Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T20:05:22.347Z Has data issue: false hasContentIssue false

14 - Role of Visual Attention in Developmental Dyslexia

from Part II - Cross-Linguistic Perspectives on Developmental Dyslexia

Published online by Cambridge University Press:  27 September 2019

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

Attention is a neurocognitive process composed by subprocesses located in several brain areas and controlled by specific neurotransmitters (Petersen & Posner, 2012). This process aims to select relevant information and modulates sensory processing, perception, memory, and learning. This selection of information processing – based on the combination of perceptual noise exclusion and signal enhancement – is fundamental in developing fine object representations in the brain (see Corbetta & Shulman, 2011; Petersen & Posner, 2012; Roelfsema, van Ooyen, & Watanabe, 2010, for reviews).

Alerting and orienting are the two main processes involved in reading acquisition. Alerting is defined as the multisensory attentional process that increases performance during tasks (Petersen & Posner, 2012), producing a phasic change in alertness (e.g., Ronconi et al., 2016). The alerting system can already be measured in the infant brain (e.g., Ronconi, Facoetti et al., 2014).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C., Gori, S., & Beran, M. J. (2015). Do rhesus monkeys (Macacamulatta) perceive illusory motion? Animal Cognition, 18, 895910. doi: http://dx.doi.org/10.1007/s10071-015-0860-6.Google Scholar
Badcock, N. A., & Kidd, J. C. (2015). Temporal variability predicts the magnitude of between-group attentional blink differences in developmental dyslexia: A meta-analysis. PeerJ, 3(e746), 118. doi: http://dx.doi.org/10.7717/peerj.746.Google Scholar
Ball, E. W., & Blachman, B. A. (1988). Phoneme segmentation training: Effect on reading readiness. Annals of Dyslexia, 38, 208225.Google Scholar
Battelli, L., Pascual-Leone, A., & Cavanagh, P. (2007). The “when” pathway of the right parietal lobe. Trends in Cognitive Sciences, 11, 204210. doi: http://dx.doi.org/10.1016/j.tics.2007.03.001.Google Scholar
Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neurosciences, 35, 391416.CrossRefGoogle ScholarPubMed
Benasich, A. A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioural Brain Research, 136, 3149.Google Scholar
Boden, C., & Giaschi, D. (2007). M-stream deficits and reading-related visual processes in developmental dyslexia. Psychological Bulletin, 133, 346366. doi: http://dx.doi.org/10.1037/0033-2909.133.2.346.CrossRefGoogle ScholarPubMed
Boets, B., de Beeck, H. P. O., Vandermosten, M. et al. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 12511254.Google Scholar
Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., & Ghesquière, P. (2011). Coherent motion sensitivity and reading development in the transition from pre-reading to reading stage. Child Development, 82, 854869. doi: http://dx.doi.org/10.1111/j.1467-8624.2010.01527.x.Google Scholar
Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104, 198230. doi: http://dx.doi.org/10.1016/j.cognition.2006.05.009.Google Scholar
Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read – A causal connection. Nature, 301, 419421.Google Scholar
Cao, F., Rickles, B., Vu, M. et al. (2013). Early stage visual-orthographic processes predict long-term retention of word form and meaning: A visual encoding training study. Journal of Neurolinguistics, 26, 440461.Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 14841525. doi: http://dx.doi.org/10.1016/j.visres.2011.04.012.Google Scholar
Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using pre-reading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57, 750758.Google Scholar
Castles, A., & Coltheart, M. (2004). Is there a causal link from phonological awareness to success in learning to read? Cognition, 91, 77111. doi: http://dx.doi.org/10.1016/S0010-0277(03)00164-1.Google Scholar
Cestnick, L., & Coltheart, M. (1999). The relationship between language-processing and visual-processing deficits in developmental dyslexia. Cognition, 71, 231255. doi: http://dx.doi.org/10.1016/S0010-0277(99)00023-2.Google Scholar
