Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-18T20:32:01.631Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 April 2021

George H. Rieke
Affiliation:
University of Arizona
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Detection of Light , pp. 350 - 365
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aadit, M. N. A., Kirtania, S. G., Afrin, F., Alam, Md. K., and Khosru, Q. D. M. (2017). High electron mobility transistors: performance analysis, research trend, and applications, London: IntechOpen.Google Scholar
Abergel, A., Miville-Deschênes, M. A., Désert, F. X., et al. (2000). ‘The transient behaviour of the long wavelength channel of ISOCAM,’ Exp. Ast., 10, 353368.Google Scholar
Adami, O.-A., Rodriguez, L., Reveret, V., et al. (2018). ‘Characterization of doped silicon thermometers for very high sensitivity cryogenic bolometers,’ J. Low Temp. Phys., 193, 415421.Google Scholar
American Institute of Physics (1972). Handbook, 3rd edn. New York: McGraw-Hill.Google Scholar
Andersson, J. Y., and Lundqvist, L. (1992). ‘Grating-coupled quantum-well infrared detectors: theory and performance,’ J. Appl. Phys, 71, 36003610.Google Scholar
Annunziata, A. J., Santavicca, D. F., Frunzio, L., et al. (2010). ‘Tunable superconducting nanoinductors,’ Nanotech., 21, 445202-1–6.Google Scholar
Aull, B. F., Duerr, E. K., Frechette, J. P., et al. (2018). ‘Large-format geiger-mode avalanche photodiode arrays and readout circuits,’ IEEE J. Sel. Top. Quant. Elec., 24, 110.Google Scholar
Bahl, I. J. (1989). ‘Transmission lines,’ in Handbook of microwave and optical components, ed. K. Chang. New York: Wiley, 1, 159.Google Scholar
Bai, Xiaogang, Yuan, Ping, McDonald, P., et al. (2012). ‘Development of low excess noise SWIR APDs,’ Proc. SPIE, 8353, 83532H.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957). ‘Theory of superconductivity,’ Phys. Rev. 108, 11751204.Google Scholar
Baselmans, J. (2012). ‘Kinetic inductance detectors,’ J. Low Temp. Phys., 167, 292–304. Excellent review of MKIDs.Google Scholar
Beck, J. D., Kinch, M., and Sun, Xiaoli (2014), ‘Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,’ Opt. Eng., 53, 081906-1–6.Google Scholar
Beeresha, R. S., Khan, A. M., and Manjunath Reddy, H. V. (2016). ‘Design and optimization of interdigital capacitor,’ Int. J. Res. Eng. Tech., 5, 7378.Google Scholar
Benford, D J., Allen, C. A., Chervenak, J. A., et al. (2000). ‘Superconducting bolometer arrays for far infrared and submillimeter astronomy,’ in Imaging at Radio through Submillimeter Wavelengths, ed. J. G. Mangum and S. J. E. Radford. ASP Conference Series, Vol. 217, 134–139.Google Scholar
Berggren, K. K., Dauler, E. A., Kerman, A. J., Sae-Woo, Nam, and Rosenberg, D. (2013). ‘Detectors based on superconductors,’ in Single-Photon Generation and Detection, Vol. 45, ed. A. Migdall, S. V. Polykov, J. Fan, and J. C. Bienfang. Waltham, MA: Academic Press, 185–216.Google Scholar
Bielecki, Z. (2004). ‘Readout electronics for optical detectors.’ Opto-Elec. Rev., 12, 129137.Google Scholar
Billot, N., Agnése, P., Auguéres, J.-L., et al. (2006). ‘The Herschel/PACS 2560 bolometers imaging camera,’ Proc. SPIE, 6265, 62650D - 62650D-12.Google Scholar
Blaney, T. G. (1975). ‘Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,’ Space Sci. Rev., 17, 691702.Google Scholar
