Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T05:19:10.351Z Has data issue: false hasContentIssue false

Part II - Cross-Linguistic Perspectives on Developmental Dyslexia

Published online by Cambridge University Press:  27 September 2019

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Araújo, S. & Faísca, L. (2919). A meta-analytic review of naming speed deficits in developmental dyslexia. Scientific Studies of Reading. doi: https://doi.org/10.1080/10888438.2019.1572758 epub ahead of print.CrossRefGoogle Scholar
Baddeley, A. (1992). Working memory. Science, 255, 556559. doi: http://dx.doi.org/10.1126/science.1736359.CrossRefGoogle ScholarPubMed
Boets, B., Wouters, J., Van Wieringen, A., & Ghesquière, P. (2006). Auditory temporal information processing in preschool children at family risk for dyslexia: Relations with phonological abilities and developing literacy skills. Brain and Language, 97, 6479. doi: http://dx.doi.org/10.1016/j.bandl.2005.07.026.Google Scholar
Borgwaldt, S. R., Hellwig, F. M., & de Groot, A. M. B. (2005). Onset entropy matters: Letter-to-phoneme mappings in seven languages. Reading and Writing, 18, 211229. doi: http://dx.doi.org/10.1007/s11145-005-3001-9.CrossRefGoogle Scholar
Bowey, J. A., McGuigan, M., & Ruschena, A. (2005). On the association between serial naming speed for letters and digits and word-reading skill: Towards a developmental account. Journal of Research in Reading, 28, 400422. doi: http://dx.doi.org/10.1111/j.1467-9817.2005.00278.x.CrossRefGoogle Scholar
Brady, S. A., & Shankweiler, D. (1991). Phonological processes in literacy: A tribute to Isabelle Y. Liberman. Hillsdale, UK: Lawrence Erlbaum Associates.Google Scholar
Breznitz, Z. (1997). Effects of accelerated reading rate on memory for text among dyslexic readers. Journal of Educational Psychology, 89, 289297. doi: http://dx.doi.org/10.1037/0022-0663.89.2.289.Google Scholar
Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874886. doi: http://dx.doi.org/10.1037/0012-1649.28.5.874.CrossRefGoogle Scholar
Bus, A. G., & van IJzendoorn, M. H. (1999). Phonological awareness and early reading: A meta-analysis of experimental training studies. Journal of Educational Psychology, 91, 403414. doi: http://dx.doi.org/10.1037/0022-0663.91.3.403.Google Scholar
Cain, K., Oakhill, J., & Bryant, P. (2004). Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology, 96, 3142. doi: http://dx.doi.org/0.1037/0022-0663.96.1.31.CrossRefGoogle Scholar
Caravolas, M., & Landerl, K. (2010). The influences of syllable structure and reading ability on the development of phoneme awareness: A longitudinal, cross-linguistic study. Scientific Studies of Reading, 14, 464484. doi: http://dx.doi.org/10.1080/10888430903034804.Google Scholar
Caravolas, M., Lervåg, A., Defior, S., Seidlová Málková, G., & Hulme, C. (2013). Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies. Psychological Science, 24, 13981407. doi: http://dx.doi.org/10.1177/0956797612473122.Google Scholar
Caravolas, M., Lervåg, A., Mousikou, P. et al. (2012). Common patterns of prediction of literacy development in different alphabetic orthographies. Psychological Science, 23, 678686. doi: http://dx.doi.org/10.1177/0956797611434536.Google Scholar
Caravolas, M., Volín, J., & Hulme, C. (2005). Phoneme awareness is a key component of alphabetic literacy skills in consistent and inconsistent orthographies: Evidence from Czech and English children. Journal of Experimental Child Psychology, 92, 107139. doi: http://dx.doi.org/10.1016/j.jecp.2005.04.003.Google Scholar
de Jong, P. F., & van der Leij, A. (2002). Effects of phonological abilities and linguistic comprehension on the development of reading. Scientific Studies of Reading, 6, 51-77. doi: http://dx.doi.org/10.1207/S1532799XSSR0601_03.CrossRefGoogle Scholar
Ehri, L. C. (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory, and vocabulary learning. Scientific Studies of Reading, 18, 521. doi: http://dx.doi.org/10.1080/10888438.2013.819356.CrossRefGoogle Scholar
Ehri, L. C., Nunes, S. R., Stahl, S. A., & Willows, D. M. (2001). Systematic phonics instruction helps students learn to read: Evidence from the national reading panel’s meta-analysis. Review of Educational Research, 71, 393447. doi: http://dx.doi.org/10.3102/00346543071003393.Google Scholar
Elbeheri, G., & Everatt, J. (2007). Literacy ability and phonological processing skills amongst dyslexic and non-dyslexic speakers of Arabic. Reading and Writing, 20, 273294. doi: http://dx.doi.org/10.1007/s11145-006-9031-0.CrossRefGoogle Scholar
Facoetti, A. (2012). Spatial attention disorder in developmental dyslexia: Towards the prevention of reading acquisition deficits. In Stein, J. & Kapoula, Z. (Eds.), Visual aspects of dyslexia (pp. 123136). Oxford, UK: Oxford University Press. doi: http://dx.doi.org/10.1093/acprof:oso/9780199589814.003.0008.CrossRefGoogle Scholar
Frith, U., Wimmer, H., & Landerl, K. (1998). Differences in phonological recoding in German- and English-speaking children. Scientific Studies of Reading, 2, 3154. doi: http://dx.doi.org/10.1207/s1532799xssr0201_2.CrossRefGoogle Scholar
Furnes, B., & Samuelsson, S. (2010). Predicting reading and spelling difficulties in transparent and opaque orthographies: A comparison between Scandinavian and US/Australian children. Dyslexia, 16, 119142. doi: http://dx.doi.org/10.1002/dys.401.CrossRefGoogle ScholarPubMed
Furnes, B., Elwèr, A., Samuelsson, S., Olson, R.K., & Byrne, B. (2019). Investigating the double-deficit hypothesis in more and less transparent orthographies: A longitudinal study from preschool to Grade 2. Scientific Studies of Reading, doi: https://doi.org/10.1080/10888438.2019.1610410 epub ahead of print.Google Scholar
Furnes, B., & Samuelsson, S. (2011). Phonological awareness and rapid automatized naming predicting early development in reading and spelling: Results from a cross-linguistic longitudinal study. Learning and Individual Differences, 21, 8595. doi: http://dx.doi.org/10.1016/j.lindif.2010.10.005.Google Scholar
Galuschka, K., Ise, E., Krick, K., & Schulte-Körne, G. (2014). Effectiveness of treatment approaches for children and adolescents with reading disabilities: A meta-analysis of randomized control trials. PLoS One, 9(2), e89900. doi: http://dx.doi.org/10.1371/journal.pone.0089900.Google Scholar
Georgiou, G. K., Parrila, R., & Papadopoulos, T. C. (2008). Predictors of word decoding and reading fluency across languages varying in orthographic consistency. Journal of Educational Psychology, 100, 566580. doi: http://dx.doi.org/10.1037/0022-0663.100.3.566.CrossRefGoogle Scholar
Georgiou, G. K., Torppa, M., Manolitsis, G., Lyytinen, H., & Parrila, R. (2012). Longitudinal predictors of reading and spelling across languages varying in orthographic consistency. Reading and Writing, 25, 321346. doi: http://dx.doi.org/10.1007/s11145-010-9271-x.CrossRefGoogle Scholar
Hamilton, L. G., Hayiou-Thomas, M. E., Hulme, C., & Snowling, M. J. (2016). The home literacy environment as a predictor of the early literacy development of children at family-risk of dyslexia. Scientific Studies of Reading, 20, 401419. doi: http://dx.doi.org/10.1080/10888438.2016.1213266.CrossRefGoogle ScholarPubMed
Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Science, 5, 525532. doi: http://dx.doi.org/10.1016/S1364-6613(00)01801-5.Google Scholar
Hatcher, P. J., Hulme, C., & Ellis, A. W. (1994). Ameliorating early reading failure by integrating the teaching of reading and phonological skills: The phonological linkage hypothesis. Child Development, 65, 4157. doi: http://dx.doi.org/10.1111/j.1467-8624.1994.tb00733.x.Google Scholar
Heikkilä, R., Aro, M., Närhi, V., Westerholm, J., & Ahonen, T. (2013). Does training in syllable recognition improve reading speed? A computer-based trial with poor readers from second and third grade. Scientific Studies of Reading, 17, 398414. doi: http://dx.doi.org/10.1080/10888438.2012.753452.CrossRefGoogle Scholar
Ho, C. S.-H., Chan, D. W.-O., Lee, S.-H., Tsang, S.-M., & Luan, V. H. (2004). Cognitive profiling and preliminary subtyping in Chinese developmental dyslexia. Cognition, 91, 4375. doi: http://dx.doi.org/10.1016/S0010-0277(03)00163-X.Google Scholar
Ho, C. S.-H., Leung, M.-T., & Cheung, H. (2011). Early difficulties of Chinese preschoolers at familial risk for dyslexia: deficits in oral language, phonological processing skills, and print-related skills. Dyslexia, 17, 143164. doi: http://dx.doi.org/10.1002/dys.429.Google ScholarPubMed
Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. In Frost, R. & Katz, L. (Eds.), Orthography, phonology, morphology, and meaning (pp. 6784). Amsterdam: Elsevier Science Publishers.Google Scholar
Kirby, J. R., Georgiou, G. K., Martinussen, R., & Parrila, R. (2010). Naming speed and reading: From prediction to instruction. Reading Research Quarterly, 45, 341362. doi: http://dx.doi.org/10.1598/RRQ.45.3.4.CrossRefGoogle Scholar
Landerl, K. (2017). Reading acquisition in German language. In Perfetti, C. & Verhoeven, L (Eds.), Learning to read across languages and writing systems (pp. 299323). Cambridge, UK: Cambridge University Press.Google Scholar
Landerl, K., Freudenthaler, H.H., Heene, M., et al. (2019). Phonological awareness and rapid automatized naming as longitudinal predictors of reading in five alphabetic orthographies with varying degrees of consistency. Scientific Studies of Reading, 23, 220–234. doi: https://doi.org/10.1080/10888438.2018.1510936.Google Scholar
Landerl, K., Ramus, F., Moll, K. et al. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54, 686694. doi: http://dx.doi.org/10.1111/jcpp.12029.Google Scholar
Landerl, K., Wimmer, H., & Frith, U. (1997). The impact of orthographic consistency on dyslexia: A German-English comparison. Cognition, 63, 315334. doi: http://dx.doi.org/10.1016/S0010-0277(97)00005-X.Google Scholar
Lyytinen, H., Aro, M., Eklund, K. et al. (2004). The development of children at familial risk for dyslexia: Birth to early school age. Annals of Dyslexia, 54, 184220. doi: http://dx.doi.org/10.1007/s11881-004-0010-3.Google Scholar
Mann, V., & Wimmer, H. (2002). Phoneme awareness and pathways into literacy: A comparison of German and American children. Reading and Writing, 15, 653682. doi: http://dx.doi.org/10.1023/A:1020984704781.CrossRefGoogle Scholar
Marx, P., & Lenhard, W. (2010). Diagnostische Merkmale von Screeningverfahren. In Hasselhorn, M. & Schneider, W. (Eds.), Frühprognose schulischer Kompetenzen. Göttingen, Germany: Hogrefe.Google Scholar
Meng, X., Cheng-Lai, A., Zeng, B., Stein, J. F., Zhou, X. (2011). Dynamic visual perception and reading development in Chinese school children. Annals of Dyslexia, 61, 161176. doi: http://dx.doi.org/10.1007/s11881-010-0049-2Google Scholar
Mol, S. E., & Bus, A. G. (2011). To read or not to read. A meta-analysis of print exposure from infancy to early adulthood. Psychological Bulletin, 137, 267296. doi: http://dx.doi.org/10.1037/a0021890.Google Scholar
Moll, K., & Landerl, K. (2009). Double dissociation between reading and spelling deficits. Scientific Studies of Reading, 13, 359382. doi: http://dx.doi.org/10.1080/10888430903162878.CrossRefGoogle Scholar
Moll, K., Loff, A., & Snowling, M. J. (2013). Cognitive endophenotypes of dyslexia. Scientific Studies of Reading, 17, 385397. doi: http://dx.doi.org/10.1080/10888438.2012.736439.Google Scholar
Moll, K., Ramus, F., Bartling, J. et al. (2014). Cognitive mechanisms underlying reading and spelling development in five European orthographies: Is English an outlier orthography? Learning and Instruction, 29, 6577. doi: http://dx.doi.org/10.1016/j.learninstruc.2013.09.003.Google Scholar
Nash, H. M., Hulme, C., Gooch, D., & Snowling, M. J. (2013). Preschool language profiles of children at family risk of dyslexia: Continuities with specific language impairment. Journal of Child Psychology and Psychiatry, 54, 958968. doi: http://dx.doi.org/10.1111/jcpp.12091.Google Scholar
Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47, 117127. doi: http://dx.doi.org/10.1016/j.cortex.2009.08.016.CrossRefGoogle ScholarPubMed
Norton, E. S., & Wolf, M. (2012). Rapid Automatized Naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427452. doi: http://dx.doi.org/10.1146/annurev-psych-120710-100431.Google Scholar
Ojanen, E., Ronimus, M., Ahonen, T. et al. (2015). GraphoGame – a catalyst for multi-level promotion of literacy in diverse contexts. Frontiers in Psychology, 6, e671. doi: http://dx.doi.org/10.3389/fpsyg.2015.00671.CrossRefGoogle ScholarPubMed
Perfetti, C. A. (2003). The universal grammar of reading. Scientific Studies of Reading, 7, 324. doi: http://dx.doi.org/10.1207/S1532799XSSR0701_02.Google Scholar
Perfetti, C. A. & Harris, L. N. (2013). Universal reading processes are modulated by language and writing system. Language Learning and Development, 9, 296316. doi: http://dx.doi.org/10.1080/15475441.2013.813828.Google Scholar
Perfetti, C. A., & Verhoeven, L. (2017). Learning to read across languages and writing systems. Cambridge, UK: Cambridge University Press.Google Scholar
Petersen, D. K. & Elbro, C. (1999). Pre-school prediction and prevention of dyslexia: A longitudinal study with children of dyslexic parents. In Nunes, T. (Ed.), Learning to read: An integrated view from research and practice (pp. 133154). Dordrecht: Kluwer.Google Scholar
Peterson, R. L., Arnett, A. B., Pennington, B. F., et al. (2018). Literacy acquisition influences children’s rapid automatized naming. Developmental Science, 21, e12589. doi: https://doi.org/10.1111/desc.12589.Google Scholar
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. Lancet, 379, 19972007. doi: http://dx.doi.org/10.1016/S0140-6736(12)60198-6.Google Scholar
Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27, 2853. doi: http://dx.doi.org/10.2307/747832.CrossRefGoogle Scholar
Ramus, F. (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212218. doi: http://dx.doi.org/10.1016/S0959-4388(03)00035-7.CrossRefGoogle ScholarPubMed
Ramus, F. (2004). Neurobiology of dyslexia: A reinterpretation of the data. Trends in Neurosciences, 27, 720726. doi: http://dx.doi.org/10.1016/j.tins.2004.10.004.CrossRefGoogle ScholarPubMed
Rau, A. K., Moll, K., Moeller, K. et al. (2016). Same same, but different: Word and sentence reading in German and English. Scientific Studies of Reading, 20, 203219. doi: http://dx.doi.org/10.1080/10888438.2015.1136913.Google Scholar
Rau, A. K., Moll, K., Snowling, M. J., & Landerl, K. (2015). Effects of orthographic consistency on eye movement behavior: German and English children and adults process the same words differently. Journal of Experimental Child Psychology, 130, 92105. doi: http://dx.doi.org/10.1016/j.jecp.2014.09.012.Google Scholar
Scarborough, H. S. (1989). Prediction of reading disability from familial and individual differences. Journal of Educational Psychology, 81, 101108. doi: http://dx.doi.org/10.1037//0022-0663.81.1.101.Google Scholar
Schmalz, X., Marinus, E., Coltheart, M., & Castles, A. (2015). Getting to the bottom of orthographic depth. Psychonomic Bulletin & Review, 22, 16141629. doi: http://dx.doi.org/10.3758/s13423-015-0835-2.Google Scholar
Sénéchal, M., & LeFevre, J.-A. (2002). Parental involvement in the development of children’s reading skill: A five-year longitudinal study. Child Development, 73, 445460. doi: http://dx.doi.org/10.1111/1467-8624.00417.Google Scholar
Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143174. doi: http://dx.doi.org/10.1348/000712603321661859.Google Scholar
Share, D. L. (2008). On the Anglocentricities of current reading research and practice: the perils of over-reliance on an “outlier” orthography. Psychological Bulletin, 134, 584615. doi: http://dx.doi.org/10.1037/0033-2909.134.4.584.Google Scholar
Share, D. L. (2014). Alphabetism in reading science. Frontiers in Psychology, 5, e752. doi: http://dx.doi.org/10.3389/fpsyg.2014.00752.Google Scholar
Snowling, M. J., Gallagher, A., & Frith, U. (2003). Family risk of dyslexia is continuous: Individual differences in the precursors of reading skill. Child Development, 74, 358373. doi: http://dx.doi.org/10.1111/1467-8624.7402003.Google Scholar
Stein, J. (2012). Visual contributions to reading difficulties: The magnocellular theory. In Stein, J. & Kapoula, Z. (Eds.), Visual aspects of dyslexia (pp. 171197). Oxford, UK: Oxford University Press.Google Scholar
Stein, J., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neuroscience, 20, 147152. doi: http://dx.doi.org/10.1016/S0166-2236(96)01005-3.Google Scholar
Suggate, S. P. (2016). A meta-analysis of the long-term effects of phonemic awareness, phonics, fluency, and reading comprehension interventions. Journal of Learning Disabilities, 49, 7796. doi: http://dx.doi.org/10.1177/0022219414528540.Google Scholar
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721728. doi: http://dx.doi.org/10.1038/nrn1499.CrossRefGoogle ScholarPubMed
Torgesen, J. K., Wagner, R. K., Rashotte, C. A., Burgess, S., & Hecht, S. (1997). Contributions of phonological awareness and rapid automatized naming ability to growth of word-reading skills in second- to fifth- grade children. Scientific Studies of Reading, 1, 161185. doi: http://dx.doi.org/10.1207/s1532799xssr0102_4.Google Scholar
Vaessen, A., Bertrand, D., Tóth, D. et al. (2010). Cognitive development of fluent word reading does not qualitatively differ between transparent and opaque orthographies. Journal of Educational Psychology, 102, 827842. doi: http://dx.doi.org/10.1037/a0019465.CrossRefGoogle Scholar
Vaessen, A., Gerretsen, P., & Blomert, L. (2009). Naming problems do not reflect a second independent core deficit in dyslexia: Double deficits explored. Journal of Experimental Child Psychology, 103, 202221. doi: http://dx.doi.org/10.1016/j.jecp.2008.12.004.Google Scholar
Valdois, S., Bosse, M.-L., & Tainturier, M.-J. (2004). The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia, 10, 339363. doi: http://dx.doi.org/10.1002/dys.284.Google Scholar
van Bergen, E., de Jong, P. F., Regtvoort, A. et al. (2011). Dutch children at family risk of dyslexia: precursors, reading development, and parental effects. Dyslexia, 17, 218. doi: http://dx.doi.org/10.1002/dys.423.Google Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 240. doi: http://dx.doi.org/10.1046/j.0021-9630.2003.00305.x.CrossRefGoogle ScholarPubMed
Wimmer, H. (1993). Characteristics of developmental dyslexia in a regular writing system. Applied Psycholinguistics, 14, 133. doi: http://dx.doi.org/10.1017/S0142716400010122.Google Scholar
Wimmer, H., Mayringer, H., & Landerl, K. (2000). The double-deficit hypothesis and difficulties in learning to read a regular orthography. Journal of Educational Psychology, 92, 668680. doi: http://dx.doi.org/10.1037/0022-0663.92.4.668.Google Scholar
Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415-438. doi: http://dx.doi.org/10.1037/0022-0663.91.3.415.Google Scholar
Wolf, M., & Katzir-Cohen, T. (2001). Reading fluency and its intervention. Scientific Studies of Reading, 5, 211239. doi: http://dx.doi.org/10.1207/S1532799XSSR0503_2.Google Scholar
World Health Organization. (2008). International statistical classification of diseases and related health problems - Tenth revision (2nd ed.). Geneva, Switzerland: World Health Organization.Google Scholar
Ziegler, J. C., Bertrand, D., Tóth, D. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21, 551559. doi: http://dx.doi.org/10.1177/0956797610363406.Google Scholar
Ziegler, J. C., Perry, C., Ma-Wyatt, A., Ladner, D., & Schulte-Körne, G. (2003). Developmental dyslexia in different languages: Language-specific or universal? Journal of Experimental Child Psychology, 86, 169193. doi: http://dx.doi.org/10.1016/S0022-0965(03)00139-5.CrossRefGoogle ScholarPubMed