Clark, K. A., Helland, T., Specht, K. et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137, 31363141. doi: http://dx.doi.org/10.1093/brain/awu229.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Review Neuroscience, 3, 201215. doi: http://dx.doi.org/10.1038/nrn755.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569599. doi: http://dx.doi.org/10.1146/annurev-neuro-061010-113731.CrossRefGoogle ScholarPubMed
Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35, 14831494.CrossRefGoogle ScholarPubMed
Cunningham, A. E., & Stanovich, K. E. (1997). Early reading acquisition and its relation to reading experience and ability 10 years later. Developmental Psychology, 33, 934945.Google Scholar
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Review Neuroscience, 16, 234244. doi: http://dx.doi.org/10.1038/nrn3924.Google Scholar
Di Lollo, V., Hanson, D., & McIntyre, J. S. (1983). Initial stages of visual information processing in dyslexia. Journal of Experimental Psychology: Human Perception & Performance, 9, 923935. doi: http://dx.doi.org/10.1037/0096-1523.9.6.923.Google Scholar
Dispaldro, M., Leonard, L. B., Corradi, N. et al. (2013). Visual attentional engagement deficits in children with Specific Language Impairment and their role in real-time language processing. Cortex, 49, 21262139. doi: http://dx.doi.org/10.1016/j.cortex.2012.09.012.CrossRefGoogle ScholarPubMed
Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Direction in Psychology Science, 18, 321326.Google Scholar
Eden, G. F., VanMeter, J. W., & Rumsey, J. M. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 6669. doi:10.1038/382066a0.Google Scholar
Facoetti, A. (2004). Reading and selective spatial attention: Evidence from behavioral studies in dyslexic children. In Tobias, H. D. (Ed.), Trends in dyslexia research (pp. 3571). New York, NY: Nova Biomedical Books.Google Scholar
Facoetti, A. (2012). Spatial attention disorders in developmental dyslexia: Towards the prevention of reading acquisition deficits. In Stein, J. & Kapoula, Z. (Eds.), Visual aspects of dyslexia (pp. 123136). Oxford: Oxford University Press. doi: http://dx.doi.org/10.1093/acprof:oso/9780199589814.003.0008.Google Scholar
Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16, 226239. doi: http://dx.doi.org/10.1002/dys.413.Google Scholar
Facoetti, A., Lorusso, M. L., Cattaneo, C., Galli, R., & Molteni, M. (2005). Visual and auditory attentional capture are both sluggish in children with developmental dyslexia. Acta NeurobiologiaeExperimentalis, 65, 6172.Google Scholar
Facoetti, A., Lorusso, M. L., Paganoni, P., Umiltà, C., & Mascetti, G. G. (2003). The role of visuospatial attention in developmental dyslexia: Evidence from a rehabilitation study. Cognitive Brain Research, 15, 154164. doi: http://dx.doi.org/10.1016/S0926-6410(02)00148-9.Google Scholar
Facoetti, A., & Molteni, M. (2000). Is attentional focusing an inhibitory process at distractor location? Cognitive Brain Research, 10, 185188. doi: http://dx.doi.org/10.1016/S0926-6410(00)00031-8.Google Scholar
Facoetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36, 109123.Google Scholar
Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 44, 12211233. doi: http://dx.doi.org/10.1016/j.cortex.2007.10.007.Google Scholar
Facoetti, A., Trussardi, A. N., Ruffino, M. et al. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22, 10111025. doi: http://dx.doi.org/10.1162/jocn.2009.21232.CrossRefGoogle ScholarPubMed
Facoetti, A., Zorzi, M., Cestnick, L. et al. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23, 841855. doi: http://dx.doi.org/10.1080/02643290500483090.Google Scholar
Franceschini, S., Bertoni, S., Gianesini, T., Gori, S., & Facoetti, A. (2017). A different vision of dyslexia: Local precedence on global perception. Scientific Reports, 7, 17462. doi: http://dx.doi.org/10.1038/s41598-017-17626-1.Google Scholar
Franceschini, S., Bertoni, S., Ronconi, L. et al. (2015). “Shall we play a game?”: Improving reading through action video games in developmental dyslexia. Current Developmental Disorders Reports, 2, 318329. doi: http://dx.doi.org/10.1007/s40474-015-0064-4.Google Scholar
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22, 814819. doi: http://dx.doi.org/10.1016/j.cub.2012.03.013.Google Scholar
Franceschini, S., Gori, S., Ruffino, M. et al. (2013). Action video games make dyslexic children read better. Current Biology, 23, 462466. doi: http://dx.doi.org/10.1016/j.cub.2013.01.044.Google Scholar