Boreman, Glenn D. (2001). Modulation transfer function in optical and electro-optical systems. Bellingham, WA: SPIE Publications. Relatively concise general reference on MT F, starting from first principles.Google Scholar
Born, M., Wolf, E., and Bhatia, A. B. (1999). Principles of Optics, 7th edn. Cambridge; New York: Cambridge University Press.Google Scholar
Bounissou, S., Revéret, V., Rodriguez, L., et al. (2018). ‘Electromagnetic simulations of newly designed semiconductor bolometers for submillimeter observations,’ J. Low Temp. Phys., 193, 428434.Google Scholar
Boussaha, F., Kawamura, J., Stern, J., et al. (2012). ‘Terahertz-frequency waveguide HEB mixers for spectral line astronomy,’ Proc SPIE, 8452, 845211-1–7.CrossRefGoogle Scholar
Boyd, R. W. (1983). Radiometry and the Detection of Optical Radiation. New York: Wiley. An extensive treatment of radiometry with general description of optical and infrared detectors and thorough discussion of noise mechanisms.Google Scholar
Bracewell, R. N. (2000). The Fourier Transform and its Applications, 3rd edn. Boston: McGraw-Hill. Comprehensive and standard reference on Fourier transforms.Google Scholar
Bratt, P. R. (1977). ‘Impurity germanium and silicon infrared detectors,’ in Semiconductors and, Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 12, 39–142. A classic review of the operation of photoconductors.Google Scholar
Brown, S. W., Eppeldauer, G. P., and Lykke, K. R. (2006). ‘Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,’ App. Opt., 45, 82188237.Google Scholar
Buckingham, M. J. (1983). Noise in Electronic Devices and Systems. New York: Ellis Horwood. A clear overview of noise mechanisms and behavior in a broad variety of electronic devices, ranging from linear networks through SQUIDs and gravitational wave detectors.Google Scholar
Budde, W. (1983). Physical Detectors of Optical Radiation, ed. F. Grum and C. J. Bartleson. New York: Academic Press.Google Scholar
Buil, C. (1991). CCD Astronomy: Construction and Use of an Astronomical CCD Camera. Richmond, VA: Willmann-Bell. Description of use of CCD detectors, from basics of operation through hardware and software and image reduction and analysis. Translated from the original French by E. and B. Davoust.Google Scholar
Bukshtab, M. (2019). Photometry, Radiometry, and Measurements of Optical Losses, 2nd edn. Heidelberg; New York: Springer. Massive, advanced treatment of photometry and radiometry.CrossRefGoogle Scholar
Burke, B. E., Reich, R. K., Savoye, E. D., and Tonry, J. L. (1994). ‘An orthogonal-transfer CCD imager,’ IEEE Trans. Elec. Dev., 41, 24822484.CrossRefGoogle Scholar
Burke, B., Jorden, P., and Vu, P. (2005). ‘CCD technology,’ Exp. Ast., 19, 69–102. Comprehensive review of CCDs, including comparison with CMOS detector arrays.Google Scholar
Burke, P. J., Schoelkopf, R. J., Prober, D. E., et al. (1996). ‘Length scaling of bandwidth and noise in hot-electron superconducting mixers,’ App. Phys. Let., 68, 33443346.Google Scholar
Cabrera, M. S., McMurtry, C. W., Forrest, W. J., et al. (2020). ‘Characterization of a 15 μm cutoff HgCdTe detector array for astronomy,’ J. Ast. Tel., Inst., Sys., 6, ID 011004.Google Scholar
Callen, H. B., and Welton, T. A. (1951). ‘Irreversibility and generalized noise,’ Phys. Rev., 83, 3440.Google Scholar
Calvo, M., Benoit, A., Catalano, A., et al. (2016). ‘The NIKA2 instrument: a dual-band kilopixel KID array for millimetric astronomy,’ J. Low Temp. Phys., 184, 816823.Google Scholar