References

Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-specific multimodal brain activation in kindergarten improves prediction of reading skills in second grade. Neuroimage, 82, 605615.Google Scholar
Bishop, D. V. M. (2007). Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: Where are we, and where should we be going? Psychological Bulletin, 133(4), 651672.CrossRefGoogle ScholarPubMed
Boada, R., & Pennington, B. F. (2006). Deficient implicit phonological representations in children with dyslexia. Journal of Experimental Child Psychology, 95(3), 153193.Google Scholar
Boets, B., Op de Beeck, H. P., Vandermosten, M., et al. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342, 12511254.Google Scholar
Bowyer‐Crane, C., Snowling, M. J., Duff, F. J. et al. (2008). Improving early language and literacy skills: Differential effects of an oral language versus a phonology with reading intervention. Journal of Child Psychology and Psychiatry, 49(4), 422432.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C. et al. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376.Google Scholar
Caravolas, M. (2005). The nature and causes of dyslexia in different languages. In Snowling, M. J. & Hulme, C. (Eds.), The science of reading: A handbook (pp. 336355). Malden, MA: Blackwell Publishing.Google Scholar
Caravolas, M., Lervåg, A., Defior, S., Málková, G. S., & Hulme, C. (2013). Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies. Psychological Science, 24(8), 13981407.Google Scholar
Catts, H. W., Fey, M. E., Zhang, X., & Tomblin, J. B. (2001). Estimating the risk of future reading difficulties in kindergarten children: a research-based model and its clinical implementation. Language, Speech, and Hearing Services in Schools, 32(1), 3850.CrossRefGoogle ScholarPubMed
Catts, H. W., Nielsen, D. C., Bridges, M. S., Liu, Y. S., & Bontempo, D. E. (2015). Early identification of reading disabilities within an RTI framework. Journal of Learning Disabilities, 48(3), 281297.Google Scholar
Clark, K. A., Helland, T., Specht, K. et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137(12), 31363141.Google Scholar
Elbro, C., Borstrom, I., & Petersen, D. K. (1998). Predicting dyslexia from kindergarten: The importance of distinctness of phonological representations of lexical items. Reading Research Quarterly, 33, 3660.Google Scholar
Gabrieli, J. D., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron, 85(1), 1126.Google Scholar
Goswami, U., Thomson, J., Richardson, U. et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences, 99(16), 1091110916.CrossRefGoogle ScholarPubMed
Guttorm, T. K., Leppänen, P. H., Hämäläinen, J. A., Eklund, K. M., & Lyytinen, H. J. (2010). Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. Journal of Learning Disabilities, 43(5), 391401.CrossRefGoogle ScholarPubMed
Guttorm, T. K., Leppänen, P. H., Poikkeus, A. M. et al. (2005). Brain event-related potentials (ERPs) measured at birth predict later language development in children with and without familial risk for dyslexia. Cortex, 41(3), 291303.Google Scholar
Guttorm, T. K., Leppänen, P. H., Richardson, U., & Lyytinen, H. (2001). Event-related potentials and consonant differentiation in newborns with familial risk for dyslexia. Journal of Learning Disabilities, 34(6), 534544.Google Scholar
Guttorm, T. K., Leppänen, P. H. T., Tolvanen, A., & Lyytinen, H. (2003). Event-related potentials in newborns with and without familial risk for dyslexia: Principal component analysis reveals differences between the groups. Journal of Neural Transmission, 110, 10591074.Google Scholar
Hämäläinen, J. A., Guttorm, T. K., Richardson, U. et al. (2013). Auditory event-related potentials measured in kindergarten predict later reading problems at school age. Developmental Neuropsychology, 38(8), 550566.Google Scholar
Hämäläinen, J. A., Lohvansuu, K., Ervast, L., & Leppänen, P. H. (2015). Event-related potentials to tones show differences between children with multiple risk factors for dyslexia and control children before the onset of formal reading instruction. International Journal of Psychophysiology, 95(2), 101112.Google Scholar
Halliday, L. F., Barry, J. G., Hardiman, M. J., & Bishop, D. V. (2014). Late, not early mismatch responses to changes in frequency are reduced or deviant in children with dyslexia: an event-related potential study. Journal of Neurodevelopmental Disorders, 6(21).Google Scholar
Hensler, B. S., Schatschneider, C., Taylor, J., & Wagner, R. K. (2010). Behavioral genetic approach to the study of dyslexia. Journal of Developmental and Behavioral Pediatrics, 31(7), 525–32.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.Google Scholar
Humphrey, N., & Mullins, P. M. (2002). Self-concept and self-esteem in developmental dyslexia. Journal of Research in Special Educational Needs, 2, 113.Google Scholar
Im, K., Raschle, N. M., Smith, S. A., Grant, P. E., & Gaab, N. (2015). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 11381148.Google Scholar
Kraemer, H. C., Schultz, S. K., & Arndt, S. (2002). Biomarkers in psychiatry: methodological issues. The American Journal of Geriatric Psychiatry, 10(6), 653659.Google Scholar
Kraft, I., Cafiero, R., Schaadt, G. et al. (2015). Cortical differences in preliterate children at familiar risk of dyslexia are similar to those observed in dyslexic readers. Brain, 138(9), e378-e378.Google Scholar
Kraft, I., Schreiber, J., Cafiero, R. et al. (2016). Predicting early signs of dyslexia at a preliterate age by combining behavioral assessment with structural MRI. NeuroImage, 143, 378386.Google Scholar
Landerl, K., & Wimmer, H. (2008). Development of word reading fluency and spelling in a consistent orthography: An 8-year follow-up. Journal of Educational Psychology, 100(1), 150161.Google Scholar
Langer, N., Peysakhovich, B., Zuk, J. et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27(2), 10271036.Google Scholar
Leppänen, P. H. T., Hämäläinen, J. A., & Guttorm, T. K. et al. (2012). Infant brain responses associated with reading-related skills before school and at school age. Clinical Neurophysiology, 42, 3541.Google Scholar
Leppänen, P. H., Hämäläinen, J. A., & Salminen, H. K. et al. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46(10), 13621376.Google Scholar
Leppänen, P. H., Pihko, E., Eklund, K. M., & Lyytinen, H. (1999). Cortical responses of infants with and without a genetic risk for dyslexia: II. Group effects. NeuroReport, 10(5), 969973.CrossRefGoogle ScholarPubMed
Leppänen, P. H. T., Richardson, U., & Pihko, E. (2002). Brain responses to changes in speech sound durations differ between infants with and without familial risk for dyslexia. Developmental Neuropsychology, 22(1), 407422.Google Scholar
Lovio, B. R., Näätänen, R., & Kujala, T. (2010). Abnormal pattern of cortical speech feature discrimination in 6-year-old children at risk for dyslexia. Brain Research, 1335, 5362.Google Scholar
Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53(1), 114.Google Scholar
Maurer, U., Bucher, K., & Brem, S. et al. (2009). Neurophysiology in preschool improves behavioral prediction of reading ability throughout primary school. Biological Psychiatry, 66, 341348.Google Scholar
Maurer, U., Bucher, K., Brem, S., & Brandeis, D. (2003). Altered responses to tone and phoneme mismatch in kindergartners at familial dyslexia risk. Neuroreport, 14(17), 22452250.Google Scholar
McBride-Chang, C., Lam, F., & Lam, C. et al. (2011). Early predictors of dyslexia in Chinese children: Familial history of dyslexia, language delay, and cognitive profiles. Journal of Child Psychology and Psychiatry, 52(2), 204211.Google Scholar
Molfese, D. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72, 238245.Google Scholar
Molfese, V. J., Molfese, D. L., & Modgline, A. A. (2001). Newborn and preschool predictors of second-grade reading scores: An evaluation of categorical and continuous scores. Journal of Learning Disabilities, 34(6), 545554.Google Scholar
Moll, K., Ramus, F., & Bartling, J. et al. (2014). Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 29, 6577.CrossRefGoogle Scholar
Moore, J. K., & Linthicum, F. H. (2009). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460478.Google Scholar
Myers, C. A., Vandermosten, M., Farris, E. A. et al. (2014). Structural changes in white matter are uniquely related to children’s reading development. Psychological Science, 25(10), 18701883.Google Scholar
Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38(1), 121.Google Scholar
Näätänen, R., Kujala, T., & Escera, C. et al. (2012). The mismatch negativity (MMN): A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123(3), 424458.CrossRefGoogle ScholarPubMed
Noordenbos, M. W., Segers, E., Serniclaes, W., Mitterer, H., & Verhoeven, L. (2012). Neural evidence of allophonic perception in children at risk for dyslexia. Neuropsychologia, 50(8), 20102017.Google Scholar
Norton, E. S., Beach, S. D., & Gabrieli, J. D. E. (2015). Neurobiology of dyslexia. Current Opinion in Neurobiology, 30, 7378.Google Scholar
Norton, E. S., Black, J. M., Stanley, L. M., Tanaka, H., Gabrieli, J. D. E., Sawyer, C., & Hoeft, F. (2014). Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia, 61, 235246.Google Scholar
O’Connor, R. E., & Jenkins, J. R. (1999). Prediction of reading disabilities in kindergarten and first grade. Scientific Studies of Reading, 3, 159197.Google Scholar
Odegard, T. N., Farris, E. A., Ring, J., McColl, R., & Black, J. (2009). Brain connectivity in non-reading impaired children and children diagnosed with developmental dyslexia. Neuropsychologia, 47(8), 19721977.Google Scholar
Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia. WIREs Cognitive Science, 7: 156176.Google Scholar
Ozernov-Palchik, O., Norton, E. S., Sideridis, G., Beach, S. D., Gabrieli, J. D. E., & Gaab, N. (2017). Early-reading profiles of children at kindergarten and longitudinally: Implications for early screening and theories of reading. Developmental Science, 20(5).Google Scholar
Pennington, B. F., & Lefly, D. L. (2001). Early reading development in children at family risk for dyslexia. Child Development, 72(3), 816833.Google Scholar
Pennington, B. F., Santerre-Lemmon, L., Rosenberg, J. et al. (2012). Individual prediction of dyslexia by single vs. multiple deficit models. Journal of Abnormal Psychology, 121(1), 212224.Google Scholar
Perlman, S. B. (2012). Neuroimaging in child clinical populations: Considerations for a successful research program. Journal of the American Academy of Child & Adolescent Psychiatry, 51(12), 12321235.Google Scholar
Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283307.Google Scholar
Pihko, E., Leppänen, P. H., Eklund, K. M. et al. (1999). Cortical responses of infants with and without a genetic risk for dyslexia: I. Age effects. Neuroreport, 10(5), 901–5.Google Scholar
Plakas, A., van Zuijen, T., van Leeuwen, T., Thomson, J. M., & van der Leij, A. (2013). Impaired non-speech auditory processing at a pre-reading age is a risk-factor for dyslexia but not a predictor: an ERP study. Cortex, 49(4), 10341045.CrossRefGoogle Scholar
Poldrack, R. A., Baker, C. I., Durnez, J. et al. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115126.Google Scholar
Puolakanaho, A., Ahonen, T., Aro, M. et al. (2007). Very early phonological and language skills: Estimating individual risk of reading disability. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(9), 923931.Google Scholar
Ramus, F., & Szenkovits, G. (2008). What phonological deficit? Quarterly Journal of Experimental Psychology, 61(1), 129141.Google Scholar
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. NeuroImage, 57, 742749.CrossRefGoogle ScholarPubMed
Raschle, N., Lee, M., Buechler, R. et al. (2009). Making MR imaging child’s play: Pediatric neuroimaging protocol, guidelines, and procedure. Journal of Visualized Experiments, 29. www.jove.com/index/Details.stp?ID=1309Google Scholar
Raschle, N. M., Zuk, J.,& Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109, 21562161.Google Scholar
Raschle, N., Zuk, J., Ortiz-Manilla, S. et al. (2012). Pediatric neuroimaging in early childhood and infancy: Challenges and practical guidelines. Annals of the New York Academy of Sciences, 1252, 4350.Google Scholar
Reuter, M., Tisdall, D., Qureshi, A. et al. (2015). Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage, 107, 107115.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 30553065.Google Scholar
Saygin, Z. M., Norton, E. S., Osher, D. et al. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in pre- and early-reading kindergarten children. The Journal of Neuroscience, 33(33), 1325113258.Google Scholar
Schatschneider, C., Fletcher, J. M., Francis, D. J., Carlson, C. D., & Foorman, B. R. (2004). Kindergarten prediction of reading skills: A longitudinal comparative analysis. Journal of Educational Psychology, 96(2), 265282.Google Scholar
Schatschneider, C., & Torgesen, J. (2004). Using our current understanding of dyslexia to support early identification and intervention. Journal of Child Neurology, 19(10), 759765.Google Scholar
Serniclaes, W., van Heghe, S., Mousty, P., Carre, R. & Sprenger-Charolles, L. (2004). Allophonic mode of speech perception in dyslexia. Journal of Experimental Child Psychology, 87, 336361.Google Scholar
Skeide, M. A., Kraft, I., Müller, B. et al. (2016). NRSN1 associated grey matter volume of the visual word form area reveals dyslexia before school. Brain, 139(10), 27922803.Google Scholar
Snowling, M. J. (2013). Early identification and interventions for dyslexia: A contemporary view. Journal of Research in Special Educational Needs, 13(1), 714.Google Scholar
Snowling, M. J., & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142(5), 498545.Google Scholar
Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31.Google Scholar
Tisdall, M. D., Hess, A. T., Reuter, M., et al. (2012). Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magnetic Resonance in Medicine, 68(2), 389399.Google Scholar
Torgesen, J. K. (2004). Avoiding the devastating downward spiral: the evidence that early intervention prevents reading failure. American Educator, 28, 619.Google Scholar
Torkildsen, J.von K., Syversen, Simonsen, G., H. et al. (2007). Brain responses to lexical-semantic priming in children at-risk for dyslexia. Brain and Language, 102, 243261.CrossRefGoogle ScholarPubMed
Vanderauwera, J., Wouters, J., Vandermosten, M., & Ghesquière, P. (2017). Early dynamics of white matter deficits in children developing dyslexia. Developmental Cognitive Neuroscience, 27, 6977.Google Scholar
Vandermosten, M., Hoeft, F., & Norton, E. S. (2016). Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: A review and quantitative meta-analysis. Current Opinion in Behavioral Science, 10, 155161.Google Scholar
Vandermosten, M., Vanderauwera, J., Theys, C. et al. (2015). A DTI tractography study in pre-readers at risk for dyslexia. Developmental Cognitive Neuroscience, 14, 815.Google Scholar
van Herten, M., Pasman, J., van Leeuwen, T. H. et al. (2008). Differences in AERP responses and atypical hemispheric specialization in 17-month-old children at risk of dyslexia. Brain Research, 1201, 100105.Google Scholar
van Leeuwen, T., Been, P., & Kuijpers, C. et al. (2006). Mismatch response is absent in 2-month-old infants at risk for dyslexia. Neuroreport, 17(4), 351355.Google Scholar
van Leeuwen, T., Been, P., van Herten, M. et al. (2007). Cortical categorization failure in 2-month-old infants at risk for dyslexia. Neuroreport, 18(9), 857861.Google Scholar
van Leeuwen, T., Been, P., van Herten, M. et al. (2008). Two-month-old infants at risk for dyslexia do not discriminate/bAk/from/dAk: A brain-mapping study. Journal of Neurolinguistics, 21(4), 333348.Google Scholar
van Zuijen, T. L., Plakas, A., Maassen, B. A. M., Maurits, N. M., & van der Leij, A. (2013). Infant ERPs separate children at risk of dyslexia who become good readers from those who become poor readers. Developmental Science, 16, 554563.Google Scholar
Vellutino, F. R., Scanlon, D. M., & Tanzman, M. S. (1998). The case for early intervention in diagnosing specific reading disability. Journal of School Psychology, 36(4), 367397.Google Scholar
Wang, Y., Mauer, M. V., & Raney, T. et al. (2017). Development of tract-specific white matter pathways during early reading development in at-risk children and typical controls. Cerebral Cortex., 27(4), 24692485.Google Scholar
Williams, V. J., Juranek, J., Cirino, P., & Fletcher, J. M. (2018). Cortical thickness and local gyrification in children with developmental dyslexia. Cerebral Cortex., 28(3), 963973Google Scholar
Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91(3), 415.Google Scholar
Yamada, Y., Stevens, C., Dow, M. et al. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: an fMRI study. Neuroimage, 57(3), 704713.Google Scholar