Franceschini, S., Trevisan, P., Ronconi, L. et al. (2017). Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Scientific Reports, 7, 5863.Google Scholar
Gabrieli, J. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280283. doi: http://dx.doi.org/10.1126/science.1171999.Google Scholar
Gabrieli, J. D., & Norton, E. S. (2012). Reading abilities: Importance of visual-spatial attention. Current Biology, 22, R298R299. doi: http://dx.doi.org/10.1016/j.cub.2012.03.041.Google Scholar
Galuschka, K., Ise, E., Krick, K., & Schulte-Körne, G. (2014). Effectiveness of treatment approaches for children and adolescents with reading disabilities: A meta-analysis of randomized controlled trials. PLoS One, 9(2), e89900. doi: http://dx.doi.org/10.1371/journal.pone.0089900.Google Scholar
Geiger, G., Cattaneo, C., Galli, R. et al. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37, 17451764.CrossRefGoogle ScholarPubMed
Geiger, G., Lettvin, J. Y., & Fahle, M. (1994). Dyslexic children learn a new visual strategy for reading: A controlled experiment. Vision Research, 34, 12231233. doi:10.1016/0042-6989(94)90303-4.Google Scholar
Giraldo-Chica, M., Hegarty, J. P., & Schneider, K. A. (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clinical, 7, 830836. doi:10.1016/j.nicl.2015.03.011.Google Scholar
Gori, S., Agrillo, A., Dadda, M., & Bisazza, A. (2014). Do fish perceive illusory motion? Scientific Reports, 4, 6443. doi: http://dx.doi.org/10.1038/srep06443.Google Scholar
Gori, S., Bertoni, S., Sali, M. E. et al. (2016). Dyslexia prevention by action video game training: Behavioural and neurophysiological evidence. Journal of Vision, 16, 489. doi: http://dx.doi.org/10.1167/16.12.489.Google Scholar
Gori, S., Cecchini, P., Bigoni, A., Molteni, M., & Facoetti, A. (2014). Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Frontiers in Human Neuroscience, 8, 460. doi: http://dx.doi.org/10.3389/fnhum.2014.00460.Google Scholar
Gori, S., & Facoetti, A. (2014). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision Research, 99, 7887. doi: http://dx.doi.org/10.1016/j.visres.2013.11.011.Google Scholar
Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15, 8. doi: http://dx.doi.org/10.1167/15.1.8.Google Scholar
Gori, S., Giora, E., & Stubbs, D. A. (2010). Perceptual compromise between apparent and veridical motion indices: The Unchained-Dots illusion. Perception, 39, 863866. doi: http://dx.doi.org/10.1068/p6678.Google Scholar
Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2011). A new motion illusion based on competition between two kinds of motion processing units: The Accordion Grating. Neural Networks, 24, 10821092. doi: http://dx.doi.org/10.1016/j.neunet.2011.06.017.CrossRefGoogle ScholarPubMed
Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2013). The novelty of the “Accordion Grating Illusion.” Neural Network, 39, 52. doi: http://dx.doi.org/10.1016/j.neunet.2012.07.008.Google Scholar
Gori, S., & Hamburger, K. (2006). A new motion illusion: The Rotating-Tilted-Lines illusion. Perception, 35, 853857. doi: http://dx.doi.org/10.1068/p5531.Google Scholar
Gori, S., Mascheretti, S., Giora, E. et al. (2015). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cerebral Cortex, 25, 16851695. doi: http://dx.doi.org/10.1093/cercor/bhu234.Google Scholar
Gori, S., Molteni, M., & Facoetti, A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience, 10, 175. doi: http://dx.doi.org/10.3389/fnhum.2016.00175.Google Scholar
Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26, 43564369.Google Scholar
Gori, S., Tait, M., Franceschini, S. et al. (2014, July). Dyscalculia remediation by action video games. Abstract Number: FENS-3332. Poster session presented at Forum of Neuroscience (FENS), Milan, Italy.Google Scholar
Gori, S., & Yazdanbakhsh, A. (2008). The riddle of the Rotating-Tilted-Lines illusion. Perception, 37, 631635. doi: http://dx.doi.org/10.1068/p5770.CrossRefGoogle ScholarPubMed
Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews Neuroscience, 16, 4354. doi: http://dx.doi.org/10.1038/nrn3836.Google Scholar
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534537.Google Scholar
Green, C. S., & Bavelier, D. (2012). Learning, attentional control and action video games. Current Biology, 22, R197R206. doi: http://dx.doi.org/10.1016/j.cub.2012.02.012.Google Scholar
Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 15731579. doi: http://dx.doi.org/10.1016/j.cub.2010.07.040.Google Scholar
Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5, 525532. doi: http://dx.doi.org/10.1016/S1364-6613(00)01801-5.Google Scholar
Hari, R., Renvall, H., & Tanskanen, T. (2001). Left minineglect in dyslexic adults. Brain, 124, 13731380.Google Scholar
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334337. doi: http://dx.doi.org/10.1038/383334a0.Google Scholar
Kelly, D. (1966). Frequency doubling in visual responses. Journal of the Optical Society ofAmerica, 56, 16281633. doi: http://dx.doi.org/10.1364/JOSA.56.001628.Google Scholar
Kevan, A., & Pammer, K. (2008). Visual deficits in pre-readers at familial risk for dyslexia. Vision Research, 48, 28352839. doi: http://dx.doi.org/10.1016/j.visres.2008.09.022.Google Scholar
Kevan, A., & Pammer, K. (2009). Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia, 47, 31743181. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2009.07.016.Google Scholar
Krafnick, A. J., Flowers, D. L., Luetje, M. M., Napoliello, E. M., & Eden, G. F. (2014). An investigation into the origin of anatomical differences in dyslexia. Journal of Neuroscience, 34, 901908. doi: http://dx.doi.org/10.1523/JNEUROSCI.2092-13.2013.Google Scholar
Laasonen, M., Salomaa, J., Cousineau, D. et al. (2012). Project DyAdd: Visual attention in adult dyslexia and ADHD. Brain and Cognition, 80, 311327.Google Scholar
Lallier, M., Tainturier, M. J., Dering, B. et al. (2010). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48, 41254135.CrossRefGoogle ScholarPubMed
Langer, N., Peysakhovich, B., Zuk, J. et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27, 10271036.Google Scholar
Lawton, T. (2016). Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Frontiers Human Neuroscience, 10, 397.Google Scholar
Laycock, R., & Crewther, S. G. (2008). Towards an understanding of the role of the “magnocellular advantage” in fluent reading. Neuroscience & Biobehavioral Review, 32, 14941506. doi: http://dx.doi.org/10.1016/j.neubiorev.2008.06.002.Google Scholar
Liu, D., Chen, X., & Chung, K. K. H. (2015). Performance in a visual search task uniquely predicts reading abilities in third-grade Hong Kong Chinese children. Scientific Studies of Reading, 19, 307324.Google Scholar
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 34163468.Google Scholar
Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88, 7943–7947. doi: http://dx.doi.org/10.1073/pnas.88.18.7943.Google Scholar
Lovegrove, W., Martin, F., & Slaghuis, W. A. (1986). A theoretical and experimental case for visual deficit in specific reading disability. Cognitive Neuropsychology, 3, 225267.Google Scholar
Lum, J. A., Conti-Ramsden, G., & Lindell, A. K. (2007). The attentional blink reveals sluggish attentional shifting in adolescents with specific language impairment. Brain and Cognition, 63, 287295.Google Scholar
Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9, 14. doi: http://dx.doi.org/10.1167/9.4.14.Google Scholar
Maunsell, J. H., & Newsome, W. T. (1987). Visual processing in monkey extrastriate cortex. Annual review of Neuroscience, 10, 363401.Google Scholar
Menghini, D., Finzi, A., Benassi, M. et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: A comparative study. Neuropsychologia, 48, 863872. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2009.11.003.Google Scholar
Moats, L. C. (1994). The missing foundation in teacher education: Knowledge of the structure of spoken and written language. Annals of Dyslexia, 44, 81102.Google Scholar
Moores, E., Tsouknida, E., & Romani, C. (2015). Adults with dyslexia can use cues to orient and constrain attention but have a smaller and weaker attention spotlight. Vision Research, 111, 5565.Google Scholar
Morrone, M. C., Tosetti, M., Montanaro, D. et al. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3, 13221328. doi: http://dx.doi.org/10.1038/81860.Google Scholar
Newsome, W. T., & Pare, E. B. (1998). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 22012211.Google Scholar
Olulade, O. A., Napoliello, E. M., & Eden, G. F. (2013). Abnormal visual motion processing is not a cause of dyslexia. Neuron, 79, 180190. doi: http://dx.doi.org/10.1016/j.neuron.2013.05.002.Google Scholar
Pammer, K. (2014). Temporal sampling in vision and the implications for dyslexia. Frontiers in Human Neuroscience, 7, 933. doi: http://dx.doi.org/10.3389/fnhum.2013.00933.Google Scholar
Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia, 44, 29262936.Google Scholar
Perea, M., Panaderó, V., Moret-Tatay, C., & Góméz, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22, 420430.Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389. doi: http://dx.doi.org/10.1146/annurev-neuro-062111-150525.Google Scholar
Peterson, R. L., Arnett, A. B., Pennington, B. F. et al. (2017). Literacy acquisition influences children’s rapid automatized naming. Developmental Science. Advance online publication. doi: http://dx.doi.org/10.1111/desc.12589.Google Scholar
Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283307. doi: http://dx.doi.org/10.1146/annurev-clinpsy-032814-112842.Google Scholar
Petrov, Y., & Meleshkevich, O. (2011). Locus of spatial attention determines inward–outward anisotropy in crowding. Journal of Vision, 11, 1. doi: http://dx.doi.org/10.1167/11.4.1.Google Scholar
Pugh, K. R., Mencl, W. E., Shaywitz, B. A. et al. (2000). The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity within posterior cortex. Psychological Science, 11, 5156. doi: http://dx.doi.org/10.1111/1467-9280.00214.Google Scholar
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849860.Google Scholar
Renvall, H., & Hari, R. (2002). Auditory cortical responses to speech-like stimuli in dyslexic adults. Journal of Cognitive Neuroscience, 14, 757768.Google Scholar
Richlan, F. (2012). Developmental dyslexia: Dysfunction of a left hemisphere reading network. Frontiersin Human Neuroscience, 6, 120. doi: http://dx.doi.org/10.3389/fnhum.2012.00120.Google Scholar
Roach, N. V., & Hogben, J. H. (2007). Impaired filtering of behaviourally irrelevant visual information in dyslexia. Brain, 130, 771785. doi: http://dx.doi.org/10.1093/brain/awl353.Google Scholar
Robidoux, S., Rauwerda, D., & Besner, D. (2014). Basic processes in reading aloud and colour naming: Towards a better understanding of the role of spatial attention. The Quarterly Journal of Experimental Psychology, 67, 979990. doi: http://dx.doi.org/10.1080/17470218.2013.838686.Google Scholar
Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 6471. doi: http://dx.doi.org/10.1016/j.tics.2009.11.005.Google Scholar
Ronconi, L., Basso, D., Gori, S., & Facoetti, A. (2014). TMS on right frontal eye fields induces an inflexible focus of attention. Cerebral Cortex, 24, 396402. doi: http://dx.doi.org/10.1093/cercor/bhs319.Google Scholar
Ronconi, L., Facoetti, A., Bulf, H. et al. (2014). Paternal autistic traits are predictive of infants visual attention. Journal of Autism and Developmental Disorders, 44, 15561564. doi: http://dx.doi.org/10.1007/s10803-013-2018-1.CrossRefGoogle ScholarPubMed
Ronconi, L., Gori, S., Ruffino, M., Molteni, M., & Facoetti, A. (2013). Zoom-out attentional impairment in children with autism spectrum disorder. Cortex, 49(4), 10251033.Google Scholar
Ronconi, L., Pincham, H. L., Szűcs, D., & Facoetti, A. (2016). Inducing attention not to blink: Auditory entrainment improves conscious visual processing. Psychological Research, 80, 774784. doi: http://dx.doi.org/10.1007/s00426-015-0691-8.Google Scholar
Ruffino, M., Gori, S., Boccardi, D., Molteni, M., & Facoetti, A. (2014). Spatial and temporal attention in developmental dyslexia. Frontiers in Human Neuroscience, 8, 331. doi: http://dx.doi.org/10.3389/fnhum.2014.00331.Google Scholar
Ruffino, M., Trussardi, A. N., Gori, S. et al. (2010). Attentional engagement deficits in dyslexic children. Neuropsychologia, 48, 37933801. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2010.09.002.Google Scholar
Ruzzoli, M., Gori, S., Pavan, A. et al. (2011). The neural basis of the Enigma illusion: A transcranial magnetic stimulation study. Neuropsychologia, 49, 36483655. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2011.09.020.Google Scholar
Schneider, K. A., & Kastner, S. (2009). Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. Journal of Neuroscience, 29, 17841795. doi: http://dx.doi.org/10.1523/JNEUROSCI.4452-08.2009.Google Scholar
Schneps, M. H., Thomson, J. M., Chen, C., Sonnert, G., & Pomplun, M. (2013). E-readers are more effective than paper for some with dyslexia. PLoS One, 8(9), e75634. doi: http://dx.doi.org/10.1371/journal.pone.0075634.Google Scholar