Canali, C., Jacoboni, C., Nava, F., Ottaviani, G., and Alberigi-Quaranta, A. (1975). ‘Electron drift velocity in silicon,’ Phys. Rev. B, 12, 22652284.CrossRefGoogle Scholar
Capasso, F. (1985). ‘Physics of avalanche diodes,’ in Semiconductors and Semimetals, ed. W. T. Tsang. Orlando, FL: Academic Press, 22D, 2–172.Google Scholar
Carlstrom, J. E., and Zmuidzinas, J. (1996). ‘Millimeter and submillimeter techniques,’ in Reviews of Radio Science 1993–1996, ed. W. R. Stone. Oxford: Oxford University Press, 839882.Google Scholar
Carnes, J. E., and Kosonocky, W. F. (1972). ‘Noise sources in charge coupled devices,’ RCA Review, 33, 327343.Google Scholar
Carnes, J. E., Kosonocky, W. F., and Ramberg, E. G. (1972). ‘Free charge transfer in charge-coupled devices,’ IEEE Trans. Elec. Dev., ED-19, 798808.Google Scholar
Chen, C. J., Choi, K. K., Tidrow, M. Z., and Tsui, D. C. (1996). ‘Corrugated quantum well infrared photodetectors for normal incident light coupling,’ App. Phys. Let., 68, 14461448.Google Scholar
Chervenak, J. A., Irwin, K. D., Grossman, E. N., et al. (1999). ‘Superconducting multiplexer for arrays of transition edge sensors,’ App. Phys. Let., 74, 40434045.Google Scholar
Choi, K. K. (1997). The Physics of Quantum Well Infrared Photodetectors. Singapore: World Scientific.CrossRefGoogle Scholar
Christiansen, W. N., and Högbom, J. A. (1985). Radiotelescopes, 2nd edn. Cambridge; New York: Cambridge University Press.Google Scholar
Church, S. E., Price, M. C., Haegel, N. M., Griffin, M. J., and Ade, P. A. R. (1996). ‘Transient response in doped germanium photoconductors under very low background operation,’ App. Opt., 35, 15971604.Google Scholar
Clarke, J., and Braginski, A. I. (2006). The SQUID Handbook, New York: Wiley.Google Scholar
Clarke, J., Hoffer, G. I., Richards, P. L., and Yeh, N.-H. (1977). ‘Superconductive bolometers for submillimeter wavelengths,’ J. Appl. Phys., 48, 48654879.Google Scholar
Cova, S., Ghioni, M., Lacaita, A., Samori, C., and Zappa, F. (1996), ‘Avalanche photodiodes and quenching circuits for single-photon detection,’ App. Opt. LP, 35, 19561976.Google Scholar
Coulais, A., and Abergel, A. (2000). ‘Transient correction of the LW-ISOCAM data for low contrasted illumination,’ A&AS, 141, 533544.Google Scholar
Coulais, A., Fouks, B. I., Giovanelli, J.-F., Abergel, A., and See, J. (2000). ‘Transient response of IR detectors used in space astronomy: what we have learned from the ISO satellite,’ Proc. SPIE, 4131, 205217.Google Scholar
Csorba, I. P. (1985). Image Tubes. Indianapolis, IN: Howard Sams. A comprehensive and readable discussion of image intensifiers, photomultipliers, and television tubes; includes both theoretical and practical aspects of these detectors. Unfortunately, may be difficult to obtain.Google Scholar
Cullum, M. (1988). ‘Experience with the MAMA detector,’ in Instrumentation for Ground-based Optical Astronomy, Present and Future, ed. L. B. Robinson. Heidelberg; New York: Springer, 568–581.Google Scholar
Davis, K. K., Kloosterman, J. L., Groppi, C., Kawamujra, J. H., and Underhill, M. (2017). ‘Micromachined integrated waveguide transformers in THz Pickett-Potter feedhorn blocks,’ IEEE Trans. THz Sci. Tech., 7, 649656.Google Scholar
Dieleman, P., Klapwijk, T. M., van de Stadt, H., et al. (1997). ‘Performance limitations of NbN SIS junctions with Al striplines at 600–850 GHz,’ in Proceedings of the 8th International Symposium on Space Teraherztz Technology, 291–300.Google Scholar