References

Ackerman, P. T., Dykman, R. A., Oglesby, D. M., & Newton, J. E. (1994). EEG power spectra of children with dyslexia, slow learners, and normally reading children with ADD during verbal processing. Journal of Learning Disabilities, 27, 619630.Google Scholar
Baillieux, H., Vandervliet, E. J., Manto, M. et al. (2009). Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain and Language, 108, 122132.Google Scholar
Banai, K., Hornickel, J., Skoe, E. et al. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19, 26992707.Google Scholar
Bar-Kochva, I., & Breznitz, Z. (2014). Reading proficiency and adaptability in orthographic processing: An examination of the effect of type of orthography read on brain activity in regular and dyslexic readers. PLoS One, 9, e86016. doi: http://dx.doi.org/10.1371/journal.pone.0086016.Google Scholar
Binder, J. (2009). fMRI of language systems. In Filippi, M. (Ed.), fMRI techniques and protocols (Vol. 41, pp. 323351). Totowa, NJ: Humana Press.Google Scholar
Binder, J., & Price, C. J. (2001). Functional neuroimaging of language. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of functional neuroimaging of cognition (pp. 187251). Cambridge, MA: MIT press.Google Scholar
Blackmon, K., Barr, W. B., Kuzniecky, R. et al. (2010). Phonetically irregular word pronunciation and cortical thickness in the adult brain. Neuroimage, 51, 14531458.Google Scholar
Boets, B., Op de Beeck, H. P., Vandermosten, M. et al. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342, 12511254.Google Scholar
Booth, J. R., Burman, D. D., Van Santen, F. W. et al. (2001). The development of specialized brain systems in reading and oral-language. Child Neuropsychology, 7, 119141.Google Scholar
Booth, J. R., Lu, D., Burman, D. D. et al. (2006). Specialization of phonological and semantic processing in Chinese word reading. Brain Research, 1071, 197207.Google Scholar
Bosse, M.-L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104, 198230.Google Scholar
Brady, S. A., & Shankweiler, D. P. (1991). Phonological processes in literacy: A tribute to Isabelle Y. Liberman. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Braze, D., Mencl, W. E., & Tabor, W. et al. (2011). Unification of sentence processing via ear and eye: An fMRI study. Cortex, 47, 416431.Google Scholar
Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874886.Google Scholar
Brunswick, N., McCrory, E., Price, C., Frith, C., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics. Brain, 122, 19011917.Google Scholar
Calfee, R. (1982). Literacy and illiteracy: Teaching the nonreader to survive in the modern world. Annals of Dyslexia, 32, 7191. doi: http://dx.doi.org/ 10.1007/BF02647954.Google Scholar
Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47, 10411050.Google Scholar
Cao, F., Lee, R., Shu, H. et al. (2010). Cultural constraints on brain development: Evidence from a developmental study of visual word processing in Mandarin Chinese. Cerebral Cortex, 20, 12231233.Google Scholar
Caravolas, M. (2005). The nature and causes of dyslexia in different languages. In Snowling, M. & Hulme, C. (Eds.), The science of reading: A handbook (pp. 336355). Oxford, UK: Blackwell.Google Scholar
Caravolas, M., Lervåg, A., Defior, S., Málková, G. S., & Hulme, C. (2013). Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies. Psychological Science, 24, 13981407.Google Scholar
Caravolas, M., Lervåg, A., Mousikou, P. et al. (2012). Common patterns of prediction of literacy development in different alphabetic orthographies. Psychological Science, 23, 678686.Google Scholar
Caravolas, M., Volín, J., & Hulme, C. (2005). Phoneme awareness is a key component of alphabetic literacy skills in consistent and inconsistent orthographies: Evidence from Czech and English children. Journal of Experimental Child Psychology, 92, 107139.Google Scholar
Castro‐Caldas, A., Miranda, P. C., Carmo, I. et al. (1999). Influence of learning to read and write on the morphology of the corpus callosum. European Journal of Neurology, 6, 2328.Google Scholar
Church, J. A., Balota, D. A., Petersen, S. E., & Schlaggar, B. L. (2011). Manipulation of length and lexicality localizes the functional neuroanatomy of phonological processing in adult readers. Journal of Cognitive Neuroscience, 23, 14751493.Google Scholar
Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2008). A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18, 20542065.Google Scholar
Cohen, L., Lehéricy, S., Chochon, F. et al. (2002). Language‐specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125, 10541069.Google Scholar
Dehaene, S. (2009). Reading in the brain: The new science of how we read. London: Penguin Publishing Group.Google Scholar
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254262.Google Scholar
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16, 234244.Google Scholar
Démonet, J.-F., Taylor, M. J., & Chaix, Y. (2004). Developmental dyslexia. The Lancet, 363, 14511460.Google Scholar
Démonet, J.-F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: Functional neuroimaging. Physiological Reviews, 85, 4995.Google Scholar
DeWitt, I., & Rauschecker, J. P. (2013). Wernicke’s area revisited: Parallel streams and word processing. Brain and Language, 127, 181191.Google Scholar
Dhar, M., Been, P. H., Minderaa, R. B., & Althaus, M. (2010). Reduced interhemispheric coherence in dyslexic adults. Cortex, 46, 794798.Google Scholar
Díaz, B., Hintz, F., Kiebel, S. J., & von Kriegstein, K. (2012). Dysfunction of the auditory thalamus in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 109, 1384113846.Google Scholar
Diehl, J. J., Frost, S. J., & Sherman, G. (2014). Neural correlates of language and non-language visuospatial processing in adolescents with reading disability. Neuroimage, 101, 653666.Google Scholar
Dong, Y., Nakamura, K., & Okada, T. (2005). Neural mechanisms underlying the processing of Chinese words: An fMRI study. Neuroscience Research, 52, 139145.Google Scholar
Dujardin, T., Etienne, Y., Contentin, C. et al. (2011). Behavioral performances in participants with phonological dyslexia and different patterns on the N170 component. Brain and Cognition, 75, 91100.Google Scholar
El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal Neuroinflammation, 11, 189. doi: http://dx.doi.org/10.1186/s12974-014-0189-0.Google Scholar
Finn, E. S., Shen, X., & Holahan, J. M. (2014). Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity. Biological Psychiatry, 76, 397404.Google Scholar
Fletcher, J. M., Shaywitz, S. E., Shankweiler, D. P. et al. (1994). Cognitive profiles of reading disability: Comparisons of discrepancy and low achievement definitions. Journal of Educational Psychology, 86, 623.Google Scholar
Frost, R. (2012). Towards a universal model of reading. Behavioral and Brain Sciences, 35, 263279.Google Scholar
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13, 104115. doi: http://dx.doi.org/10.1037/0096-1523.13.1.104.Google Scholar
Frost, S. J., Landi, N., & Mencl, W. E. et al. (2009). Phonological awareness predicts activation patterns for print and speech. Annals of Dyslexia, 59, 7897.Google Scholar
Gabrieli, J. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280283.CrossRefGoogle ScholarPubMed
Giraud, A.-L., & Ramus, F. (2013). Neurogenetics and auditory processing in developmental dyslexia. Current Opinion in Neurobiology, 23, 3742.Google Scholar
Goswami, U., Thomson, J., Richardson, U. et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 1091110916.Google Scholar
Goswami, U., Wang, H.-L. S., Cruz, A. et al. (2011). Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. Journal of Cognitive Neuroscience, 23, 325337.Google Scholar
Goswami, U., Ziegler, J. C., & Richardson, U. (2005). The effects of spelling consistency on phonological awareness: A comparison of English and German. Journal of Experimental Child Psychology, 92, 345365.Google Scholar
Graves, W. W., Binder, J. R., Desai, R. H. et al. (2014). Anatomy is strategy: Skilled reading differences associated with structural connectivity differences in the reading network. Brain and Language, 133, 113.Google Scholar
Griffith, P. L., & Olson, M. W. (1992). Phonemic awareness helps beginning readers break the code. The Reading Teacher, 45, 516523.Google Scholar
Hampson, M., Tokoglu, F., Sun, Z. et al. (2006). Connectivity–behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage, 31, 513519.Google Scholar
Helenius, P., Uutela, K., & Hari, R. (1999). Auditory stream segregation in dyslexic adults. Brain, 122, 907913.Google Scholar
Ho, C. S.-H., Chan, D. W., Chung, K. K., Lee, S.-H., & Tsang, S.-M. (2007). In search of subtypes of Chinese developmental dyslexia. Journal of Experimental Child Psychology, 97, 6183.Google Scholar
Hoeft, F., Hernandez, A., McMillon, G. et al. (2006). Neural basis of dyslexia: A comparison between dyslexic and nondyslexic children equated for reading ability. The Journal of Neuroscience, 26, 1070010708.Google Scholar
Hoeft, F., Meyler, A., Hernandez, A. et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104, 42344239.Google Scholar
Hornickel, J., Anderson, S., Skoe, E., Yi, H.-G., & Kraus, N. (2012). Subcortical representation of speech fine structure relates to reading ability. Neuroreport, 23, 69.Google Scholar
Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences of the United States of America, 106, 1302213027.Google Scholar
Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95, 89398944.Google Scholar
Hosseini, S. H., Black, J. M., Soriano, T. et al. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. Neuroimage, 71, 260274.Google Scholar
Hu, W., Lee, H. L., & Zhang, Q. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133, 16941706.Google Scholar
Jeon, H.-A. (2012). Effect of lexical proficiency on reading strategies used for shallow and deep orthographies. Neuroreport, 23, 979983.Google Scholar
Kamii, C., & Manning, M. (2002). Phonemic awareness and beginning reading and writing. Journal of Research in Childhood Education, 17, 3846.Google Scholar
Kast, M., Elmer, S., Jancke, L., & Meyer, M. (2010). ERP differences of pre-lexical processing between dyslexic and non-dyslexic children. International Journal of Psychophysiology, 77, 5969.Google Scholar
Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. Advances in Psychology, 94, 6784.Google Scholar
Kita, Y., Yamamoto, H., Oba, K. et al. (2013). Altered brain activity for phonological manipulation in dyslexic Japanese children. Brain, 136, 36963708.Google Scholar
Klimesch, W., Doppelmayr, M., Wimmer, H., Gruber, W. et al. (2001). Alpha and beta band power changes in normal and dyslexic children. Clinical Neurophysiology, 112, 11861195.Google Scholar
Klimesch, W., Doppelmayr, M., Wimmer, H. E. A., Schwaiger, J. et al. (2001). Theta band power changes in normal and dyslexic children. Clinical Neurophysiology, 112, 11741185.Google Scholar
Klingberg, T., Hedehus, M., & Temple, E. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron, 25, 493500.Google Scholar
Kuo, W.-J., Yeh, T.-C., Lee, C.-Y. et al. (2003). Frequency effects of Chinese character processing in the brain: An event-related fMRI study. Neuroimage, 18, 720730.Google Scholar
Kuo, W.-J., Yeh, T.-C., Lee, J.-R. et al. (2004). Orthographic and phonological processing of Chinese characters: An fMRI study. Neuroimage, 21, 17211731.Google Scholar
Lallier, M., Thierry, G., Tainturier, M.-J. et al. (2009). Auditory and visual stream segregation in children and adults: An assessment of the amodality assumption of the “sluggish attentional shifting” theory of dyslexia. Brain Research, 1302, 132147.Google Scholar
Landerl, K., Ramus, F., Moll, K. et al. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54, 686694. http://dx.doi.org/10.1111/jcpp.12029.Google Scholar
Lee, C.-Y., Tsai, J.-L., Kuo, W.-J. et al. (2004). Neuronal correlates of consistency and frequency effects on Chinese character naming: An event-related fMRI study. Neuroimage, 23, 12351245.Google Scholar
Lehongre, K., Morillon, B., Giraud, A.-L., & Ramus, F. (2013). Impaired auditory sampling in dyslexia: Further evidence from combined fMRI and EEG. Frontiers in Human Neuroscience, 7, 454.Google Scholar
Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., & Giraud, A.-L. (2011). Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron, 72, 10801090.Google Scholar
Liberman, A. M. (1996). Speech: A special code. London: MIT press.Google Scholar
Liberman, I. Y., Shankweiler, D., & Liberman, A. M. (1989). The alphabetic principle and learning to read. In Shankweiler, D. & Liberman, I. Y. (Eds.), International academy for research in learning disabilities monograph series, no. 6. Phonology and reading disability: Solving the reading puzzle (pp. 133). Ann Arbor, MI: The University of Michigan Press.Google Scholar
Liu, C., Zhang, W.-T., Tang, Y.-Y. et al. (2008). The visual word form area: Evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage, 40, 13501361.Google Scholar
Lobier, M. A., Peyrin, C., Pichat, C., Le Bas, J.-F., & Valdois, S. (2014). Visual processing of multiple elements in the dyslexic brain: Evidence for a superior parietal dysfunction. Frontiers in Human Neuroscience, 8, 479.Google Scholar
Lyytinen, H., Aro, M., Eklund, K. et al. (2004). The development of children at familial risk for dyslexia: Birth to early school age. Annals of Dyslexia, 54, 184220.Google Scholar
Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A Meta‐analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145, 237259.Google Scholar
Manent, J.-B., & Represa, A. (2007). Neurotransmitters and brain maturation: Early paracrine actions of GABA and glutamate modulate neuronal migration. The Neuroscientist, 13, 268279.Google Scholar
Mann, V., & Wimmer, H. (2002). Phoneme awareness and pathways into literacy: A comparison of German and American children. Reading and Writing, 15, 653682. doi: http://dx.doi.org/10.1023/A:1020984704781.Google Scholar
McBride-Chang, C., Cho, J.-R., Liu, H. et al. (2005). Changing models across cultures: Associations of phonological awareness and morphological structure awareness with vocabulary and word recognition in second graders from Beijing, Hong Kong, Korea, and the United States. Journal of Experimental Child Psychology, 92, 140160.Google Scholar
McBride-Chang, C., Shu, H., Zhou, A. et al. (2003). Morphological awareness uniquely predicts young children’s Chinese character recognition. Journal of Educational Psychology, 95, 743751.Google Scholar
McNorgan, C., Randazzo-Wagner, M., & Booth, J. R. (2013). Cross-modal integration in the brain is related to phonological awareness only in typical readers, not in those with reading difficulty. Frontiers in Human Neuroscience, 7, 388. http://dx.doi.org/10.3389/fnhum.2013.00388.Google Scholar
Meng, X., Tian, X., Jian, J., & Zhou, X. (2007). Orthographic and phonological processing in Chinese dyslexic children: An ERP study on sentence reading. Brain Research, 1179, 119130.Google Scholar
Moll, K., Ramus, F., Bartling, J. et al. (2014). Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 29, 6577.Google Scholar
Nakamura, K., Kuo, W.-J., Pegado, F. et al. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109, 2076220767. doi: http://dx.doi.org/10.1073/pnas.1217749109.Google Scholar
Newman, E. H., Tardif, T., Huang, J. Y., & Shu, H. (2011). Phonemes matter: The role of phoneme-level awareness in emergent Chinese readers. Journal of Experimental Child Psychology, 108, 242259.Google Scholar
Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8, 830. doi: http://dx.doi.org/10.3389/fnhum.2014.00830.Google Scholar
Paulesu, E., Démonet, J.-F., Fazio, F. et al. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291, 21652167.Google Scholar
Paulesu, E., Frith, U., Snowling, M. et al. (1996). Is developmental dyslexia a disconnection syndrome. Brain, 119, 143157.Google Scholar
Paulesu, E., McCrory, E., Fazio, F. et al. (2000). A cultural effect on brain function. Nature Neuroscience, 3, 9196.Google Scholar
Perreault, C., & Mathew, S. (2012). Dating the origin of language using phonemic diversity. PLoS One, 7, e35289. doi: http://dx.doi.org/10.1371/journal.pone.0035289.Google Scholar
Petroff, O. A. (2002). Book review: GABA and glutamate in the human brain. The Neuroscientist, 8, 562573.Google Scholar
Power, A. J., Mead, N., Barnes, L., & Goswami, U. (2013). Neural entrainment to rhythmic speech in children with developmental dyslexia. Frontiers in Human Neuroscience, 7, 777.Google Scholar
Preston, J. L., Molfese, P. J., Frost, S. J. et al. (2016). Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27, 7584.Google Scholar
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335359.Google Scholar
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62, 816847.Google Scholar
Pugh, K. R., Frost, S. J., Rothman, D. L. et al. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. The Journal of Neuroscience, 34, 40824089.Google Scholar
Pugh, K. R., Frost, S. J., Sandak, R. et al. (2008). Effects of stimulus difficulty and repetition on printed word identification: An fMRI comparison of nonimpaired and reading-disabled adolescent cohorts. Journal of Cognitive Neuroscience, 20, 11461160.Google Scholar
Pugh, K. R., Landi, N., Preston, J. L. et al. (2013). The relationship between phonological and auditory processing and brain organization in beginning readers. Brain and Language, 125, 173183. doi: http://dx.doi.org/10.1016/j.bandl.2012.04.004.Google Scholar
Pugh, K. R., Mencl, W. E., Jenner, A. R. et al. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation & Developmental Disabilities Research Reviews, 6, 207213.Google Scholar
Pugh, K. R., Mencl, W. E., Shaywitz, B. A. et al. (2000). The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity within posterior cortex. Psychological Science, 11, 5156.Google Scholar
Pugh, K. R., Sandak, R., Frost, S. J., Moore, D. L., & Mencl, W. E. (2006). Neurobiological investigations of skilled and impaired reading. In Dickinson, D. K. & Neuman, S. B. (Eds.), Handbook of early literacy research (Vol. 2, pp. 6474). New York, NY: Guilford Publications.Google Scholar
Pugh, K. R., Shaywitz, B. A., Shaywitz, S. E. et al. (1996). Cerebral organization of component processes in reading. Brain, 119, 12211238.Google Scholar
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212218.Google Scholar
Rao, C., & Singh, N. C. (2015). Visuospatial complexity modulates reading in the brain. Brain and Language, 141, 5061.Google Scholar
Rawson, M. (1978). Dyslexia and learning disabilities: Their relationship. Bulletin of the Orton Society, 28, 4361. doi: http://dx.doi.org/10.1007/BF02653425.Google Scholar
Richlan, F. (2012). Developmental dyslexia: Dysfunction of a left hemisphere reading network. Frontiers in Human Neuroscience, 6, 120.Google Scholar
Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8, 347. doi: http://dx.doi.org/10.3389/fnhum.2014.00347.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta‐analysis of neuroimaging studies. Human Brain Mapping, 30, 32993308.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56, 17351742.Google Scholar
Rieben, L., & Perfetti, C. A. (1991). Learning to read: Basic research and its implications. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., & Molfese, P. J. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112, 1551015515.Google Scholar
Rumsey, J. M., Andreason, P., & Zametkin, A. J. (1992). Failure to activate the left temporoparietal cortex in dyslexia: An oxygen 15 positron emission tomographic study. Archives of Neurology, 49, 527534. doi: http://dx.doi.org/10.1001/archneur.1992.00530290115020.Google Scholar
Salmelin, R., Kiesilä, P., Uutela, K., Service, E., & Salonen, O. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40, 157162.Google Scholar
Sandak, R., Mencl, W. E., Frost, S. J. et al. (2004). The neurobiology of adaptive learning in reading: A contrast of different training conditions. Cognitive, Affective, & Behavioral Neuroscience, 4, 6788.Google Scholar
Sarkari, S., Simos, P., Fletcher, J. et al. (2002). The emergence and treatment of developmental reading disability: Contributions of functional brain imaging. Seminars in Pediatric Neurology, 9, 227236.Google Scholar
Scarborough, H. S. (1998). Early identification of children at risk for reading disabilities: Phonological awareness and some other promising predictors. In Shapiro, B. K., Accardo, P. J., & Capute, A. J. (Eds.), Specific reading disability: A view of the spectrum (pp. 75119). Timonium, MD: York Press.Google Scholar
Schlaggar, B. L., Brown, T. T., Lugar, H. M. et al. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 14761479.Google Scholar
Schurz, M., Wimmer, H., Richlan, F. et al. (2014). Resting-state and task-based functional brain connectivity in developmental dyslexia. Cerebral Cortex, 25, 35023514. doi: http://dx.doi.org/10.1093/cercor/bhu184.Google Scholar
Shankweiler, D., Crain, S., Katz, L. et al. (1995). Cognitive profiles of reading-disabled children: Comparison of language skills in phonology, morphology, and syntax. Psychological Science, 6, 149156.Google Scholar
Shankweiler, D., Mencl, W. E., Braze, D. et al. (2008). Reading differences and brain: Cortical integration of speech and print in sentence processing varies with reader skill. Developmental Neuropsychology, 33, 745775.Google Scholar
Shaywitz, S. E., & Shaywitz, B. A. (2003). The science of reading and dyslexia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 7, 158166. doi: http://dx.doi.org/10.1016/s1091-8531(03)00002-8.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A. et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926933.Google Scholar
Shaywitz, S. E., Shaywitz, B. A., & Pugh, K. R. et al. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95, 26362641.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101110.Google Scholar
Shu, H., Anderson, R. C., & Wu, N. N. (2000). Phonetic awareness: Knowledge of orthography-phonology relationships in the character acquisition of Chinese children. Journal of Educational Psychology, 92, 5662.Google Scholar
Shu, H., McBride-Chang, C., Wu, S., & Liu, H. Y. (2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98, 122133.Google Scholar
Shu, H., Meng, X., Chen, X., Luan, H., & Cao, F. (2005). The subtypes of developmental dyslexia in Chinese: Evidence from three cases. Dyslexia, 11, 311329.Google Scholar
Shu, H., Peng, H., & McBride-Chang, C. (2008). Phonological awareness in young Chinese children. Developmental Science, 11, 171181. doi: http://dx.doi.org/10.1111/j.1467-7687.2007.00654.x.Google Scholar
Simos, P. G., Breier, J., Fletcher, J., Bergman, E., & Papanicolaou, A. (2000). Cerebral mechanisms involved in word reading in dyslexic children: A magnetic source imaging approach. Cerebral Cortex, 10, 809816.Google Scholar
Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural–functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences of the United States of America, 105, 55615566. doi: http://dx.doi.org/10.1073/pnas.0801750105.Google Scholar
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 7176.Google Scholar
Siok, W. T., Spinks, J. A., Jin, Z., & Tan, L. H. (2009). Developmental dyslexia is characterized by the co-existence of visuospatial and phonological disorders in Chinese children. Current Biology, 19, R890R892.Google Scholar
Snowling, M. J., & Hulme, C. (2008). The science of reading: A handbook (Vol. 9). Malden, MA: Blackwell Publishing. doi: http://dx.doi.org/10.1002/9780470757642.Google Scholar
Soltész, F., Szűcs, D., Leong, V., White, S., & Goswami, U. (2013). Differential entrainment of neuroelectric delta oscillations in developmental dyslexia. PLoS One, 8, e76608. doi: http://dx.doi.org/10.1371/journal.pone.0076608.Google Scholar
Spitsyna, G., Warren, J. E., Scott, S. K., Turkheimer, F. E., & Wise, R. J. (2006). Converging language streams in the human temporal lobe. The Journal of Neuroscience, 26, 73287336.Google Scholar
Tallal, P. (1984). Temporal or phonetic processing deficit in dyslexia? That is the question. Applied Psycholinguistics, 5, 167169.Google Scholar
Tan, L. H., Hoosain, R., & Peng, D.-L. (1995). Role of early presemantic phonological code in Chinese character identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 4354.Google Scholar
Temple, E., Deutsch, G. K., Poldrack, R. A. et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100, 28602865.Google Scholar
Temple, E., Poldrack, R. A., Salidis, J. et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: An fMRI study. Neuroreport, 12, 299307.Google Scholar
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767773.Google Scholar
Verhoeven, L., & Perfetti, C. (2003). Introduction to this special issue: The role of morphology in learning to read. Scientific Studies of Reading, 7, 209217.Google Scholar
Viana, A. R., Razuk, M., de Freitas, P. B., & Barela, J. A. (2013). Sensorimotor integration in dyslexic children under different sensory stimulations. PLoS One, 8, e72719. doi: http://dx.doi.org/10.1371/journal.pone.0072719.Google Scholar
Von Karolyi, C., Winner, E., Gray, W., & Sherman, G. F. (2003). Dyslexia linked to talent: Global visual-spatial ability. Brain and Language, 85, 427431.Google Scholar
Wang, J.-J., Bi, H.-Y., Gao, L.-Q., & Wydell, T. N. (2010). The visual magnocellular pathway in Chinese-speaking children with developmental dyslexia. Neuropsychologia, 48, 36273633.Google Scholar
Wang, W. S., & Tsai, Y. (2011). The alphabet and the sinogram. Dyslexia across cultures. Baltimore, MD: Brookes Publishing.Google Scholar
Wang, X., Yang, J., Yang, J. et al. (2015). Language differences in the brain network for reading in naturalistic story reading and lexical decision. PLoS One, 10, e0124388. doi: http://dx.doi.org/10.1371/journal.pone.0124388.Google Scholar
Wheat, K. L., Cornelissen, P. L., Frost, S. J., & Hansen, P. C. (2010). During visual word recognition, phonology is accessed within 100 ms and may be mediated by a speech production code: Evidence from magnetoencephalography. The Journal of Neuroscience, 30, 52295233.Google Scholar
Wimmer, H., Mayringer, H., & Landerl, K. (2000). The double-deficit hypothesis and difficulties in learning to read a regular orthography. Journal of Educational Psychology, 92, 668680. doi: http://dx.doi.org/10.1037/0022-0663.92.4.668.Google Scholar
Wimmer, H., Schurz, M., Sturm, D. et al. (2010). A dual-route perspective on poor reading in a regular orthography: An fMRI study. Cortex, 46, 12841298.Google Scholar
Wu, C.-Y., Ho, M.-H. R., & Chen, S.-H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63, 381391.Google Scholar
Wu, N. N., Zhou, X. L., & Shu, H. (1999). Sublexical processing in reading Chinese: A development study. Language and Cognitive Processes, 14, 503524.Google Scholar
Yang, J., Wang, X., Shu, H., & Zevin, J. D. (2011). Brain networks associated with sublexical properties of Chinese characters. Brain and Language, 119, 6879.Google Scholar
Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cerebral Cortex, 20, 622632.Google Scholar
Zhao, J. [Jing], Qian, Y., Bi, H.-Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068. doi: http://dx.doi.org/10.1038/srep07068.Google Scholar
Zhao, J. [Jingjing], Wang, X., Frost, S. J. et al. (2014). Neural division of labor in reading is constrained by culture: A training study of reading Chinese characters. Cortex, 53, 90106.Google Scholar
Zhou, X., & Marslen-Wilson, W. (1999). Phonology, orthography, and semantic activation in reading Chinese. Journal of Memory and Language, 41, 579606.Google Scholar
Zhou, X., & Marslen-Wilson, W. (2000). The relative time course of semantic and phonological activation in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 12451265.Google Scholar
Ziegler, J. C., Bertrand, D., Tóth, D. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21, 551559. doi: http://dx.doi.org/10.1177/0956797610363406.Google Scholar
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 329.Google Scholar