Schneps, M. H., Thomson, J. M., Sonnert, G. et al. (2013). Shorter lines facilitate reading in those who struggle. PLoS One, 8(8), e71161. doi: http://dx.doi.org/10.1371/journal.pone.0071161.Google Scholar
Schulte-Körne, G., & Bruder, J. (2010). Clinical neurophysiology of visual and auditory processing in dyslexia: A review. Clinical Neurophysiology, 121, 17941809. doi: http://dx.doi.org/10.1016/j.clinph.2010.04.028.Google Scholar
Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38, 179200.Google Scholar
Stein, J. (2012). Visual contributions to reading difficulties: The magnocellular theory. In Stein, J. & Kapoula, Z. (Eds.), Visual aspect of dyslexia (pp. 171197). Oxford, UK: Oxford University Press.Google Scholar
Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1, 267280.Google Scholar
Stein, J., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147152.Google Scholar
Stevens, C., Fanning, J., Donna, C., Sanders, L., & Neville, H. (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Research, 1205, 5569. doi: http://dx.doi.org/10.1016/j.brainres.2007.10.108.Google Scholar
Takashima, A., Wagensveld, B., van Turennout, M. et al. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299314. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2014.06.017.Google Scholar
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721728.Google Scholar
Tallal, P., Miller, S. L., Bedi, G. et al. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271, 8184.Google Scholar
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767773. doi: http://dx.doi.org/10.1038/nn1065.Google Scholar
Valdois, S., Bosse, M. L., & Tainturier, M. J. (2004). The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia, 10, 339363. doi: http://dx.doi.org/10.1002/dys.284.Google Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 240. doi: http://dx.doi.org/10.1046/j.0021-9630.2003.00305.x.CrossRefGoogle ScholarPubMed
Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research Reviews, 30, 6676. doi: http://dx.doi.org/10.1016/S0165-0173(99)00005-3.Google Scholar
Vidyasagar, T. R. (2013). Reading into neuronal oscillations in the visual system: Implications for developmental dyslexia. Frontiers in Human Neuroscience, 7, 811. doi: http://dx.doi.org/10.3389/fnhum.2013.00811.Google Scholar
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14, 5763. doi: http://dx.doi.org/10.1016/j.tics.2009.12.003.Google Scholar
Virsu, V., Lahti-Nuuttila, P., & Laasonen, M. (2003). Crossmodal temporal processing acuity impairment aggravates with age in developmental dyslexia. Neuroscience Letters, 336, 151154. doi: http://dx.doi.org/10.1016/S0304-3940(02)01253-3.Google Scholar
Vogel, A. C., Miezin, F.M., Petersen, S. E., & Schlaggar, B. L. (2012). The putative visual word form area is functionally connected to the dorsal attention network. Cerebral Cortex, 22, 537549. doi: http://dx.doi.org/10.1093/cercor/bhr100.Google Scholar
Walsh, V. (1995). Dyslexia: Reading between the laminae. Current Biology, 5, 12161217.Google Scholar
Whitney, D., & Levi, D.M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15, 160168.Google Scholar
Wright, C. M., Conlon, E. G., & Dyck, M. (2012). Visual search deficits are independent of magnocellular deficits in dyslexia. Annals of Dyslexia, 62, 5369.Google Scholar
Witton, C., Talcott, J. B., Hansen, P. C. et al. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8, 791797.Google Scholar
Yazdanbakhsh, A., & Gori, S. (2011). Mathematical analysis of the accordion grating illusion: A differential geometry approach to introduce the 3D aperture problem. Neural Networks, 24, 10931101. doi: http://dx.doi.org/10.1016/j.neunet.2011.06.016.Google Scholar
Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. L. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7(2), 110. doi: http://dx.doi.org/10.1167/7.2.2.Google Scholar
Zhao, J., Qian, Y., Bi, H. Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068, 17. doi: http://dx.doi.org/10.1038/srep07068Google Scholar
Zorzi, M., Barbiero, C., Facoetti, A. et al. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 109, 1145511459. doi: http://dx.doi.org/10.1073/pnas.1205566109.Google Scholar
Ziegler, J. C., Pech-Georgel, C., George, F., Alario, F. X., & Lorenzi, C. (2005). Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences of the United States of America, 102, 1411014115.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×