dehydrogenase type II enzyme in human kidney and placenta. J. Clin. Endocrinol. Metab., 80, 2203–9.Google ScholarPubMed
Laatikainen, T., Virtanen, T., Kaaja, R. and Salminen-Lappalainen, K. (1991). Corticotropin-releasing hormone in maternal and cord plasma in pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 39, 19–24.CrossRefGoogle ScholarPubMed
Lepercq, J., Guerre-Millo, M., Andre, J., Cauzac, M. and Hauguel-de Mouzon, S. (2003). Leptin: a potential marker of placental insufficiency. Gynecol. Obstet. Invest., 55, 151–5.CrossRefGoogle ScholarPubMed
Lindsay, R. S., Lindsay, R. M., Waddell, B. J. and Seckl, J. R. (1996). Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia, 39, 1299–305.CrossRefGoogle ScholarPubMed
Lyall, F., Gibson, J. L., Greer, I. A., Brockman, D. E., Eis, A. L. and Myatt, L. (1998). Increased nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care, 21, 1753–8.CrossRefGoogle ScholarPubMed
Mahendran, D., Donnai, P., Glazier, J. D., Souza, S. W., Boyd, R. D. and Sibley, C. P. (1993). Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr. Res., 34, 661–5.CrossRefGoogle ScholarPubMed
McMullen, S., Osgerby, J. C., Thurston, L. M.et al. (2004). Alterations in placental 11 beta-hydroxysteroid dehydrogenase (11 betaHSD) activities and fetal cortisol: cortisone ratios induced by nutritional restriction prior to conception and at defined stages of gestation in ewes. Reproduction, 127, 717–25.CrossRefGoogle ScholarPubMed
Mizuno, Y., Sotomaru, Y., Katsuzawa, Y., et al. (2002). Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem. Biophys. Res. Commun., 290, 1499–505.CrossRefGoogle ScholarPubMed
Mudgett, J. S., Ding, J., Guh-Siesel, L.et al. (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA, 97, 10454–9.CrossRefGoogle ScholarPubMed
Murphy, V. E. and Clifton, V. L. (2003). Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta, 24, 739–44.CrossRefGoogle ScholarPubMed
Muttukrishna, S., Knight, P. G., Groome, N. P., Redman, C. W. and Ledger, W. L. (1997). Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet, 349, 1285–8.CrossRefGoogle ScholarPubMed
Myatt, L. (2002) Role of placenta in preeclampsia. Endocrine, 19, 103–11.CrossRefGoogle ScholarPubMed
Myatt, L., Rosenfield, R. B., Eis, A. L., Brockman, D. E., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension, 28, 488–93.CrossRefGoogle ScholarPubMed
Nelson, D. M., Smith, S. D., Furesz, T. C.et al. (2003). Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. Am. J. Physiol. Cell Physiol., 284, C310–15.CrossRefGoogle ScholarPubMed
Page, N. M., Woods, R. J., Gardiner, S. M.et al. (2000). Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature, 405, 797–800.CrossRefGoogle ScholarPubMed
Pepe, G. J., Burch, M. G. and Albrecht, E. D. (2001). Localization and developmental regulation of 11beta-hydroxysteroid dehydrogenase-1 and -2 in the baboon syncytiotrophoblast. Endocrinology, 142, 68–80.CrossRefGoogle ScholarPubMed
Rajakumar, A., Whitelock, K. A., Weissfeld, L. A., Daftary, A. R., Markovic, N. and Conrad, K. P. (2001). Selective overexpression of the hypoxia-inducible transcription factor, HIF-2alpha, in placentas from women with preeclampsia. Biol. Reprod., 64, 499–506.CrossRefGoogle ScholarPubMed
Ranheim, T., Staff, A. C. and Henriksen, T. (2001). VEGF mRNA is unaltered in decidual and placental tissues in preeclampsia at delivery. Acta Obstet. Gynecol. Scand., 80, 93–8.CrossRefGoogle ScholarPubMed
Regnanlt, T. R., Vrijer, B., Galan, H. L.et al. (2003). The relationship between transplacental O2 diffusion and placental expression of PIGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J. Physiol., 550, 641–56.CrossRefGoogle Scholar
Reik, W., Constancia, M., Fowden, A.et al. (2003). Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol., 547, 35–44.CrossRefGoogle ScholarPubMed
Seckl, J. R., Cleasby, M. and Nyirenda, M. J. (2000). Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int., 57, 1412–17.CrossRefGoogle ScholarPubMed
Sheppard, B. L. and Bonnar, J. (1976). The ultrastructure of the arterial supply of the human placenta in pregnancy complicated by fetal growth retardation. Br. J. Obstet. Gynaecol., 83, 948–59.CrossRefGoogle ScholarPubMed
Shin, J. C., Lee, J. H., Yang, D. E., Moon, H. B., Rha, J. G. and Kim, S. P. (2003). Expression of insulin-like growth factor-II and insulin-like growth factor binding protein-1 in the placental basal plate from pre-eclamptic pregnancies. Int. J. Gynaecol. Obstet., 81, 273–80.CrossRefGoogle ScholarPubMed
Shore, V. H., Wang, T. H., Wang, C. L., Torry, R. J., Caudle, M. R. and Torry, D. S. (1997). Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta, 18, 657–65.CrossRefGoogle ScholarPubMed
Sibley, C. P., Coan, P. M., Ferguson-Smith, A. C.et al. (2004). Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA, 101, 8204–8.CrossRefGoogle ScholarPubMed
Sun, K., Yang, K. and Challis, J. R. (1998). Glucocorticoid actions and metabolism in pregnancy: implications for placental function and fetal cardiovascular activity. Placenta, 19, 353–60.CrossRefGoogle ScholarPubMed
Vonnahme, K. A. and Ford, S. P. (2004). Differential expression of the vascular endothelial growth factor-receptor system in the gravid uterus of Yorkshire and Meishan pigs. Biol. Reprod., 71, 163–9.CrossRefGoogle ScholarPubMed
Wallace, J., Bourke, D., Da Silva, P. and Aitken, R. (2001). Nutrient partitioning during adolescent pregnancy. Reproduction, 122, 347–57.CrossRefGoogle ScholarPubMed
Wallace, J. M., Aitken, R. P., Milne, J. S. and Hay, W. W. (2004). Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol. Reprod., 71, 1055–62.CrossRefGoogle ScholarPubMed
Wang, Q., Fuj, H. ii and Knipp, G. T. (2002). Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta, 23, 661–71.CrossRefGoogle ScholarPubMed
Wang, Y., Walsh, S. W. and Kay, H. H. (1992). Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am. J. Obstet. Gynecol., 167, 946–9.CrossRefGoogle ScholarPubMed
Welberg, L. A., Seckl, J. R. and Holmes, M. C. (2000). Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci., 12, 1047–54.CrossRefGoogle ScholarPubMed
Zhang, E. G., Smith, S. K., Baker, P. N. and Charnock-Jones, D. S. (2001). The regulation and localization of angiopoietin-1, -2, and their receptor Tie2 in normal and pathologic human placentae. Mol. Med., 7, 624–35.Google ScholarPubMed
Zhou, Y., McMaster, M., Woo, K.et al. (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol., 160, 1405–23.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×