References

Agrillo, C., Gori, S., & Beran, M. J. (2015). Do rhesus monkeys (Macacamulatta) perceive illusory motion? Animal Cognition, 18, 895910. doi: http://dx.doi.org/10.1007/s10071-015-0860-6.Google Scholar
Badcock, N. A., & Kidd, J. C. (2015). Temporal variability predicts the magnitude of between-group attentional blink differences in developmental dyslexia: A meta-analysis. PeerJ, 3(e746), 118. doi: http://dx.doi.org/10.7717/peerj.746.Google Scholar
Ball, E. W., & Blachman, B. A. (1988). Phoneme segmentation training: Effect on reading readiness. Annals of Dyslexia, 38, 208225.Google Scholar
Battelli, L., Pascual-Leone, A., & Cavanagh, P. (2007). The “when” pathway of the right parietal lobe. Trends in Cognitive Sciences, 11, 204210. doi: http://dx.doi.org/10.1016/j.tics.2007.03.001.Google Scholar
Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neurosciences, 35, 391416.Google Scholar
Benasich, A. A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioural Brain Research, 136, 3149.Google Scholar
Boden, C., & Giaschi, D. (2007). M-stream deficits and reading-related visual processes in developmental dyslexia. Psychological Bulletin, 133, 346366. doi: http://dx.doi.org/10.1037/0033-2909.133.2.346.Google Scholar
Boets, B., de Beeck, H. P. O., Vandermosten, M. et al. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 12511254.Google Scholar
Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., & Ghesquière, P. (2011). Coherent motion sensitivity and reading development in the transition from pre-reading to reading stage. Child Development, 82, 854869. doi: http://dx.doi.org/10.1111/j.1467-8624.2010.01527.x.Google Scholar
Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104, 198230. doi: http://dx.doi.org/10.1016/j.cognition.2006.05.009.Google Scholar
Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read – A causal connection. Nature, 301, 419421.Google Scholar
Cao, F., Rickles, B., Vu, M. et al. (2013). Early stage visual-orthographic processes predict long-term retention of word form and meaning: A visual encoding training study. Journal of Neurolinguistics, 26, 440461.Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 14841525. doi: http://dx.doi.org/10.1016/j.visres.2011.04.012.Google Scholar
Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using pre-reading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57, 750758.Google Scholar
Castles, A., & Coltheart, M. (2004). Is there a causal link from phonological awareness to success in learning to read? Cognition, 91, 77111. doi: http://dx.doi.org/10.1016/S0010-0277(03)00164-1.Google Scholar
Cestnick, L., & Coltheart, M. (1999). The relationship between language-processing and visual-processing deficits in developmental dyslexia. Cognition, 71, 231255. doi: http://dx.doi.org/10.1016/S0010-0277(99)00023-2.Google Scholar
Clark, K. A., Helland, T., Specht, K. et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137, 31363141. doi: http://dx.doi.org/10.1093/brain/awu229.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Review Neuroscience, 3, 201215. doi: http://dx.doi.org/10.1038/nrn755.Google Scholar
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569599. doi: http://dx.doi.org/10.1146/annurev-neuro-061010-113731.Google Scholar
Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35, 14831494.Google Scholar
Cunningham, A. E., & Stanovich, K. E. (1997). Early reading acquisition and its relation to reading experience and ability 10 years later. Developmental Psychology, 33, 934945.Google Scholar
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Review Neuroscience, 16, 234244. doi: http://dx.doi.org/10.1038/nrn3924.Google Scholar
Di Lollo, V., Hanson, D., & McIntyre, J. S. (1983). Initial stages of visual information processing in dyslexia. Journal of Experimental Psychology: Human Perception & Performance, 9, 923935. doi: http://dx.doi.org/10.1037/0096-1523.9.6.923.Google Scholar
Dispaldro, M., Leonard, L. B., Corradi, N. et al. (2013). Visual attentional engagement deficits in children with Specific Language Impairment and their role in real-time language processing. Cortex, 49, 21262139. doi: http://dx.doi.org/10.1016/j.cortex.2012.09.012.Google Scholar
Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Direction in Psychology Science, 18, 321326.Google Scholar
Eden, G. F., VanMeter, J. W., & Rumsey, J. M. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 6669. doi:10.1038/382066a0.Google Scholar
Facoetti, A. (2004). Reading and selective spatial attention: Evidence from behavioral studies in dyslexic children. In Tobias, H. D. (Ed.), Trends in dyslexia research (pp. 3571). New York, NY: Nova Biomedical Books.Google Scholar
Facoetti, A. (2012). Spatial attention disorders in developmental dyslexia: Towards the prevention of reading acquisition deficits. In Stein, J. & Kapoula, Z. (Eds.), Visual aspects of dyslexia (pp. 123136). Oxford: Oxford University Press. doi: http://dx.doi.org/10.1093/acprof:oso/9780199589814.003.0008.Google Scholar
Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16, 226239. doi: http://dx.doi.org/10.1002/dys.413.Google Scholar
Facoetti, A., Lorusso, M. L., Cattaneo, C., Galli, R., & Molteni, M. (2005). Visual and auditory attentional capture are both sluggish in children with developmental dyslexia. Acta NeurobiologiaeExperimentalis, 65, 6172.Google Scholar
Facoetti, A., Lorusso, M. L., Paganoni, P., Umiltà, C., & Mascetti, G. G. (2003). The role of visuospatial attention in developmental dyslexia: Evidence from a rehabilitation study. Cognitive Brain Research, 15, 154164. doi: http://dx.doi.org/10.1016/S0926-6410(02)00148-9.Google Scholar
Facoetti, A., & Molteni, M. (2000). Is attentional focusing an inhibitory process at distractor location? Cognitive Brain Research, 10, 185188. doi: http://dx.doi.org/10.1016/S0926-6410(00)00031-8.Google Scholar
Facoetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36, 109123.Google Scholar
Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 44, 12211233. doi: http://dx.doi.org/10.1016/j.cortex.2007.10.007.Google Scholar
Facoetti, A., Trussardi, A. N., Ruffino, M. et al. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22, 10111025. doi: http://dx.doi.org/10.1162/jocn.2009.21232.Google Scholar
Facoetti, A., Zorzi, M., Cestnick, L. et al. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23, 841855. doi: http://dx.doi.org/10.1080/02643290500483090.Google Scholar
Franceschini, S., Bertoni, S., Gianesini, T., Gori, S., & Facoetti, A. (2017). A different vision of dyslexia: Local precedence on global perception. Scientific Reports, 7, 17462. doi: http://dx.doi.org/10.1038/s41598-017-17626-1.Google Scholar
Franceschini, S., Bertoni, S., Ronconi, L. et al. (2015). “Shall we play a game?”: Improving reading through action video games in developmental dyslexia. Current Developmental Disorders Reports, 2, 318329. doi: http://dx.doi.org/10.1007/s40474-015-0064-4.Google Scholar
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22, 814819. doi: http://dx.doi.org/10.1016/j.cub.2012.03.013.Google Scholar
Franceschini, S., Gori, S., Ruffino, M. et al. (2013). Action video games make dyslexic children read better. Current Biology, 23, 462466. doi: http://dx.doi.org/10.1016/j.cub.2013.01.044.Google Scholar
Franceschini, S., Trevisan, P., Ronconi, L. et al. (2017). Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Scientific Reports, 7, 5863.Google Scholar
Gabrieli, J. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280283. doi: http://dx.doi.org/10.1126/science.1171999.Google Scholar
Gabrieli, J. D., & Norton, E. S. (2012). Reading abilities: Importance of visual-spatial attention. Current Biology, 22, R298R299. doi: http://dx.doi.org/10.1016/j.cub.2012.03.041.Google Scholar
Galuschka, K., Ise, E., Krick, K., & Schulte-Körne, G. (2014). Effectiveness of treatment approaches for children and adolescents with reading disabilities: A meta-analysis of randomized controlled trials. PLoS One, 9(2), e89900. doi: http://dx.doi.org/10.1371/journal.pone.0089900.Google Scholar
Geiger, G., Cattaneo, C., Galli, R. et al. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37, 17451764.Google Scholar
Geiger, G., Lettvin, J. Y., & Fahle, M. (1994). Dyslexic children learn a new visual strategy for reading: A controlled experiment. Vision Research, 34, 12231233. doi:10.1016/0042-6989(94)90303-4.Google Scholar
Giraldo-Chica, M., Hegarty, J. P., & Schneider, K. A. (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clinical, 7, 830836. doi:10.1016/j.nicl.2015.03.011.Google Scholar
Gori, S., Agrillo, A., Dadda, M., & Bisazza, A. (2014). Do fish perceive illusory motion? Scientific Reports, 4, 6443. doi: http://dx.doi.org/10.1038/srep06443.Google Scholar
Gori, S., Bertoni, S., Sali, M. E. et al. (2016). Dyslexia prevention by action video game training: Behavioural and neurophysiological evidence. Journal of Vision, 16, 489. doi: http://dx.doi.org/10.1167/16.12.489.Google Scholar
Gori, S., Cecchini, P., Bigoni, A., Molteni, M., & Facoetti, A. (2014). Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Frontiers in Human Neuroscience, 8, 460. doi: http://dx.doi.org/10.3389/fnhum.2014.00460.Google Scholar
Gori, S., & Facoetti, A. (2014). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision Research, 99, 7887. doi: http://dx.doi.org/10.1016/j.visres.2013.11.011.Google Scholar
Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15, 8. doi: http://dx.doi.org/10.1167/15.1.8.Google Scholar
Gori, S., Giora, E., & Stubbs, D. A. (2010). Perceptual compromise between apparent and veridical motion indices: The Unchained-Dots illusion. Perception, 39, 863866. doi: http://dx.doi.org/10.1068/p6678.Google Scholar
Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2011). A new motion illusion based on competition between two kinds of motion processing units: The Accordion Grating. Neural Networks, 24, 10821092. doi: http://dx.doi.org/10.1016/j.neunet.2011.06.017.Google Scholar
Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2013). The novelty of the “Accordion Grating Illusion.” Neural Network, 39, 52. doi: http://dx.doi.org/10.1016/j.neunet.2012.07.008.Google Scholar
Gori, S., & Hamburger, K. (2006). A new motion illusion: The Rotating-Tilted-Lines illusion. Perception, 35, 853857. doi: http://dx.doi.org/10.1068/p5531.Google Scholar
Gori, S., Mascheretti, S., Giora, E. et al. (2015). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cerebral Cortex, 25, 16851695. doi: http://dx.doi.org/10.1093/cercor/bhu234.Google Scholar
Gori, S., Molteni, M., & Facoetti, A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience, 10, 175. doi: http://dx.doi.org/10.3389/fnhum.2016.00175.Google Scholar
Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26, 43564369.Google Scholar
Gori, S., Tait, M., Franceschini, S. et al. (2014, July). Dyscalculia remediation by action video games. Abstract Number: FENS-3332. Poster session presented at Forum of Neuroscience (FENS), Milan, Italy.Google Scholar
Gori, S., & Yazdanbakhsh, A. (2008). The riddle of the Rotating-Tilted-Lines illusion. Perception, 37, 631635. doi: http://dx.doi.org/10.1068/p5770.Google Scholar
Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews Neuroscience, 16, 4354. doi: http://dx.doi.org/10.1038/nrn3836.Google Scholar
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534537.Google Scholar
Green, C. S., & Bavelier, D. (2012). Learning, attentional control and action video games. Current Biology, 22, R197R206. doi: http://dx.doi.org/10.1016/j.cub.2012.02.012.Google Scholar
Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 15731579. doi: http://dx.doi.org/10.1016/j.cub.2010.07.040.Google Scholar
Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5, 525532. doi: http://dx.doi.org/10.1016/S1364-6613(00)01801-5.Google Scholar
Hari, R., Renvall, H., & Tanskanen, T. (2001). Left minineglect in dyslexic adults. Brain, 124, 13731380.Google Scholar
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334337. doi: http://dx.doi.org/10.1038/383334a0.Google Scholar
Kelly, D. (1966). Frequency doubling in visual responses. Journal of the Optical Society ofAmerica, 56, 16281633. doi: http://dx.doi.org/10.1364/JOSA.56.001628.Google Scholar
Kevan, A., & Pammer, K. (2008). Visual deficits in pre-readers at familial risk for dyslexia. Vision Research, 48, 28352839. doi: http://dx.doi.org/10.1016/j.visres.2008.09.022.Google Scholar
Kevan, A., & Pammer, K. (2009). Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia, 47, 31743181. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2009.07.016.Google Scholar
Krafnick, A. J., Flowers, D. L., Luetje, M. M., Napoliello, E. M., & Eden, G. F. (2014). An investigation into the origin of anatomical differences in dyslexia. Journal of Neuroscience, 34, 901908. doi: http://dx.doi.org/10.1523/JNEUROSCI.2092-13.2013.Google Scholar
Laasonen, M., Salomaa, J., Cousineau, D. et al. (2012). Project DyAdd: Visual attention in adult dyslexia and ADHD. Brain and Cognition, 80, 311327.Google Scholar
Lallier, M., Tainturier, M. J., Dering, B. et al. (2010). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48, 41254135.Google Scholar
Langer, N., Peysakhovich, B., Zuk, J. et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27, 10271036.Google Scholar
Lawton, T. (2016). Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Frontiers Human Neuroscience, 10, 397.Google Scholar
Laycock, R., & Crewther, S. G. (2008). Towards an understanding of the role of the “magnocellular advantage” in fluent reading. Neuroscience & Biobehavioral Review, 32, 14941506. doi: http://dx.doi.org/10.1016/j.neubiorev.2008.06.002.Google Scholar
Liu, D., Chen, X., & Chung, K. K. H. (2015). Performance in a visual search task uniquely predicts reading abilities in third-grade Hong Kong Chinese children. Scientific Studies of Reading, 19, 307324.Google Scholar
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 34163468.Google Scholar
Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88, 7943–7947. doi: http://dx.doi.org/10.1073/pnas.88.18.7943.Google Scholar
Lovegrove, W., Martin, F., & Slaghuis, W. A. (1986). A theoretical and experimental case for visual deficit in specific reading disability. Cognitive Neuropsychology, 3, 225267.Google Scholar
Lum, J. A., Conti-Ramsden, G., & Lindell, A. K. (2007). The attentional blink reveals sluggish attentional shifting in adolescents with specific language impairment. Brain and Cognition, 63, 287295.Google Scholar
Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9, 14. doi: http://dx.doi.org/10.1167/9.4.14.Google Scholar
Maunsell, J. H., & Newsome, W. T. (1987). Visual processing in monkey extrastriate cortex. Annual review of Neuroscience, 10, 363401.Google Scholar
Menghini, D., Finzi, A., Benassi, M. et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: A comparative study. Neuropsychologia, 48, 863872. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2009.11.003.Google Scholar
Moats, L. C. (1994). The missing foundation in teacher education: Knowledge of the structure of spoken and written language. Annals of Dyslexia, 44, 81102.Google Scholar
Moores, E., Tsouknida, E., & Romani, C. (2015). Adults with dyslexia can use cues to orient and constrain attention but have a smaller and weaker attention spotlight. Vision Research, 111, 5565.Google Scholar
Morrone, M. C., Tosetti, M., Montanaro, D. et al. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3, 13221328. doi: http://dx.doi.org/10.1038/81860.Google Scholar
Newsome, W. T., & Pare, E. B. (1998). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 22012211.Google Scholar
Olulade, O. A., Napoliello, E. M., & Eden, G. F. (2013). Abnormal visual motion processing is not a cause of dyslexia. Neuron, 79, 180190. doi: http://dx.doi.org/10.1016/j.neuron.2013.05.002.Google Scholar
Pammer, K. (2014). Temporal sampling in vision and the implications for dyslexia. Frontiers in Human Neuroscience, 7, 933. doi: http://dx.doi.org/10.3389/fnhum.2013.00933.Google Scholar
Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia, 44, 29262936.Google Scholar
Perea, M., Panaderó, V., Moret-Tatay, C., & Góméz, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22, 420430.Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389. doi: http://dx.doi.org/10.1146/annurev-neuro-062111-150525.Google Scholar
Peterson, R. L., Arnett, A. B., Pennington, B. F. et al. (2017). Literacy acquisition influences children’s rapid automatized naming. Developmental Science. Advance online publication. doi: http://dx.doi.org/10.1111/desc.12589.Google Scholar
Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283307. doi: http://dx.doi.org/10.1146/annurev-clinpsy-032814-112842.Google Scholar
Petrov, Y., & Meleshkevich, O. (2011). Locus of spatial attention determines inward–outward anisotropy in crowding. Journal of Vision, 11, 1. doi: http://dx.doi.org/10.1167/11.4.1.Google Scholar
Pugh, K. R., Mencl, W. E., Shaywitz, B. A. et al. (2000). The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity within posterior cortex. Psychological Science, 11, 5156. doi: http://dx.doi.org/10.1111/1467-9280.00214.Google Scholar
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849860.Google Scholar
Renvall, H., & Hari, R. (2002). Auditory cortical responses to speech-like stimuli in dyslexic adults. Journal of Cognitive Neuroscience, 14, 757768.Google Scholar
Richlan, F. (2012). Developmental dyslexia: Dysfunction of a left hemisphere reading network. Frontiersin Human Neuroscience, 6, 120. doi: http://dx.doi.org/10.3389/fnhum.2012.00120.Google Scholar
Roach, N. V., & Hogben, J. H. (2007). Impaired filtering of behaviourally irrelevant visual information in dyslexia. Brain, 130, 771785. doi: http://dx.doi.org/10.1093/brain/awl353.Google Scholar
Robidoux, S., Rauwerda, D., & Besner, D. (2014). Basic processes in reading aloud and colour naming: Towards a better understanding of the role of spatial attention. The Quarterly Journal of Experimental Psychology, 67, 979990. doi: http://dx.doi.org/10.1080/17470218.2013.838686.Google Scholar
Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 6471. doi: http://dx.doi.org/10.1016/j.tics.2009.11.005.Google Scholar
Ronconi, L., Basso, D., Gori, S., & Facoetti, A. (2014). TMS on right frontal eye fields induces an inflexible focus of attention. Cerebral Cortex, 24, 396402. doi: http://dx.doi.org/10.1093/cercor/bhs319.Google Scholar
Ronconi, L., Facoetti, A., Bulf, H. et al. (2014). Paternal autistic traits are predictive of infants visual attention. Journal of Autism and Developmental Disorders, 44, 15561564. doi: http://dx.doi.org/10.1007/s10803-013-2018-1.Google Scholar
Ronconi, L., Gori, S., Ruffino, M., Molteni, M., & Facoetti, A. (2013). Zoom-out attentional impairment in children with autism spectrum disorder. Cortex, 49(4), 10251033.Google Scholar
Ronconi, L., Pincham, H. L., Szűcs, D., & Facoetti, A. (2016). Inducing attention not to blink: Auditory entrainment improves conscious visual processing. Psychological Research, 80, 774784. doi: http://dx.doi.org/10.1007/s00426-015-0691-8.Google Scholar
Ruffino, M., Gori, S., Boccardi, D., Molteni, M., & Facoetti, A. (2014). Spatial and temporal attention in developmental dyslexia. Frontiers in Human Neuroscience, 8, 331. doi: http://dx.doi.org/10.3389/fnhum.2014.00331.Google Scholar
Ruffino, M., Trussardi, A. N., Gori, S. et al. (2010). Attentional engagement deficits in dyslexic children. Neuropsychologia, 48, 37933801. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2010.09.002.Google Scholar
Ruzzoli, M., Gori, S., Pavan, A. et al. (2011). The neural basis of the Enigma illusion: A transcranial magnetic stimulation study. Neuropsychologia, 49, 36483655. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2011.09.020.Google Scholar
Schneider, K. A., & Kastner, S. (2009). Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. Journal of Neuroscience, 29, 17841795. doi: http://dx.doi.org/10.1523/JNEUROSCI.4452-08.2009.Google Scholar
Schneps, M. H., Thomson, J. M., Chen, C., Sonnert, G., & Pomplun, M. (2013). E-readers are more effective than paper for some with dyslexia. PLoS One, 8(9), e75634. doi: http://dx.doi.org/10.1371/journal.pone.0075634.Google Scholar
Schneps, M. H., Thomson, J. M., Sonnert, G. et al. (2013). Shorter lines facilitate reading in those who struggle. PLoS One, 8(8), e71161. doi: http://dx.doi.org/10.1371/journal.pone.0071161.Google Scholar
Schulte-Körne, G., & Bruder, J. (2010). Clinical neurophysiology of visual and auditory processing in dyslexia: A review. Clinical Neurophysiology, 121, 17941809. doi: http://dx.doi.org/10.1016/j.clinph.2010.04.028.Google Scholar
Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38, 179200.Google Scholar
Stein, J. (2012). Visual contributions to reading difficulties: The magnocellular theory. In Stein, J. & Kapoula, Z. (Eds.), Visual aspect of dyslexia (pp. 171197). Oxford, UK: Oxford University Press.Google Scholar
Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1, 267280.Google Scholar
Stein, J., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147152.Google Scholar
Stevens, C., Fanning, J., Donna, C., Sanders, L., & Neville, H. (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Research, 1205, 5569. doi: http://dx.doi.org/10.1016/j.brainres.2007.10.108.Google Scholar
Takashima, A., Wagensveld, B., van Turennout, M. et al. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299314. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2014.06.017.Google Scholar
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721728.Google Scholar
Tallal, P., Miller, S. L., Bedi, G. et al. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271, 8184.Google Scholar
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767773. doi: http://dx.doi.org/10.1038/nn1065.Google Scholar
Valdois, S., Bosse, M. L., & Tainturier, M. J. (2004). The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia, 10, 339363. doi: http://dx.doi.org/10.1002/dys.284.Google Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 240. doi: http://dx.doi.org/10.1046/j.0021-9630.2003.00305.x.Google Scholar
Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research Reviews, 30, 6676. doi: http://dx.doi.org/10.1016/S0165-0173(99)00005-3.Google Scholar
Vidyasagar, T. R. (2013). Reading into neuronal oscillations in the visual system: Implications for developmental dyslexia. Frontiers in Human Neuroscience, 7, 811. doi: http://dx.doi.org/10.3389/fnhum.2013.00811.Google Scholar
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14, 5763. doi: http://dx.doi.org/10.1016/j.tics.2009.12.003.Google Scholar
Virsu, V., Lahti-Nuuttila, P., & Laasonen, M. (2003). Crossmodal temporal processing acuity impairment aggravates with age in developmental dyslexia. Neuroscience Letters, 336, 151154. doi: http://dx.doi.org/10.1016/S0304-3940(02)01253-3.Google Scholar
Vogel, A. C., Miezin, F.M., Petersen, S. E., & Schlaggar, B. L. (2012). The putative visual word form area is functionally connected to the dorsal attention network. Cerebral Cortex, 22, 537549. doi: http://dx.doi.org/10.1093/cercor/bhr100.Google Scholar
Walsh, V. (1995). Dyslexia: Reading between the laminae. Current Biology, 5, 12161217.Google Scholar
Whitney, D., & Levi, D.M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15, 160168.Google Scholar
Wright, C. M., Conlon, E. G., & Dyck, M. (2012). Visual search deficits are independent of magnocellular deficits in dyslexia. Annals of Dyslexia, 62, 5369.Google Scholar
Witton, C., Talcott, J. B., Hansen, P. C. et al. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8, 791797.Google Scholar
Yazdanbakhsh, A., & Gori, S. (2011). Mathematical analysis of the accordion grating illusion: A differential geometry approach to introduce the 3D aperture problem. Neural Networks, 24, 10931101. doi: http://dx.doi.org/10.1016/j.neunet.2011.06.016.Google Scholar
Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. L. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7(2), 110. doi: http://dx.doi.org/10.1167/7.2.2.Google Scholar
Zhao, J., Qian, Y., Bi, H. Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068, 17. doi: http://dx.doi.org/10.1038/srep07068Google Scholar
Zorzi, M., Barbiero, C., Facoetti, A. et al. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 109, 1145511459. doi: http://dx.doi.org/10.1073/pnas.1205566109.Google Scholar
Ziegler, J. C., Pech-Georgel, C., George, F., Alario, F. X., & Lorenzi, C. (2005). Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences of the United States of America, 102, 1411014115.Google Scholar

References

Abu-Rabia, S. (2007). The role of morphology and short vowelization in reading Arabic among normal and dyslexic readers in grades 3, 6, 9, and 12. Journal of Psycholinguistic Research, 36, 89106. doi: http://dx.doi.org/10.1007/s10936-006-9035-6.Google Scholar
Abu-Rabia, S., Share, D., & Mansour, M. S. (2003). Word recognition and basic cognitive processes among reading-disabled and normal readers in Arabic. Reading and Writing, 16, 423442. doi: http://dx.doi.org/10.1023/a:1024237415143.Google Scholar
Anderson, R., Li, W., Ku, Y-M., Shu, H., & Wu, N. (2003). Use of partial information in learning to read Chinese characters. Journal of Educational Psychology, 95(1), 5257.Google Scholar
Ben-Dror, I., Bentin, S., & Frost, R. (1995). Semantic, phonologic, and morphologic skills in reading disabled and normal children: Evidence from perception and production of spoken Hebrew. Reading Research Quarterly, 30, 876893. doi: http://dx.doi.org/10.1111/j.1467-9280.1995.tb00328.x.Google Scholar
Berko, J. (1958). The child’s learning of English morphology. Word, 14, 150177. doi: http://dx.doi.org/10.1080/00437956.1958.11659661.Google Scholar
Berman, R. A. (1987). Productivity in the lexicon: New-word formation in modern Hebrew. Folia Linguistica, 21, 425461.Google Scholar
Berthiaume, R., & Daigle, D. (2014). Are dyslexic children sensitive to the morphological structure of words when they read? The case of dyslexic readers of French. Dyslexia, 20, 241260. doi: http://dx.doi.org/10.1002/dys.1476.Google Scholar
Betjemann, R. S., & Keenan, J. M. (2008). Phonological and semantic priming in children with reading disability. Child Development, 79, 10861102. doi: http://dx.doi.org/10.1111/j.1467-8624.2008.01177.x.Google Scholar
Bowers, P. N., Kirby, J. R., & Deacon, S. H. (2010). The effects of morphological instruction on literacy skills: A systematic review of the literature. Review of Educational Research, 80, 144179. doi: http://dx.doi.org/10.3102/0034654309359353.Google Scholar
Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read: A causal connection. Nature, 301, 419421. doi: http://dx.doi.org/10.1038/301419a0.Google Scholar
Bruck, M. (1990). Word-recognition skills of adults with childhood diagnoses of dyslexia. Developmental Psychology, 26, 439454. doi: http://dx.doi.org/10.1037/0012-1649.26.3.439.Google Scholar
Bryant, P., Nunes, T., & Bindman, M. (1998). Awareness of language in children who have reading difficulties: Historical comparisons in a longitudinal study. Journal of Child Psychology and Psychiatry, 39, 501510. doi: http://dx.doi.org/10.1111/1469-7610.00346.Google Scholar
Burani, C., Marcolini, S., De Luca, M., & Zoccolotti, P. (2008). Morpheme-based reading aloud: Evidence from dyslexic and skilled Italian readers. Cognition, 108, 243262. doi: http://dx.doi.org/10.1016/j.cognition.2007.12.010.Google Scholar
Carlisle, J. F. (1987). The use of morphological knowledge in spelling derived forms by learning-disabled and normal students. Annals of Dyslexia, 37, 90108. doi: http://dx.doi.org/10.1007/bf02648061.Google Scholar
Casalis, S., Colé, P., & Sopo, D. (2004). Morphological awareness in developmental dyslexia. Annals of Dyslexia, 54, 114138. doi: http://dx.doi.org/10.1007/s11881-004-0006-z.Google Scholar
Catts, H. W., Adlof, S. M., & Weismer, S. E. (2006). Language deficits in poor comprehenders: A case for the simple view of reading. Journal of Speech, Language, and Hearing Research, 49, 278293. doi: http://dx.doi.org/10.1044/1092-4388(2006/023).Google Scholar
Chik, P. P. M., Ho, C. S. H., Yeung, P. S. et al. (2012). Contribution of discourse and morphosyntax skills to reading comprehension in Chinese dyslexic and typically developing children. Annals of Dyslexia, 62, 118. doi: http://dx.doi.org/10.1007/s11881-010-0045-6.Google Scholar
Chung, K. K. H., Ho, C. S.-H., Chan, D. W. et al. (2011). Cognitive skills and literacy performance of Chinese adolescents with and without dyslexia. Reading and Writing, 24, 835859. doi: http://dx.doi.org/10.1007/s11145-010-9227-1.Google Scholar
Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review, 100, 589608. doi: http://dx.doi.org/10.1037/0033-295x.100.4.589.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256. doi: http://dx.doi.org/10.1037/0033-295x.108.1.204.Google Scholar
Cunningham, A. E. (2005). Vocabulary growth through independent reading and reading aloud to children. In Hiebert, E. H. & Kamil, M. L. (Eds.), Teaching and learning vocabulary: Bringing research to practice (pp. 4568). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Deacon, S. H., Benere, J., & Pasquarella, A. (2013). Reciprocal relationship: Children’s morphological awareness and their reading accuracy across grades 2 to 3. Developmental Psychology, 49, 11131126. doi: http://dx.doi.org/10.1037/a0029474.Google Scholar
Deacon, S. H., Parrila, R., & Kirby, J. R. (2006). Processing of derived forms in high functioning dyslexics. Annals of Dyslexia, 56, 103128. doi: http://dx.doi.org/10.1007/s11881-006-0005-3.Google Scholar
DeFrancis, J. (1989). Visible speech: The diverse oneness of writing systems. Honolulu, HI: University of Hawaii Press.Google Scholar
Duranovic, M., Tinjak, S., & Turbic-Hadzagic, A. (2014). Morphological knowledge in children with dyslexia. Journal of Psycholinguistic Research, 43, 699713. doi: http://dx.doi.org/10.1007/s10936-013-9274-2.Google Scholar
Egan, J., & Pring, L. (2004). The processing of inflectional morphology: A comparison of children with and without dyslexia. Reading and Writing, 17, 567591. doi: http://dx.doi.org/10.1023/B:READ.0000044433.30864.23.Google Scholar
Egan, J., & Tainturier, M. J. (2011). Inflectional spelling deficits in developmental dyslexia. Cortex, 47, 11791196. doi: http://dx.doi.org/10.1016/j.cortex.2011.05.013.Google Scholar
Ehri, L. C. (1995). Phases of development in learning to read words by sight. Journal of Research in Reading, 18, 116125. doi: http://dx.doi.org/10.1111/j.1467-9817.1995.tb00077.x.Google Scholar
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9, 167188. doi: http://dx.doi.org/10.1207/s1532799xssr0902_4.Google Scholar
Elbro, C., & Arnbak, E. (1996). The role of morpheme recognition and morphological awareness in dyslexia. Annals of Dyslexia, 46, 209240. doi: http://dx.doi.org/10.1007/BF02648177.Google Scholar
Ellis, A. W., & Young, A. W. (1988). Reading: And a composite model for word recognition and production. In Ellis, A. W. & Young, A. W. (Eds.), Human cognitive neuropsychology: A textbook with readings (Augmented ed., pp. 191238). Hove, UK: Psychology Press.Google Scholar
Forster, K. I., & Hector, J. (2002). Cascaded versus noncascaded models of lexical and semantic processing: The turple effect. Memory & Cognition, 30, 11061117. doi: http://dx.doi.org/10.3758/BF03194328.Google Scholar
Goodman, K. S. (1967). Reading: A psycholinguistic guessing game. Journal of the Reading Specialist, 6, 126135. doi: http://dx.doi.org/10.1080/19388076709556976.Google Scholar
Goswami, U., & Bryant, P. (1989). The interpretation of studies using the reading level design. Journal of Literacy Research, 21, 413424. doi: http://dx.doi.org/10.1080/10862968909547687.Google Scholar
Grainger, J., & Ziegler, J. C. (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2(54), 113. doi: http://dx.doi.org/10.3389/fpsyg.2011.00054.Google Scholar
Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review, 111, 662720.Google Scholar
Helenius, P., Salmelin, R., Service, E., & Connolly, J. F. (1999). Semantic cortical activation in dyslexic readers. Journal of Cognitive Neuroscience, 11, 535550. doi: http://dx.doi.org/10.1162/089892999563599.Google Scholar
Ho, C. S.-H., & Bryant, P. (1997). Learning to read Chinese beyond the logographic phase. Reading Research Quarterly, 32, 276289.Google Scholar
Jednoróg, K., Marchewka, A., Tacikowski, P., & Grabowska, A. (2010). Implicit phonological and semantic processing in children with developmental dyslexia: Evidence from event-related potentials. Neuropsychologia, 48, 24472457. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2010.04.017.Google Scholar
Joanisse, M. F., Manis, F. R., Keating, P., & Seidenberg, M. S. (2000). Language deficits in dyslexic children: Speech perception, phonology, and morphology. Journal of Experimental Child Psychology, 77, 3060. doi: http://dx.doi.org/10.1006/jecp.1999.2553.Google Scholar
Keenan, J. M., & Betjemann, R. S. (2008). Comprehension of single words: The role of semantics in word identification and reading disability. In Grigorenko, E. L. & Naples, A. J. (Eds.), Single-word reading: Behavioral and biological perspectives (pp. 191209). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Kruk, R. S., & Bergman, K. (2013). The reciprocal relations between morphological processes and reading. Journal of Experimental Child Psychology, 114, 1034. doi: http://dx.doi.org/10.1016/j.jecp.2012.09.014.Google Scholar
LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6, 293323. doi: http://dx.doi.org/10.1016/0010-0285(74)90015-2.Google Scholar
Lázaro, M., Camacho, L., & Burani, C. (2013). Morphological processing in reading disabled and skilled Spanish children. Dyslexia, 19, 178188. doi: http://dx.doi.org/10.1002/dys.1458.Google Scholar
Leikin, M. (2002). Processing syntactic functions of words in normal and dyslexic readers. Journal of Psycholinguistic Research, 31, 145163. doi: http://dx.doi.org/10.1023/A:1014926900931.Google Scholar
Leikin, M., & Zur Hagit, E. (2006). Morphological processing in adult dyslexia. Journal of Psycholinguistic Research, 35, 471490. doi: http://dx.doi.org/10.1007/s10936-006-9025-8.Google Scholar
Leonard, L. B., Eyer, J. A., Bedore, L. M., & Grela, B. G. (1997). Three accounts of the grammatical morpheme difficulties of English-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 40, 741753. doi: http://dx.doi.org/10.1044/jslhr.4004.741.Google Scholar
Leong, C. K. (1999). Phonological and morphological processing in adult students with learning/reading disabilities. Journal of Learning Disabilities, 32, 224238. doi: http://dx.doi.org/10.1177/002221949903200304.Google Scholar
Liu, P. D., McBride-Chang, C., Wong, A. M.-Y. et al. (2010). Early oral language markers of poor reading performance in Hong Kong Chinese children. Journal of Learning Disabilities, 43, 322331. doi: http://dx.doi.org/10.1177/0022219410369084.Google Scholar
Lyytinen, H., Ahonen, T., & Eklund, K. et al. (2001). Developmental pathways of children with and without familial risk for dyslexia during the first years of life. Developmental Neuropsychology, 20, 535554. doi: http://dx.doi.org/10.1207/S15326942DN2002_5.Google Scholar
Marcolini, S., Traficante, D., Zoccolotti, P., & Burani, C. (2011). Word frequency modulates morpheme-based reading in poor and skilled Italian readers. Applied Psycholinguistics, 32, 513532. doi: http://dx.doi.org/10.1017/S0142716411000191.Google Scholar
McArthur, G. M., Hogben, J. H., Edwards, V. T., Heath, S. M., & Mengler, E. D. (2000). On the “specifics” of specific reading disability and specific language impairment. Journal of Child Psychology and Psychiatry, 41, 869874. doi: http://dx.doi.org/10.1111/1469-7610.00674.Google Scholar
McBride-Chang, C., Lam, F., Lam, C. et al. (2008). Word recognition and cognitive profiles of Chinese pre-school children at risk for dyslexia through language delay or familial history of dyslexia. Journal of Child Psychology and Psychiatry, 49, 211218. doi: http://dx.doi.org/10.1111/j.1469-7610.2007.01837.x.Google Scholar
McBride-Chang, C., Liu, P. D., Wong, T., Wong, A., & Shu, H. (2012). Specific reading difficulties in Chinese, English, or both: Longitudinal markers of phonological awareness, morphological awareness, and RAN in Hong Kong Chinese children. Journal of Learning Disabilities, 45, 503514. doi: http://dx.doi.org/10.1177/0022219411400748.Google Scholar
Nation, K., & Snowling, M. J. (1998). Semantic processing and the development of word-recognition skills: Evidence from children with reading comprehension difficulties. Journal of Memory and Language, 39, 85101. doi: http://dx.doi.org/10.1006/jmla.1998.2564.Google Scholar
National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction: Reports of the subgroups. Bethesda, MD: National Institute of Child Health and Human Development.Google Scholar
Perfetti, C. A. (1985). Reading ability. New York, NY: Oxford University Press.Google Scholar
Perfetti, C. A., & Hart, L. (2002). The lexical quality hypothesis. In Verhoeven, L., Elbro, C., & Reitsma, P. (Eds.), Precursors of functional literacy (pp. 189213). Philadelphia, PA: John Benjamins Publishing Company.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115. doi: http://dx.doi.org/10.1037/0033-295X.103.1.56.Google Scholar
Quémart, P., & Casalis, S. (2013). Visual processing of derivational morphology in children with developmental dyslexia: Insights from masked priming. Applied Psycholinguistics, 36, 132. doi: http://dx.doi.org/10.1017/S014271641300026X.Google Scholar
Raveh, M., & Schiff, R. (2008). Visual and auditory morphological priming in adults with developmental dyslexia. Scientific Studies of Reading, 12, 221252. doi: http://dx.doi.org/10.1080/10888430801917068.Google Scholar
Ravid, D. (1996). Cost in language acquisition, language processing and language change. In Casad, E. H. (Ed.), Cognitive linguistics in the redwoods: The expansion of a new paradigm in linguistics (pp. 117146). Berlin, Germany: De Gruyter Mouton. doi: http://dx.doi.org/10.1515/9783110811421.117.Google Scholar
Robertson, E. K., Joanisse, M. F., Desroches, A. S., & Terry, A. (2013). Past-tense morphology and phonological deficits in children with dyslexia and children with language impairment. Journal of Learning Disabilities, 46, 230240. doi: http://dx.doi.org/10.1177/0022219412449430.Google Scholar
Schiff, R., & Raveh, M. (2007). Deficient morphological processing in adults with developmental dyslexia: Another barrier to efficient word recognition? Dyslexia, 13, 110129. doi: http://dx.doi.org/10.1002/dys.322.Google Scholar
Schiff, R., & Ravid, D. (2004). Representing written vowels in university students with dyslexia compared with normal Hebrew readers. Annals of Dyslexia, 54, 3964. doi: http://dx.doi.org/10.1007/s11881-004-0003-2.Google Scholar
Schiff, R., & Ravid, D. (2007). Morphological analogies in Hebrew-speaking university students with dyslexia compared with typically developing gradeschoolers. Journal of Psycholinguistic Research, 36, 237253. doi: http://dx.doi.org/10.1007/s10936-006-9043-6.Google Scholar
Schiff, R., & Ravid, D. (2013). Morphological processing in Hebrew-speaking students with reading disabilities. Journal of Learning Disabilities, 46, 220229. doi: http://dx.doi.org/10.1177/0022219412449425.Google Scholar
Schiff, R., Schwartz-Nahshon, S., & Nagar, R. (2011). Effect of phonological and morphological awareness on reading comprehension in Hebrew-speaking adolescents with reading disabilities. Annals of Dyslexia, 61, 4463. doi: http://dx.doi.org/10.1007/s11881-010-0046-5.Google Scholar
Schulz, E., Maurer, U., van der Mark, S. et al. (2008). Impaired semantic processing during sentence reading in children with dyslexia: Combined fMRI and ERP evidence. Neuroimage, 41, 153168. doi: http://dx.doi.org/10.1016/j.neuroimage.2008.02.012.Google Scholar
Seidenberg, M. S. (2011). Reading in different writing systems: One architecture, multiple solutions. In McCardle, P., Miller, B., Lee, J. R., & Tzeng, O. L. (Eds.), Dyslexia across languages: Orthography and the brain–gene–behavior link (pp. 146168). Baltimore, MD: Paul H. Brookes.Google Scholar
Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523568. doi: http://dx.doi.org/10.1037/0033-295X.96.4.523.Google Scholar
Seymour, P. H. (1999). Cognitive architecture of early reading. In Lindberg, I., Tønnessen, F. E., & Austad, I. (Eds.), Dyslexia: Advances in theory and practice (pp. 5973). Dordrecht, the Netherlands: Springer. doi: http://dx.doi.org/10.1007/978-94-011-4667-8_5.Google Scholar
Shankweiler, D., Crain, S., Katz, L. et al. (1995). Cognitive profiles of reading-disabled children: Comparison of language skills in phonology, morphology, and syntax. Psychological Science, 6, 149156. doi: http://dx.doi.org/10.1111/j.1467-9280.1995.tb00324.x.Google Scholar
Shu, H., Chen, X., Anderson, R. C., Wu, N., & Xuan, Y. (2003). Properties of school Chinese: Implications for learning to read. Child Development, 74, 2747. doi: http://dx.doi.org/10.1111/1467-8624.00519.Google Scholar
Shu, H., McBride-Chang, C., Wu, S., & Liu, H. (2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98, 122133. doi: http://dx.doi.org/10.1037/0022-0663.98.1.122.Google Scholar
Siegel, L. S. (2008). Morphological awareness skills of English language learners and children with dyslexia. Topics in Language Disorders, 28, 1527. doi: http://dx.doi.org/10.1097/01.adt.0000311413.75804.60.Google Scholar
Stanovich, K. E. (1980). Toward an interactive-compensatory model of individual differences in the development of reading fluency. Reading Research Quarterly, 16, 3271. doi: http://dx.doi.org/10.2307/747348.Google Scholar
Suárez-Coalla, P., & Cuetos, F. (2013). The role of morphology in reading in Spanish-speaking children with dyslexia. The Spanish Journal of Psychology, 16, E51, doi: http://dx.doi.org/ 10.1017/sjp.2013.58.Google Scholar
Tong, X., & McBride-Chang, C. (2010). Developmental models of learning to read Chinese words. Developmental Psychology, 46, 16621676. doi: http://dx.doi.org/10.1037/a0020611.Google Scholar
Tong, X., McBride‐Chang, C., Wong, A. M.-Y. et al. (2011). Longitudinal predictors of very early Chinese literacy acquisition. Journal of Research in Reading, 34, 315332. doi: http://dx.doi.org/10.1111/j.1467-9817.2009.01426.x.Google Scholar
Torppa, M., Lyytinen, P., Erskine, J., Eklund, K., & Lyytinen, H. (2010). Language development, literacy skills, and predictive connections to reading in Finnish children with and without familial risk for dyslexia. Journal of Learning Disabilities, 43, 308321. doi: http://dx.doi.org/10.1177/0022219410369096.Google Scholar
Traficante, D., Marcolini, S., Luci, A., Zoccolotti, P., & Burani, C. (2011). How do roots and suffixes influence reading of pseudowords: A study of young Italian readers with and without dyslexia. Language and Cognitive Processes, 26, 777793. doi: http://dx.doi.org/10.1080/01690965.2010.496553.Google Scholar
Tsesmeli, S. N., & Seymour, P. K. (2006). Derivational morphology and spelling in dyslexia. Reading and Writing, 19, 587625. doi: http://dx.doi.org/10.1007/s11145-006-9011-4.Google Scholar
Vellutino, F. R., & Fletcher, J. M. (2005). Developmental dyslexia. In Snowling, M. J. & Hulme, C. (Eds.), The science of reading: A handbook (pp. 362378). Malden, MA: Blackwell Publishing. doi: http://dx.doi.org/10.1002/9780470757642.ch19.Google Scholar
Vellutino, F. R., Scanlon, D. M., & Spearing, D. (1995). Semantic and phonological coding in poor and normal readers. Journal of Experimental Child Psychology, 59, 76123. doi: http://dx.doi.org/10.1006/jecp.1995.1004.Google Scholar
Vogel, S. A. (1977). Morphological ability in normal and dyslexic children. Journal of Learning Disabilities, 10, 3543. doi: http://dx.doi.org/10.1177/002221947701000109.Google Scholar
Xiao, X. Y., & Ho, C. S. H. (2014). Weaknesses in semantic, syntactic and oral language expression contribute to reading difficulties in Chinese dyslexic children. Dyslexia, 20, 7498. doi: http://dx.doi.org/10.1002/dys.1460.Google Scholar
Zhou, Y., McBride-Chang, C., Law, A. B. Y. et al. (2014). Development of reading-related skills in Chinese and English among Hong Kong Chinese children with and without dyslexia. Journal of Experimental Child Psychology, 122, 7591. doi: http://dx.doi.org/10.1016/j.jecp.2013.12.003.Google Scholar

References

Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11(11), 458465.Google Scholar
Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 9(12), 15581564.Google Scholar
Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104(2), 198230.Google Scholar
Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874886.Google Scholar
Castles, A., & Coltheart, M. (1993). Varieties of developmental dyslexia. Cognition, 47(2), 149180.Google Scholar
Collis, N. L., Kohnen, S., & Kinoshita, S. (2013). The role of visual spatial attention in adult developmental dyslexia. Quarterly Journal of Experimental Psychology (Hove), 66(2), 245260.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204256.Google Scholar
Di Filippo, G., Zoccolotti, P., & Ziegler, J. C. (2008). Rapid naming deficits in dyslexia: a stumbling block for the perceptual anchor theory of dyslexia. Developmental Science, 11(6), F40-F47.Google Scholar
Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226239.Google Scholar
Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 44(9), 12211233.Google Scholar
Facoetti, A., Trussardi, A. N., Ruffino, M. et al. (2009). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. J Cogn Neurosci, 22(5), 10111025.Google Scholar
Facoetti, A., Zorzi, M., Cestnick, L. et al. (2006). The relationship between visuospatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23, 841855.Google Scholar
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814819.Google Scholar
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 310.Google Scholar
Goswami, U. (2015). Sensory theories of developmental dyslexia: three challenges for research. Nature Reviews Neuroscience, 16(1), 4354.Google Scholar
Goswami, U., Thomson, J., Richardson, U. et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences USA, 99(16), 1091110916.Google Scholar
Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20(3), 171179.Google Scholar
Grainger, J., & Ziegler, J. C. (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2(45).Google Scholar
Griffiths, Y. M., & Snowling, M. (2002). Predictors of exception word and nonword reading in dyslexic children: The severity hypothesis. Journal of Educational Psychology, 94(1), 3443.Google Scholar
Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: Insights from connectionist models. Psychological Review, 106(3), 491528.Google Scholar
Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of words in reading: cooperative division of labor between visual and phonological processes. Psychological Review, 111(3), 662720.Google Scholar
Hawelka, S., Huber, C., & Wimmer, H. (2006). Impaired visual processing of letter and digit strings in adult dyslexic readers. Vision Research, 46(5), 718723.Google Scholar
Kohnen, S., Nickels, L., Castles, A., Friedmann, N., & McArthur, G. (2012). When “slime” becomes “smile”: Developmental letter position dyslexia in English. Neuropsychologia, 50(14), 36813692.Google Scholar
Landerl, K., Ramus, F., Moll, K. et al. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54(6), 686694.Google Scholar
Lyytinen, H., Ahonen, T., Eklund, K. et al. (2001). Developmental pathways of children with and without familial risk for dyslexia during the first years of life. Developmental Neuropsychology, 20(2), 535554.Google Scholar
Manis, F. R., Seidenberg, M. S., & Doi, L. M. (1999). See Dick RAN: Rapid naming and the longitudinal prediction of reading subskills in first and second graders. Scientific Studies of Reading, 3(2), 129157.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An Interactive activation model of context effects in letter perception: 1. An account of basic findings. Psychological Review, 88(5), 375407.Google Scholar
Menghini, D., Finzi, A., Benassi, M. et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia, 48(4), 863872.Google Scholar
Paulesu, E., Demonet, J. F., Fazio, F. et al. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 21652167.Google Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385413.Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114(2), 273315.Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychology, 61(2), 106151.Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2013). A computational and empirical investigation of graphemes in reading. Cognitive Science, 129.Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2014a). CDP++.Italian: Modelling sublexical and supralexical inconsistency in a shallow orthography. PLoS One, 9(4),e94291.Google Scholar
Perry, C., Ziegler, J. C., & Zorzi, M. (2014b). When silent letters say more than a thousand words: An implementation and evaluation of CDP++ in French. Journal of Memory and Language, 72, 98115.Google Scholar
Perry, C., Zorzi, M., & Ziegler, J. C. (2019). Understanding Dyslexia Through Personalized Large-Scale Computational Models. Psychological Science, 30(3), 386395.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103(1), 56115.Google Scholar
Ramus, F., & Ahissar, M. (2012). Developmental dyslexia: The difficulties of interpreting poor performance, and the importance of normal performance. Cognitive Neuropsychology, 29(1–2), 104122.Google Scholar
Ramus, F., Rosen, S., & Dakin, S. C. et al. (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain, 126, 841865.Google Scholar
Saksida, A., Iannuzzi, S., Bogliotti, C. et al. (2016). Phonological skills, visual attention span, and visual stress in developmental dyslexia. Developmental Psychology, 52(10), 15031516.Google Scholar
Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96(4), 523568.Google Scholar
Serniclaes, W., Van Heghe, S., Mousty, P., Carre, R., & Sprenger-Charolles, L. (2004). Allophonic mode of speech perception in dyslexia. Journal of Experimental Child Psychology, 87(4), 336361.Google Scholar
Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55(2), 151218.Google Scholar
Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8, 862863.Google Scholar
Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2006). Motion-perception deficits and reading impairment: It’s the noise, not the motion. Psychological Science, 17(12), 10471053.Google Scholar
Sprenger-Charolles, L., Cole, P., Lacert, P., & Serniclaes, W. (2000). On subtypes of developmental dyslexia: Evidence from processing time and accuracy scores. Canadian Journal of Experimental Psychology, 54(2), 87104.Google Scholar
Sprenger-Charolles, L., Siegel, L. S., Jimenez, J. E., & Ziegler, J. C. (2011). Prevalence and reliability of phonological, surface, and mixed profiles in dyslexia: A review of studies conducted in languages varying in orthographic Depth. Scientific Studies of Reading, 15(6), 498521.Google Scholar
Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1(4), 267280.Google Scholar
Stein, J., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147152.Google Scholar
Swan, D., & Goswami, U. (1997). Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis. Journal of Experimental Child Psychology, 66(1), 1841.Google Scholar
Tallal, P., & Piercy, M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241(5390), 468469.Google Scholar
van Bergen, E., van der Leij, A., & de Jong, P. F. (2014). The intergenerational multiple deficit model and the case of dyslexia. Frontiers in Human Neuroscience, 8(346).Google Scholar
Vandermosten, M., Boets, B., & Luts, H. et al. (2010). Adults with dyslexia are impaired in categorizing speech and nonspeech sounds on the basis of temporal cues. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 1038910394.Google Scholar
White, S., Milne, E., Rosen, S. et al. (2006). The role of sensorimotor impairments in dyslexia: A multiple case study of dyslexic children. Developmental Science, 9(3), 237255.Google Scholar
Woollams, A. M. (2014). Connectionist neuropsychology: Uncovering ultimate causes of acquired dyslexia. Philosophical Transactions of the Royal Society of London B Biological Sciences, 369(1634), 20120398.Google Scholar
Woollams, A. M., Lambon Ralph, M. A., Plaut, D. C., & Patterson, K. (2007). SD-squared: On the association between semantic dementia and surface dyslexia. Psychological Review, 114(2), 316339.Google Scholar
World Health Organization. (2011). International statistical classification of diseases and related health problems – 10th revision. Geneva, Switzerland: World Health Organization.Google Scholar
Ziegler, J. C. (2006). Do differences in brain activation challenge universal theories of dyslexia? Brain and Language, 98(3), 341343.Google Scholar
Ziegler, J. C. (2008). Better to lose the anchor than the whole ship. Trends in Cognitive Sciences, 12, 244245.Google Scholar
Ziegler, J. C., Bertrand, D., Tóth, D. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21(4), 551559.Google Scholar
Ziegler, J. C., Castel, C., Pech-Georgel, C. et al. (2008). Developmental dyslexia and the dual route model of reading: Simulating individual differences and subtypes. Cognition, 107, 151178.Google Scholar
Ziegler, J. C., Pech-Georgel, C., Dufau, S., & Grainger, J. (2010). Rapid processing of letters, digits, and symbols: What purely visual-attentional deficit in developmental dyslexia? Developmental Science, 13, F8F14.Google Scholar
Ziegler, J. C., Perry, C., Ma-Wyatt, A., Ladner, D., & Schulte-Korne, G. (2003). Developmental dyslexia in different languages: Language-specific or universal? Journal of Experimental Child Psychology, 86(3), 169193.Google Scholar
Ziegler, J. C., Perry, C., & Zorzi, M. (2014). Modelling reading development through phonological decoding and self-teaching: Implications for dyslexia. Philosophical Transactions of the Royal Society of London B Biological Sciences, 369(1634), 20120397.Google Scholar
Zorzi, M. (2010). The connectionist dual process (CDP) approach to modelling reading aloud. European Journal of Cognitive Psychology, 22, 836860.Google Scholar
Zorzi, M., Barbiero, C., Facoetti, A. et al. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, 109(28), 1145511459.Google Scholar
Zorzi, M., Houghton, G., & Butterworth, B. (1998a). The development of spelling–sound relationships in a model of phonological reading. Language & Cognitive Processes, 13(2&3), 337371.Google Scholar
Zorzi, M., Houghton, G., & Butterworth, B. (1998b). Two routes or one in reading aloud? A connectionist dual-process model. Journal of Experimental Psychology: Human Perception & Performance, 24(4), 11311161.Google Scholar

References

Barca, L., Burani, C., Di Filippo, G., & Zoccolotti, P. (2006). Italian developmental dyslexic and proficient readers: Where are the differences? Brain and Language, 98, 347351. doi: http://dx.doi.org/10.1016/j.bandl.2006.05.001.Google Scholar
Brown, M. C., Sibley, D. E., Washington, J. A. et al. (2015). Impact of dialect use on a basic component of learning to read. Frontiers in Psychology, 6, 196. doi: http://dx.doi.org/10.3389/fpsyg.2015.00196Google Scholar
Burani, C., Marcolini, S., De Luca, M., & Zoccolotti, P. (2008). Morpheme-based reading aloud: Evidence from dyslexic and skilled Italian readers. Cognition, 108, 243262. doi: http://dx.doi.org/10.1016/j.cognition.2007.12.010.Google Scholar
Chang, L.-Y., Plaut, D. C., & Perfetti, C. A. (2016). Visual-orthographic complexity in learning to read.: Modeling learning across writing system variations. Scientific Studies of Reading, 20(1), 6485.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256. doi: http://dx.doi.org/10.1037/0033-295X.108.1.204.Google Scholar
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713758. doi: http://dx.doi.org/10.1037/a0019738.Google Scholar
DeFrancis, J. (1989). Visible speech: The diverse oneness of writing systems. Honolulu, HI: University of Hawaii Press.Google Scholar
Di Bono, M. G., & Zorzi, M. (2013). Deep generative learning of location-invariant visual word recognition. Frontiers in Psychology, 4, 635. doi: http://dx.doi.org/10.3389/fpsyg.2013.00635.Google Scholar
Frost, R. (2012). A universal approach to modeling visual word recognition and reading: Not only possible, but also inevitable. Behavioral and Brain Sciences, 35, 310329. doi: http://dx.doi.org/10.1017/S0140525X12000635.Google Scholar
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception & Performance, 13, 104115. doi: http://dx.doi.org/10.1037/0096–1523.13.1.104.Google Scholar
Glotin, H., Warnier, P., Dandurand, F. et al. (2010). An adaptive resonance theory account of the implicit learning of orthographic word forms. Journal of Physiology-Paris, 104, 1926. doi: http://dx.doi.org/10.1016/j.jphysparis.2009.11.003.Google Scholar
Grainger, J., & Van Heuven, W. (2003). Modeling letter position coding in printed word perception. In Bonin, P. (Ed.), The mental lexicon (pp. 124). New York, NY: Nova Science.Google Scholar
Hahn, U., & Bailey, T. M. (2005). What makes words sound similar? Cognition, 97, 227267. doi: http://dx.doi.org/10.1016/j.cognition.2004.09.006.Google Scholar
Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading, and dyslexia: Insights from connectionist models. Psychological Review, 163, 491528. doi: http://dx.doi.org/10.1037/0033-295X.106.3.491.Google Scholar
Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review, 111, 662720. doi: http://dx.doi.org/10.1037/0033-295X.111.3.662.Google Scholar
Inhoff, A. W., & Wu, C. (2005). Eye movements and the identification of spatially ambiguous words during Chinese sentence reading. Memory & Cognition, 33, 13451356. doi: http://dx.doi.org/10.3758/BF03193367.Google Scholar
Joanisse, M. F., & Seidenberg, M. S. (1998). Dissociations between rule-governed forms and exceptions: A connectionist account. Poster presented at the 1998 Annual Meeting of the Cognitive Neuroscience Society, San Francisco, CA.Google Scholar
Kang, H., & Simpson, G. B. (2001). Local strategic control of information in visual word recognition. Memory & Cognition, 29, 648655. doi: http://dx.doi.org/10.3758/BF03200466.Google Scholar
Lerner, I., Armstrong, B. C., & Frost, R. (2014). What can we learn from learning models about sensitivity to letter-order in visual word recognition? Journal of Memory and Language, 77, 4058. doi: http://dx.doi.org/10.1016/j.jml.2014.09.002.Google Scholar
Li, Y., & Kang, J. (1993). Analysis of phonetics of the ideophonetic characters in modern Chinese. In Chen, Y. (Ed.), Information analysis of usage of characters in modern Chinese, 8498. Shanghai, China: Shanghai Education Press.Google Scholar
Lindgren, S. D., De Renzi, E., & Richman, L. C. (1985). Cross-national comparisons of developmental dyslexia in Italy and the United States. Child Development, 56, 14041417. doi: http://dx.doi.org/10.2307/1130460.Google Scholar
Lotto, A. J., & Holt, L. L. (2000). The illusion of the phoneme. In Billings, S. J., Boyle, J. P., & Griffith, A. M. (Eds.), Chicago linguistic society, Volume 35 (pp. 191204). Chicago, IL: Chicago Linguistic Society.Google Scholar
Malone, K. (1925). Benjamin Franklin on spelling reform. American Speech, 1, 96100. doi: http://dx.doi.org/ 10.2307/452554.Google Scholar
Manis, F. R., Seidenberg, M. S., Doi, L. M., McBride-Chang, C., & Peterson, A. (1996). On the basis of two subtypes of developmental dyslexia. Cognition, 58, 157–95. doi: http://dx.doi.org/10.1016/0010–0277(95)00679–6.Google Scholar
Mattingly, I. I. (1987). Morphological structure and segmental awareness. Cahiers de Psychologie, 7, 488493.Google Scholar
McBride-Chang, C., Cho, J.-R., Liu, H. et al. (2005). Changing models across cultures: Associations of phonological awareness and morphological structure awareness with vocabulary and word recognition in second graders from Beijing, Hong Kong, Korea, and the United States. Journal of Experimental Child Psychology, 92, 140160. doi: http://dx.doi.org/10.1016/j.jecp.2005.03.009.Google Scholar
McBride-Chang, C., Shu, H., Zhou, A., Wat, C. P., & Wagner, R. K. (2003). Morphological awareness uniquely predicts young children’s Chinese character recognition. Journal of Educational Psychology, 95, 743751. doi: http://dx.doi.org/10.1037/0022–0663.95.4.743.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375407. doi: http://dx.doi.org/10.1037/0033-295X.88.5.375.Google Scholar
McClelland, J. L., Rumelhart, D. E., & PDP Research Group (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models. Cambridge, MA: MIT Press.Google Scholar
Mirković, J., MacDonald, M. C., & Seidenberg, M. S. (2005). Where does gender come from? Evidence from a complex inflectional system. Language and Cognitive Processes, 20, 139167. doi: http://dx.doi.org/10.1080/01690960444000205.Google Scholar
Mirković, J., Seidenberg, M. S., & MacDonald, M. C. (2011). Rules vs. statistics: Insights from a highly inflected language. Cognitive Psychology, 35, 638681. doi: http://dx.doi.org/10.1111/j.1551–6709.2011.01174.x.Google Scholar
Myers, J. (2010). Chinese as a natural experiment. The Mental Lexicon, 5, 421435. doi: http://dx.doi.org/10.1075/ml.5.3.09mye.Google Scholar
Nag, S. (2011). The akshara languages: What do they tell us about children’s literacy learning? In Mishra, R. K. & Srinivasan, N. (Eds.), Language-cognition interface: State of the art (pp. 291310). Munich: Lincom Publishers.Google Scholar
Nag, S., & Snowling, M. J. (2012). Reading in an alphasyllabary: Implications for a language universal theory of learning to read. Scientific Studies of Reading, 16, 404423. doi: http://dx.doi.org/10.1080/10888438.2011.576352.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. E. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115. doi: http://dx.doi.org/10.1037/0033-295X.103.1.56.Google Scholar
Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The Philosophical Review, 60, 2043. doi: http://dx.doi.org/10.2307/2181906.Google Scholar
Raman, I., & Baluch, B. (2001). Semantic effects as a function of reading skill in word naming of a transparent orthography. Reading and Writing, 14, 599614. doi: http://dx.doi.org/10.1023/A:1012004729180.Google Scholar
Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. Trends in Cognitive Sciences, 4, 353361. doi: http://dx.doi.org/10.1016/S1364-6613(00)01515–1.Google Scholar
Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523568. doi: http://dx.doi.org/10.1037/0033-295X.96.4.523.Google Scholar
Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 64246429. doi: http://dx.doi.org/10.1073/pnas.0700622104.Google Scholar
Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143174. doi: http://dx.doi.org/10.1348/000712603321661859.Google Scholar
Shu, H., McBride-Chang, C., Wu, S., & Liu, H. (2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98, 122133. doi: http://dx.doi.org/10.1037/0022–0663.98.1.122.Google Scholar
Shu, H., Meng, X., Chen, X., Luan, H., & Cao, F. (2005). The subtypes of developmental dyslexia in Chinese: Evidence from three cases dyslexia. Dyslexia, 11, 311329. doi: http://dx.doi.org/10.1002/dys.310.Google Scholar
Shu, H., Peng, H., & McBride-Chang, C. (2008). Phonological awareness in young Chinese children. Developmental Science, 11, 171181. doi: http://dx.doi.org/10.1111/j.1467–7687.2007.00654.x.Google Scholar
Sibley, D. E., & Kello, C. T. (2006). Learning representations of orthographic word forms. In Proceedings of the 27th annual meeting of the Cognitive Science Society. Vancouver, Canada.Google Scholar
Strain, E., Patterson, K., & Seidenberg, M. S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 11401154. doi: http://dx.doi.org/10.1037/0278–7393.21.5.1140.Google Scholar
Taft, M., & Zhu, X. (1995). The representation of bound morphemes in the lexicon: A Chinese study. In Feldman, L. B. (Ed.), Morphological aspects of language processing (pp. 293316). Hillsdale, NJ: Erlbaum.Google Scholar
Venezky, R. L. (1970). The structure of English orthography. The Hague: Mouton.Google Scholar
Venezky, R. L. (1999). The American way of spelling: The structure and origins of American English orthography. New York, NY: Guilford Press.Google Scholar
Washington, J. A., Terry, N. P., Seidenberg, M. S. et al. (2013). Language variation and literacy learning: The case of African American English. In Stone, C. A., Silliman, E. R., Ehren, B. J., & Wallach, G. P. (Eds.). Handbook of language and literacy: Development and disorders (pp. 204221). New York, NY: Guilford Press.Google Scholar
White, T. G., Graves, M. S., & Slater, W. H. (1990). Growth of reading vocabulary in diverse elementary schools: Decoding and word meaning. Journal of Educational Psychology, 82, 281290. doi: http://dx.doi.org/10.1037/0022–0663.82.2.281.Google Scholar
Xing, H., Shu, H., & Li, P. (2004). The acquisition of Chinese characters: Corpus analyses and connectionist simulations. Journal of Cognitive Science, 5, 149.Google Scholar
Yang, J. F., McCandliss, B. D., Shu, H., & Zevin, J. D. (2009). Simulating language-specific and language-general effects in a statistical learning model of Chinese reading. Journal of Memory & Language, 61, 238257. doi: http://dx.doi.org/10.1016/j.jml.2009.05.001.Google Scholar
Yang, J. F., McCandliss, B. D., Shu, H., & Zevin, J. D. (2013). Orthographic influences on division of labor in learning to read Chinese and English: Insights from computational modeling. Bilingualism Language and Cognition, 16, 354366. doi: http://dx.doi.org/10.1017/S1366728912000296.Google Scholar
Zhu, X. (1988). Analysis of cueing function of phonetic components in modern Chinese. In Yuan, X. (Ed.), Proceedings of the symposium on the Chinese language and characters (pp. 8599). Beijing: Guang Ming Daily Press (in Chinese).Google Scholar
Zoccolotti, P., De Luca, M., Di Pace, E. et al. (1999). Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence. Applied Psycholinguistics, 20, 191216. doi: http://dx.doi.org/10.1017/S0142716499002027.Google Scholar

References

107th Congress. (2002). The No Child Left Behind Act of 2001. Pub. L. No. 107–110, Stat. 1425. Washington, DC: United States Congress.Google Scholar
Betjemann, R. S., Keenan, J. M., Olson, R. K., & DeFries, J. C. (2011). Choice of reading comprehension test influences the outcomes of genetic analyses. Scientific Studies of Reading, 15(4), 363382. doi: http://dx.doi.org/10.1080/10888438.2010.493965.Google Scholar
Baron, J. (1977). Mechanisms for pronouncing printed words: use and acquisition. In LaBerge, D. & Samuels, S. J. (Eds.), Basic processes in reading: perception and comprehension (pp. 175216). Hillsdale, NJ: Earlbaum.Google Scholar
Boder, E. (1973). Developmental dyslexia: A diagnostic approach based on three atypical reading-spelling patterns. Developmental Medicine and Child Neurology, 15, 663687.Google Scholar
Boker, S. M., Neale, M. C., Maes, H. H. et al. (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika.Google Scholar
Byrne, B., Christopher, M., Coventry, W. et al. (2013). Subsample standardization in twin studies of academic achievement. Paper presented at the meeting of the Behavior Genetics Association, Marseilles, France, June 29, 2013.Google Scholar
Byrne, B., Coventry, W. L., Olson, R. K. et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to grade 2. Journal of Neurolinguistics, 22, 219236.Google Scholar
Byrne, B., Delaland, C., Fielding-Barnsley, R. et al. (2002). Longitudinal twin study of early reading development in three countries: Preliminary results. Annals of Dyslexia, 52, 4974.Google Scholar
Byrne, B., Samuelsson, S., Wadsworth, S. et al. (2007). Longitudinal twin study of early literacy development: Preschool through Grade 1. Reading and Writing: An Interdisciplinary Journal, 20, 77102.Google Scholar
Byrne, B., Wadsworth, S., Boehme, K. et al. (2013). Multivariate genetic analysis of learning and early reading development. Scientific Studies of Reading, 17(3), 224242. doi: http://dx.doi.org/10.1080/10888438.2011.654298.Google Scholar
Cain, K. & Oakhill, J. (2007). Reading comprehension difficulties: Correlates, causes, and consequences. In Cain, K. & Oakhill, J. (Eds.), Children’s comprehension problems in oral and written text: A cognitive perspective. New York: Guilford Press, pp. 4175.Google Scholar
Castles, A. E., & Coltheart, M. C. (1993). Varieties of developmental dyslexia. Cognition, 47, 149180.Google Scholar
Castles, A., Datta, H., Gayán, J., & Olson, R.K. (1999). Varieties of developmental reading disorder: Genetic and environmental influences. Journal of Experimental Child Psychology, 72, 7394. PMID: 9927524.Google Scholar
Chow, B. W. Y., Ho, C. S. H., Wong, S. W. L., Waye, M., & Bishop, D. V. M. (2011). Genetic and environmental influences on Chinese language and reading abilities. PLoS One, 6(2): e16640. doi: http://dx.doi.org/10.1371/journal.pone.0016640.Google Scholar
Christopher, M. E., Hulslander, J., Byrne, B. et al. (2013a). The genetic and environmental etiologies of individual differences in early reading growth in Australia, the United States, and Scandinavia. Journal of Experimental Child Psychology, 115, 453467. doi: http://dx.doi.org/10.1016/j.jecp.2013.03.008.Google Scholar
Christopher, M. E., Hulslander, J., Byrne, B. et al. (2013b). Modeling the etiology of individual differences in early reading development: Evidence for strong genetic influences. Scientific Studies of Reading, 17, 350368. doi: http://dx.doi.org/10.1080/10888438.2012.729119.Google Scholar
Christopher, M. E., Hulslander, J., Byrne, B. et al. (2015). Genetic and environmental etiologies of the longitudinal relations between pre-reading skills and reading. Child Development, 86, 342361. doi: http://dx.doi.org/10.1111/cdev.12295.Google Scholar
Christopher, M. E., Miyake, A., Keenan, J. M. et al. (2012). Predicting word reading and comprehension with executive function and speed measures: A latent variable analysis. Journal of Experimental Psychology: General, 141, 470488. doi: http://dx.doi.org/10.1037/a0027375.Google Scholar
Compton, D. L., Miller, A. C., Elleman, A. M., & Steacy, L. M. (2014). Have we forsaken reading theory in the name of “quick fix” interventions for children with reading disability? Scientific Studies of Reading, 18, 5573. doi: http://dx.doi.org/10.1080/10888438.2013.836200.Google Scholar
DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467478. doi: http://dx.doi.org/10.1007/BF01066239.Google Scholar
DeFries, J. C., Singer, S. M., Foch, T. T., & Lewitter, F. I. (1978). Familial nature of reading disability. British Journal of Psychiatry, 132, 361367.Google Scholar
Ehri, L. C. (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory, and vocabulary learning. Scientific Studies of Reading, 18, 521. doi: http://dx.doi.org/10.1080/10888438.2013.819356.Google Scholar
Elwér, Å., Keenan, J. M., Olson, R. K., Byrne, B., & Samuelsson, S. (2013). Longitudinal stability and predictors of poor oral comprehenders and poor decoders. Journal of Experimental Child Psychology, 115, 497516. doi: http://dx.doi.org/10.1016/j.jecp.2012.12.001.Google Scholar
Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19, 11241130. doi: http://dx.doi.org/10.1111/j.1467-9280.2008.02213.x.Google Scholar
Gayán, J., & Olson, R. K. (2001). Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Developmental Neuropsychology, 20, 483507. doi: http://dx.doi.org/10.1207/S15326942DN2002_3.Google Scholar
Gayán, J., & Olson, R. K. (2003). Genetic and environmental influences on individual differences in printed word recognition. Journal of Experimental Child Psychology, 84, 97123. doi: http://dx.doi.org/10.1016/S0022-0965(02)00181-9.Google Scholar
Gayán, J., Willcutt, E. G., Fisher, S. E. et al. (2005). Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. Journal of Child Psychology and Psychiatry, 46, 10451056. doi: http://dx.doi.org/10.1111/j.1469-7610.2005.01447.x.Google Scholar
Glezer, L. S., Kim, J., Rule, J., Jiang, X., & Riesenhuber, M. (2015). Adding words to the brain’s visual dictionary: Novel word learning selectively sharpens orthographic representations in the VWFA. The Journal of Neuroscience, 35, 49654972. doi: http://dx.doi.org/10.1523/JNEUROSCI,4031-14.2015.Google Scholar
Harlaar, N., Cutting, L., Deater-Deckard, K. et al. (2010). Predicting individual differences in reading comprehension: a twin study. Annals of Dyslexia, 60, 265288. doi: http://dx.doi.org/10.1007/s11881-010-0044-7.Google Scholar
Harlaar, N., Deater-Deckard, K., Thompson, L. A., DeThorne, L. S., & Petrill, S. A. (2011). Associations between reading achievement and independent reading in early elementary school: A genetically informative cross-lagged study. Child Development, 82, 21232137. doi: http://dx.doi.org/10.1111/j.1467-8624.2011.01658.x.Google Scholar
Harlaar, N., Spinath, F. M., Dale, P. S., & Plomin, R. (2005). Genetic influences on early word recognition abilities and disabilities: A study of 7-year-old twins. Journal of Child Psychology and Psychiatry, 46, 373384. doi: http://dx.doi.org/10.1111/j.1469-7610.2004.00358.x.Google Scholar
Harlaar, N., Trzaskowski, M., Dale, P. S., & Plomin, R. (2014). Word reading fluency: Role of genome-wide single-nucleotide polymorphisms in developmental stability and correlations with print exposure. Child Development, 85, 11901205. doi: http://dx.doi.org/10.1111/cdev.12207.Google Scholar
Hart, S. A., Logan, J. A. R., Soden-Hensler, B. et al. (2013). Exploring how nature and nurture affect the development of reading: An analysis of the Florida Twin Project on reading. Developmental Psychology, 49, 19711981. doi: http://dx.doi.org/10.1037/a0031348.Google Scholar
Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008). Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics, 4(2), e1000008. doi: http://dx.doi.org/10.1371/journal.pgen.1000008.Google Scholar
Ho, C. S.-H., Chow, B. W.-Y., Wong, S. W.-L. et al. (2012). The genetic and environmental foundation of the simple view of reading in Chinese. PLoS One, 7 (10), e47872. doi: http://dx.doi.org/10.1371/journal.pone.0047872.Google Scholar
Hoover, W. A. & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2, 127160. doi: http://dx.doi.org/10.1007/BF00401799.Google Scholar
Hulslander, J., Olson, R. K., Willcutt, E. G., & Wadsworth, S. J. (2010). Longitudinal stability of reading-related skills and their prediction of reading development. Scientific Studies of Reading, 14, 111136. doi: http://dx.doi.org/10.1080/10888431003604058.Google Scholar
Keenan, J. M., Betjemann, R. S., & Olson, R. K. (2008). Reading comprehension tests vary in the skills they assess: Differential dependence on decoding and oral comprehension. Scientific Studies of Reading, 12, 281300. doi: http://dx.doi.org/10.1080/10888430802132279.Google Scholar
Keenan, J. M., Betjemann, R. S., Wadsworth, S. J., DeFries, J. C., & Olson, R. K. (2006). Genetic and environmental influences on reading and listening comprehension. Journal of Research in Reading, 29, 7591. doi: http://dx.doi.org/10.1111/j.1467-9817.2006.00293.x.Google Scholar
Keller, M. C., & Coventry, W. L. (2005). Quantifying and addressing parameter indeterminacy in the classical twin design. Twin Research and Human Genetics, 8, 201213.Google Scholar
Keller, M. C., Medland, S. E., & Duncan, L. E. (2010). Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behavior Genetics, 40, 377393. doi: http://dx.doi.org/10.1007/s10519-009-9320-x.Google Scholar
Kirkpatrick, R. M., Legrand, L. N., Iacono, W. G., & McGue, M. (2011). A twin and adoption study of reading achievement: Exploration of shared environmental and gene-environment-interaction effects. Learning and Individual Differences, 21, 368375. doi: http://dx.doi.org/10.1016/j.lindif. 2011.04.008.Google Scholar
Kovas, Y., & Plomin, R. (2007). Learning abilities and disabilities: Generalist genes, specialist environments. Current Directions in Psychological Science, 16, 284288. doi: http://dx.doi.org/10.1111/j.1467-8721.2007.00521.x.Google Scholar
Logan, J. A. R., Hart, S. A., Cutting, L. et al. (2013). Reading development in children ages 6 to 12: Genetic and environmental influences. Child Development, 84, 21312144. doi: http://dx.doi.org/10.1111/cdev.12104.Google Scholar
McBride-Chang, C., Shu, H., Chan, W. et al. (2013). Poor readers of Chinese and English: Overlap, stability, and longitudinal correlates. Scientific Studies of Reading, 17(1), 5770. doi:10.1080/10888438.2012.689787Google Scholar
Mol, S. E., & Bus, A. G. (2011). To read or not to read: A meta-analysis of print exposure from infancy to early adulthood. Psychological Bulletin, 137, 267296. doi: http://dx.doi.org/10.1037/a0021890.Google Scholar
Olson, R., Forsberg, H., Wise, B., & Rack, J. (1994). Measurement of word recognition, orthographic, and phonological skills. In Lyon, G. R. (Ed.), Frames of reference for the assessment of learning disabilities: New views on measurement issues (pp. 243277). Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
Olson, R. K., Keenan, J. M., Byrne, B., & Samuelsson, S. (2014). Why do children differ in their reading and related skills. Scientific Studies of Reading, 18, 3854. doi: http://dx.doi.org/10.1080/10888438.2013.800521.Google Scholar
Olson, R. K., Keenan, J. M., Byrne, B. et al. (2011). Genetic and environmental influences on vocabulary and reading development. Scientific Studies of Reading, 15, 2646. doi: http://dx.doi.org/10.1080/10888438.2011.536128.Google Scholar
Olson, R. K., Kliegl, R., Davidson, B. J., & Foltz, G. (1985). Individual and developmental differences in reading disability. In MacKinnon, G. E. & Waller, T. G. (Eds.), Reading research: Advances in theory and practice, Vol. 4 (pp. 164). New York, NY: Academic Press.Google Scholar
Olson, R. K., Wise, B., Conners, F., Rack, J., & Fulker, D. (1989). Specific deficits in component reading and language skills: Genetic and environmental influences. Journal of Learning Disabilities, 22, 339348. doi: http://dx.doi.org/10.1177/002221948902200604.Google Scholar
Perfetti, C., Cao, F. & Booth, J. (2013). Specialization and universals in the development of reading skill: How Chinese research informs a universal science of reading. Scientific Studies of Reading, 17 (1), 521, doi: http://dx.doi.org/10.1080/10888438.2012.689786.Google Scholar
Peterson, R. L., Pennington, B. F., & Olson, R. K. (2013). Subtypes of developmental dyslexia: Testing the predictions of the dual-route and connectionist frameworks. Cognition, 126, 2038. doi: http://dx.doi.org/10.1016/j.cognition.2012.08.007.Google Scholar
Peterson, R. L., Pennington, B. F., Olson, R. K., & Wadsworth, S. (2014). Longitudinal stability of phonological and surface subtypes of developmental dyslexia. Scientific Studies of Reading, 18, 347362. doi: http://dx.doi.org/10.1080/10888438.2014.904870.Google Scholar
Petrill, S. A., Deater-Deckard, K., Thompson, L. A., DeThorne, L. S., & Schatschneider, C. (2006). Reading skills in early readers: Genetic and shared environmental influences. Journal of Learning Disabilities, 39, 4855. doi: http://dx.doi.org/10.1177/00222194060390010501.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York, NY: Worth Publishers.Google Scholar
Powers, N. R., Eicher, J. D., Butter, F. et al. (2013). Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. American Journal of Human Genetics, 93, 1928. doi: http://dx.doi.org/10.1016/j.ajhg.2013.05.008.Google Scholar
Purcell, S., & Sham, P. C. (2003). A model-fitting implementation of the DeFries-Fulker model for selected twin data. Behavior Genetics, 33, 271278. doi: http://dx.doi.org/10.1023/A:1023494408079.Google Scholar
Rodgers, B. (1983). The identification and prevalence of specific reading retardation. British Journal of Educational Psychology, 53, 369373. doi: http://dx.doi.org/10.1111/j.2044-8279.1983.tb02570.x.Google Scholar
Rutter, M., & Yule, W. (1975). The concept of specific reading retardation. Journal of Child Psychology and Psychiatry, 16, 181197. doi: http://dx.doi.org/10.1111/j.1469-76http://dx.doi.org/10.1975.tb01269.xGoogle Scholar
Samuelsson, S., Byrne, B., Olson, R. K. et al. (2008). Response to early literacy instruction in the United States, Australia, and Scandinavia: A behavior-genetic analysis. Learning and Individual Differences, 18, 289295. doi: http://dx.doi.org/10.1016/j.lindif.2008.03.004.Google Scholar
Samuelsson, S., Byrne, B., Quain, P. et al. (2005). Environmental and genetic influences on prereading skills in Australia, Scandinavia, and the United States. Journal of Educational Psychology, 97, 705722.Google Scholar
Samuelsson, S., Olson, R. K., Wadsworth, S. et al. (2007). Genetic and environmental influences on prereading skills and early reading and spelling development in the United States, Australia, and Scandinavia. Reading and Writing, 20, 5175. doi: http://dx.doi.org/10.1007/s11145-006-9018-x.Google Scholar
Soden, B., Christopher, M. E., Hulslander, J. et al. (2015). Longitudinal stability in reading comprehension is largely heritable from grades 1 to 6. PLoS One, 10(1), e0113807. doi: http://dx.doi.org/10.1371/journal.pone.0113807.Google Scholar
Stanovich, K. E., & West, R. F. (1989). Exposure to print and orthographic processing. Reading Research Quarterly, 24, 402433. doi: http://dx.doi.org/10.2307/747605.Google Scholar
Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (1999). Test of Word Reading Efficiency (TOWRE). Austin, TX: Pro-Ed.Google Scholar
van Leeuwen, M., van den Berg, S. M., Peper, J. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2009). Genetic covariance structure of reading, intelligence, and memory in children. Behavior Genetics, 39, 245254. doi: http://dx.doi.org/10.1007/s10519-009-9264-1.Google Scholar
Vogler, G. P., DeFries, J. C., & Decker, S. N. (1985). Family history as an indicator of risk for reading disability. Journal of Learning Disabilities, 18, 419421. doi: http://dx.doi.org/10.1177/002221948501800711.Google Scholar
Wadsworth, S. J., Corley, R. P., Plomin, R., Hewitt, J. K., & DeFries, J. C. (2006). Genetic and environmental influences on continuity and change in reading achievement in the Colorado Adoption Project. In Huston, A. C. & Ripke, M. N. (Eds.), Developmental contexts of middle childhood: Bridges to adolescence and adulthood (pp. 87106). New York, NY: Cambridge University Press.Google Scholar
Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40, 751758. doi: http://dx.doi.org/10.1007/s10519-010-9349-x.Google Scholar
Willcutt, E. G., Betjemann, R. S., McGrath, L. et al. (2010). Etiology and neuropsychology of comorbidity between RD and ADHD: The case for multiple-deficit models. Cortex, 46, 13451361. doi: http://dx.doi.org/10.1016/j.cortex.2010.06.009.Google Scholar
Willcutt, E. G., Pennington, B. F., Olson, R. K., & DeFries, J. C. (2007). Understanding comorbidity: A twin study of reading disability and attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 709714. doi: http://dx.doi.org/10.1002/ajmg.b.30310.Google Scholar

References

Altarelli, I., Leroy, F., Monzalvo, K. et al. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35, 57175735. doi: http://dx.doi.org/10.1002/hbm.22579.Google Scholar
Altarelli, I., Monzalvo, K., Iannuzzi, S. et al. (2013). A functionally guided approach to the morphometry of occipitotemporal regions in developmental dyslexia: Evidence for differential effects in boys and girls. The Journal of Neuroscience, 33, 1129611301. doi: http://dx.doi.org/10.1523/JNEUROSCI.5854-12.2013.Google Scholar
Arnold, E. M., Goldston, D. B., Walsh, A. K. et al. (2005). Severity of emotional and behavioral problems among poor and typical readers. Journal of Abnormal Child Psychology, 33, 205217. doi: http://dx.doi.org/10.1007/s10802-005-1828-9.Google Scholar
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781783. doi: http://dx.doi.org/10.1101/gad.1787609.Google Scholar
Black, J. M., Tanaka, H., Stanley, L. et al. (2012). Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. NeuroImage, 59, 30213032. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.10.024.Google Scholar
Boets, B., De Smedt, B., Wouters, J., Lemay, K., & Ghesquie, P. (2007). No relation between 2D: 4D fetal testosterone marker and dyslexia. NeuroReport, 18, 14871491. doi: http://dx.doi.org/10.1097/WNR.0b013e3282e9a754 .Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R. et al. (2004). Development of brain mechanisms for processing orthographic and phonologic representations. Journal of Cognitive Neuroscience, 16, 12341249. doi: http://dx.doi.org/10.1162/0898929041920496.Google Scholar
Bowen, J. R., Gibson, F. L., & Hand, P. J. (2002). Educational outcome at 8 years for children who were born extremely prematurely: A controlled study. Journal of Paediatrics and Child Health, 38, 438444. doi: http://dx.doi.org/10.1046/j.1440-1754.2002.00039.x.Google Scholar
Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874886. doi: http://dx.doi.org/10.1037/0012-1649.28.5.874.Google Scholar
Burbridge, T. J., Wang, Y., Volz, A. J. et al. (2008). Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience, 152, 723733. doi: http://dx.doi.org/10.1016/j.neuroscience.2008.01.020.Google Scholar
Byrne, B., Coventry, W. L., Olson, R. K. et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. Journal of Neurolinguistics, 22, 219236. doi: http://dx.doi.org/10.1016/j.jneuroling.2008.09.003.Google Scholar
Byrne, B., Olson, R. K., Samuelsson, S. et al. (2006). Genetic and environmental influences on early literacy. Journal of Research in Reading, 29, 3349. doi: http://dx.doi.org/10.1111/j.1467-9817.2006.00291.x.Google Scholar
Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583590. doi: http://dx.doi.org/10.1038/nrn1925.Google Scholar
Chang, E. F., Rieger, J. W., Johnson, K. et al. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13, 14281432. doi: http://dx.doi.org/10.1038/nn.2641.Google Scholar
Chura, L. R., Lombardo, M. V., Ashwin, E. et al. (2010). Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology, 35, 122132. doi: http://dx.doi.org/10.1016/j.psyneuen.2009.09.009.Google Scholar
Clark, K. A., Helland, T., Specht, K. et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137, 31363141. doi: http://dx.doi.org/10.1093/brain/awu229.Google Scholar
Cope, N., Eicher, J. D., Meng, H. et al. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. NeuroImage, 63, 148156. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.06.037.Google Scholar
Dahdouh, F., Anthoni, H., Tapia-Páez, I. et al. (2009). Further evidence for DYX1C1 as a susceptibility factor for dyslexia. Psychiatric Genetics, 19, 5963. doi: http://dx.doi.org/10.1097/YPG.0b013e32832080e1.Google Scholar
Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72, 671676. doi: http://dx.doi.org/10.1016/j.biopsych.2012.05.008.Google Scholar
Davies, P. T., & Windle, M. (1997). Gender-specific pathways between maternal depressive symptoms, family discord, and adolescent adjustment. Developmental Psychology, 33, 657668. doi: http://dx.doi.org/10.1037/0012-1649.33.4.657.Google Scholar
Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110, 201212. doi: http://dx.doi.org/10.1016/j.ymgme.2013.07.001.Google Scholar
Evans, T. M., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2014). Sex-specific gray matter volume differences in females with developmental dyslexia. Brain Structure & Function, 219, 10411054. doi: http://dx.doi.org/10.1007/s00429-013-0552-4.Google Scholar
Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews. Neuroscience, 3, 767780. doi: http://dx.doi.org/10.1038/nrn936.Google Scholar
Flint, J., Timpson, N., & Munafò, M. (2014). Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends in Neurosciences, 37, 733741. doi: http://dx.doi.org/10.1016/j.tins.2014.08.007.Google Scholar
Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates on reading genetic influences disability parental. Psychological Science, 19, 11241130. doi: http://dx.doi.org/10.1111/j.1467-9280.2008.02213.x.Google Scholar
Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94100. doi: http://dx.doi.org/10.1002/ana.410060203.Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222233. doi: http://dx.doi.org/10.1002/ana.410180210.Google Scholar
Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of Neurology, 42, 428459. doi: http://dx.doi.org/10.1001/archneur.1985.04060070024012.Google Scholar
Gilger, J. W., Pennington, B. F., & DeFries, J. C. (1992). A twin study of the etiology of comorbidity: Attention-deficit hyperactivity disorder and dyslexia. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 343348. doi: http://dx.doi.org/ 10.1097/00004583-199203000-00024.Google Scholar
Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 56, 273288. doi: http://dx.doi.org/10.3917/enf.563.0273.Google Scholar
Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain, 123, 23732399. doi: http://dx.doi.org/10.1093/brain/123.12.2373Google Scholar
Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in Cognitive Science, 6, 434–48. doi: http://dx.doi.org/10.1016/j.tics.2017.03.008.Google Scholar
Hancock, R., Richlan, F., & Hoeft, F. (2017). Possible roles for fronto-striatal circuits in reading disorder. Neuroscience & Biobehavioral Reviews, 72, 243260. doi: http://dx.doi.org/10.1016/j.neubiorev.2016.10.025.Google Scholar
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M. et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), e50. doi: http://dx.doi.org/10.1371/journal.pgen.0010050.Google Scholar
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59, 888897. doi: http://dx.doi.org/10.1016/j.biopsych.2005.11.005.Google Scholar
Harlaar, N., Spinath, F. M., Dale, P. S., & Plomin, R. (2005). Genetic influences on early word recognition abilities and disabilities: A study of 7-year-old twins. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 373384. doi: http://dx.doi.org/10.1111/j.1469-7610.2004.00358.x.Google Scholar
Hawke, J. L., Olson, R. K., Willcut, E. G., Wadsworth, S. J., & Defries, J. C. (2009). Gender ratios for reading difficulties. Dyslexia, 15, 239242. doi: http://dx.doi.org/10.1002/dys.389.Google Scholar
Ho, T. C., Sanders, S. J., Gotlib, I. H., & Hoeft, F. (2016). Intergenerational neuroimaging of human brain circuitry. Trends in Neurosciences, 39, 644648. doi: http://dx.doi.org/10.1016/j.tins.2016.08.003.Google Scholar
Hoeft, F., Hernandez, A., McMillon, G. et al. (2006). Neural basis of dyslexia: A comparison between dyslexic children and non-dyslexic children equated for reading ability. Journal of Neuroscience, 26, 1070010708. doi: http://dx.doi.org/10.1523/JNEUROSCI.4931-05.2006.Google Scholar
Hoeft, F., McCandliss, B. D., Black, J. M. et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108, 361366. doi: http://dx.doi.org/10.1073/pnas.1008950108.Google Scholar
Hoeft, F., Meyler, A., Hernandez, A. et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104, 42344239. doi: http://dx.doi.org/10.1073/pnas.0609399104.Google Scholar
Hosseini, S. M. H., Black, J. M., Soriano, T. et al. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260274. doi: http://dx.doi.org/10.1016/j.neuroimage.2013.01.013.Google Scholar
Hu, W., Lee, H. L., Zhang, Q. et al. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133, 16941706. doi: http://dx.doi.org/10.1093/brain/awq106.Google Scholar
Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28, 727738. doi: http://dx.doi.org/10.1002/ana.410280602.Google Scholar
Jednoróg, K., Altarelli, I., Monzalvo, K. et al. (2012). The influence of socioeconomic status on children’s brain structure. PLoS One, 7(8), e42486. doi: http://dx.doi.org/10.1371/journal.pone.0042486.Google Scholar
Kapellou, O., Counsell, S. J., Kennea, N. et al. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine, 3(8), e265. doi: http://dx.doi.org/10.1371/journal.pmed.0030265.Google Scholar
Kere, J. (2011). Molecular genetics and molecular biology of dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 441448. doi: http://dx.doi.org/10.1002/wcs.138Google Scholar
Kirsten, H., Wilcke, A., Ligges, C., Boltze, J., & Ahnert, P. (2012). Association study of a functional genetic variant in KIAA0319 in German dyslexics. Psychiatric Genetics, 22, 216217. doi: http://dx.doi.org/10.1097/YPG.0b013e32834c0c97.Google Scholar
Landi, N., Frost, S. J., Mencl, W. E. et al. (2013). The COMT Val/Met polymorphism is associated with reading-related skills and consistent patterns of functional neural activation. Developmental Science, 16(1), 1323. doi: http://dx.doi.org/10.1111/j.1467-7687.2012.01180.x.Google Scholar
Lawson, H. A., Cheverud, J. M., & Wolf, J. B. (2013). Genomic imprinting and parent-of-origin effects on complex traits. Nature Reviews Genetics, 14, 609617. doi: http://dx.doi.org/10.1038/nrg3543.Google Scholar
Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28, 96106. doi: http://dx.doi.org/10.1177/002221949502800204.Google Scholar
Lim, C. K. P., Ho, C. S. H., Chou, C. H. N., & Waye, M. M. Y. (2011). Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behavioral and Brain Functions, 7(1), 16. doi: http://dx.doi.org/10.1186/1744-9081-7-16.Google Scholar
Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS One, 7(8), e43122. doi: http://dx.doi.org/10.1371/journal.pone.0043122.Google Scholar
Lombardo, M. V., Ashwin, E., Auyeung, B. et al. (2012). Fetal testosterone influences sexually dimorphic gray matter in the human brain. The Journal of Neuroscience, 32, 674680. doi: http://dx.doi.org/10.1523/JNEUROSCI.4389-11.2012.Google Scholar
Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th Digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 2328. doi: http://dx.doi.org/10.1016/j.earlhumdev.2003.12.002.Google Scholar
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 114. doi: http://dx.doi.org/10.1007/s11881-003-0001-9.Google Scholar
Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145, 237259. doi: http://dx.doi.org/10.1196/annals.1416.024.Google Scholar
Mascheretti, S., Bureau, A., Battaglia, M. et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes, Brain, and Behavior, 12, 4755. doi: http://dx.doi.org/10.1111/gbb.12000.Google Scholar
Massinen, S., Tammimies, K., Tapia-Páez, I. et al. (2009). Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Human Molecular Genetics, 18, 28022812. doi: http://dx.doi.org/10.1093/hmg/ddp215.Google Scholar
Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729740. doi: http://dx.doi.org/10.1038/sj.mp.4002063.Google Scholar
Meda, S. A, Gelernter, J., Gruen, J. R. et al. (2008). Polymorphism of DCDC2 reveals differences in cortical morphology of healthy individuals – A preliminary voxel based morphometry study. Brain Imaging and Behavior, 2, 2126. doi: http://dx.doi.org/10.1007/s11682-007-9012-1.Google Scholar
Meng, H., Smith, S. D., Hager, K. et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 1705317058. doi: http://dx.doi.org/10.1073/pnas.0508591102.Google Scholar
Monzalvo, K., Fluss, J., Billard, C., Dehaene, S., & Dehaene-Lambertz, G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. NeuroImage, 61(1), 258274. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.02.035.Google Scholar
Mott, R., Yuan, W., Kaisaki, P. et al. (2014). The architecture of parent-of-origin effects in mice. Cell, 156, 332–242. doi: http://dx.doi.org/10.1016/j.cell.2013.11.043.Google Scholar
Olson, R., Wise, B., Conners, F., Rack, J., & Fulker, D. (1989). Specific deficits in component reading and language skills: Genetic and environmental influences. Journal of Learning Disabilities, 22(6), 339348. doi: http://dx.doi.org/10.1177/002221948902200604.Google Scholar
Paracchini, S., Thomas, A., Castro, S. et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15, 16591666. doi: http://dx.doi.org/10.1093/hmg/ddl089.Google Scholar
Pasley, B. N., David, S. V., Mesgarani, N. et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251. doi: http://dx.doi.org/10.1371/journal.pbio.1001251.Google Scholar
Paulesu, E., Démonet, J. F., Fazio, F. et al. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 21652167. doi: http://dx.doi.org/10.1126/science.1057179.Google Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385413. doi: http://dx.doi.org/10.1016/j.cognition.2006.04.008.Google Scholar
Pennington, B. F., Gilger, J. W., Pauls, D. et al. (1991). Evidence for major gene transmission of developmental dyslexia. The Journal of the American Medical Association, 266, 15271534. doi: http://dx.doi.org/10.1001/jama.1991.03470110073036.Google Scholar
Peschansky, V. J., Burbridge, T. J., Volz, A. J. et al. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20, 884897. doi: http://dx.doi.org/10.1093/cercor/bhp154.Google Scholar
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 19972007. doi: http://dx.doi.org/10.1016/S0140-6736(12)60198-6.Google Scholar
Petrill, S. A., Deater-Deckard, K., Thompson, L. A. et al. (2007). Longitudinal genetic analysis of early reading: The Western reserve reading project. Reading and Writing, 20, 127146. doi: http://dx.doi.org/10.1007/s11145-006-9021-2.Google Scholar
Pinel, P., Fauchereau, F., Moreno, A. et al. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. The Journal of Neuroscience, 32, 817825. doi: http://dx.doi.org/10.1523/JNEUROSCI.5996-10.2012.Google Scholar
Pinel, P., Lalanne, C., Bourgeron, T. et al. (2015). Genetic and environmental influences on the visual word form and fusiform face areas. Cerebral Cortex, 25, 24782493. doi: http://dx.doi.org/10.1093/cercor/bhu048.Google Scholar
Polk, T. A, Park, J., Smith, M. R., & Park, D. C. (2007). Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. The Journal of Neuroscience, 27, 1392113925. doi: http://dx.doi.org/10.1523/JNEUROSCI.4001-07.2007.Google Scholar
Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27, 2953. doi: http://dx.doi.org/10.2307/747832.Google Scholar
Raizada, R. D. S., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40, 13921401. doi: http://dx.doi.org/10.1016/j.neuroimage.2008.01.021.Google Scholar
Ramus, F. (2001). Dyslexia: Talk of two theories. Nature, 412, 393395. doi: http://dx.doi.org/10.1038/35086683.Google Scholar
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212218. doi: http://dx.doi.org/10.1016/S0959-4388(03)00035-7.Google Scholar
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. NeuroImage, 57, 742749. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.09.055.Google Scholar
Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109, 21562161. doi: http://dx.doi.org/10.1073/pnas.1107721109.Google Scholar
Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. NeuroImage, 22, 562573. doi: http://dx.doi.org/10.1016/j.neuroimage.2004.01.039.Google Scholar
Rende, R., & Plomin, R. (1992). Diathesis-stress models of psychopathology: A quantitative genetic perspective. Applied and Preventive Psychology, 1, 177182. doi: http://dx.doi.org/10.1016/S0962-1849(05)80123-4.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30, 32993308. doi: http://dx.doi.org/10.1002/hbm.20752.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage, 56, 17351742. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.02.040.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34, 30553065. doi: http://dx.doi.org/10.1002/hbm.22127.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112(50), 1551015515. doi: http://dx.doi.org/10.1073/pnas.1509321112.Google Scholar
Scerri, T. S., Darki, F., Newbury, D. F. et al. (2012). The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS One, 7(11), e50321. doi: http://dx.doi.org/10.1371/journal.pone.0050321.Google Scholar
Scerri, T. S., & Schulte-Körne, G. (2010). Genetics of developmental dyslexia. European Child & Adolescent Psychiatry, 19, 179197. doi: http://dx.doi.org/10.1007/s00787-009-0081-0.Google Scholar
Schulte-Körne, G. (2010). The prevention, diagnosis, and treatment of dyslexia. Deutsches Ärzteblatt International, 107, 718726. doi: http://dx.doi.org/10.3238/arztebl.2010.0718.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (1995). Sex differences in the functional organization of the brain for language. Nature, 373, 607609. doi: http://dx.doi.org/10.1038/373607a0.Google Scholar
Silani, G., Frith, U., Demonet, J.-F. et al. (2005). Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128, 24532461. doi: http://dx.doi.org/10.1093/brain/awh579.Google Scholar
Smith, S. D. (2011). Approach to epigenetic analysis in language disorders. Journal of Neurodevelopmental Disorders, 3(4), 356364. doi: http://dx.doi.org/10.1007/s11689-011-9099-y.Google Scholar
Stevenson, J., Graham, P., Fredman, G., & McLoughli, V. (1987). A twin study of genetic influences on reading and spelling ability and disability. Journal of Child Psychology and Psychiatry, 28(2), 229247. doi: http://dx.doi.org/10.1111/j.1469-7610.1987.tb00207.x.Google Scholar
Swagerman, S. C., van Bergen, E., Dolan, C. et al. (2015). Genetic transmission of reading ability. Brain and Language, 172, 38. doi: http://dx.doi.org/10.1016/j.bandl.2015.07.008.Google Scholar
Szalkowski, C. E., Fiondella, C. F., Truong, D. T. et al. (2013). The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats. International Journal of Developmental Neuroscience, 31(2), 116122. doi: http://dx.doi.org/10.1016/j.ijdevneu.2012.11.008.Google Scholar
Tammimies, K., Tapia-Páez, I., Rüegg, J. et al. (2012). The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation. Molecular Endocrinology, 26, 619629. doi: http://dx.doi.org/10.1210/me.2011-1376.Google Scholar
Tammimies, K., Vitezic, M., Matsson, H. et al. (2013). Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biological Psychiatry, 73, 583590. doi: http://dx.doi.org/10.1016/j.biopsych.2012.08.012.Google Scholar
Torppa, M., Eklund, K., van Bergen, E., & Lyytinen, H. (2011). Parental literacy predicts children’s literacy: A longitudinal family-risk study. Dyslexia, 17, 339355. doi: http://dx.doi.org/10.1002/dys.437.Google Scholar
van Bergen, E., de Jong, P. F., Regtvoort, A. et al. (2011). Dutch children at family risk of dyslexia: Precursors, reading development, and parental effects. Dyslexia, 17, 218. doi: http://dx.doi.org/10.1002/dys.423.Google Scholar
van Bergen, E., van der Leij, A., & de Jong, P. F. (2014). The intergenerational multiple deficit model and the case of dyslexia. Frontiers in Human Neuroscience, 8(346). doi: http://dx.doi.org/10.3389/fnhum.2014.00346.Google Scholar
van der Mark, S., Bucher, K., Maurer, U. et al. (2009). Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. NeuroImage, 47, 1940–1949. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.05.021.Google Scholar
van Vliet, J., Oates, N. A., & Whitelaw, E. (2007). Epigenetic mechanisms in the context of complex diseases. Cellular and Molecular Life Sciences, 64, 15311538. doi: http://dx.doi.org/10.1007/s00018-007-6526-z.Google Scholar
Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36, 15321552. doi: http://dx.doi.org/10.1016/j.neubiorev.2012.04.002.Google Scholar
Vandermosten, M., Hoeft, F., & Norton, E. S. (2016). Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: A review and quantitative meta-analysis. Current Opinion in Behavioral Science, 10, 155161. doi: http://dx.doi.org/10.1016/j.cobeha.2016.06.007.Google Scholar
Vinckier, F., Dehaene, S., Jobert, A. et al. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55, 143156. doi: http://dx.doi.org/10.1016/j.neuron.2007.05.031.Google Scholar
Wang, Y., Paramasivam, M., Thomas, A. et al. (2006). DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience, 143, 515–22. doi: http://dx.doi.org/10.1016/j.neuroscience.2006.08.022.Google Scholar
Xia, Z., Hoeft, F., Zhang, L., & Shu, H. (2016). Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation. Neuropsychologia, 81, 6878. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2015.12.003.Google Scholar
Yamagata, B., Murayama, K., Black, J. M. et al. (2016). Female-specific intergenerational transmission patterns of the human corticolimbic circuitry. Journal of Neuroscience, 36, 12541260. doi: http://dx.doi.org/10.1523/JNEUROSCI.4974-14.2016.Google Scholar
Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Boyle, C., & Murphy, C. (2003). Prevalence of autism in a US metropolitan area. The Journal of the American Medical Association, 289, 4955.Google Scholar
Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cerebral Cortex, 20, 622632. doi: http://dx.doi.org/10.1093/cercor/bhp129.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×