Doliber, D. L., Stock, J. M., Jelinsky, S. R., et al. (2000). ‘Development challenges for the GALEX UV sealed tube detectors,’ Proc. SPIE, 4013, 402410.Google Scholar
Donati, S. (2000). Photodetectors: Devices, Circuits, and Applications, Upper Saddle River, NJ: Prentice Hall. Overview of (mostly) visible light detectors, largely from an engineering viewpoint.Google Scholar
Driggers, R. G., Friedman, M. H., and Nichols, J. M. (2012). Introduction to Infrared and Electro-Optical Systems. Boston, MA: Artech House.Google Scholar
Drouet d’Aubigny, C. Y., Walker, C. K., and Jones, B. D. (2000). ‘Laser micromachining of terahertz systems,’ Proc. SPIE, 4015, 584588.Google Scholar
D’Souza, A., Wijewarnasuriya, P. S., and Poksheva, J. G. (2000). ‘HgCdTe infrared detectors,’ in Handbook of Thin Film Devices, Vol. 2, ed. A. G. U. Perera and H. C. Liu. San Diego, CA; London: Academic Press, 1–25.Google Scholar
Durini, D. (ed.) (2014). High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors, Woodhead Publishing Series in Electronic and Optical Materials (Book 60). Cambridge: Woodhead Publishing. Useful collection of articles on CMOS arrays and CCDs that covers principles of operation, construction, and circuit architecture for applications from astronomy through cell phones.Google Scholar
Co, Eastman Kodak. (1987). Scientific Imaging with KODAK Films and Plates. Rochester, NY: Eastman Kodak Co.Google Scholar
Eccles, M. J., Sim, M. E., and Tritton, K. P. (1983). Low Light Level Detectors in Astronomy. Cambridge; New York: Cambridge University Press.Google Scholar
Eisaman, M. D., Fan, J., Migdall, A., and Polyakov, S. V. (2011). ‘Single-photon sources and detectors,’ Rev. Sci. Inst., 82, 071101–25. Review of single-photon detectors in general.Google Scholar
Eisenhauer, F., and Raab, W. (2015). ‘Visible/infrared imaging spectroscopy and energy resolving detectors,’ Ann. Rev. Ast. & Astrophys., 53, 155197.Google Scholar
Escher, J. S. (1981). ‘NEA semiconductor photoemitters,’ in Semiconductors and Semimetals, ed. P. K. Willardson and A. C. Beer. New York: Academic Press, 15, 195–300.Google Scholar
Filipovic, D. F., Gearhart, S. S., and Rebeiz, G. M. (1993). ‘Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,’ IEEE Trans. Microwave Theory, 41, 17381749.Google Scholar
Finger, G., Beletic, J. W., Dorn, R., et al. (2005). ‘Conversion gain and interpixel capacitance of CMOS hybrid focal plane arrays,’ Exp. Ast., 19, 135147.Google Scholar
Finger, G., Baker, I., Alvarez, D., et al. (2012). ‘Evaluation and optimization of NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry,’ Proc. SPIE, 8453, ID 84530T-16.Google Scholar
Fossum, E. R., and Pain, B. (1993). ‘Infrared readout electronics for space-science sensors: state of the art and future directions,’ Proc. SPIE, 2020, 262285.Google Scholar
Fouks, B. I. (1992). ‘Nonstationary behaviour of low background photon detectors,’ in Proceedings of an ESA Symposium on Photon Detectors for Space Instrumentation, 167–174.Google Scholar
Garnett, J. D., Zandian, M., Dewames, R. E., et al. (2004). ‘Performance of 5 micron, molecular beam epitaxy HgCdTe sensor chip assemblies (SCAs) for the NGST mission and ground-based astronomy,’ in Scientific Detectors for Astronomy: The Beginning of a New Era, ed. P. Amico. Dordrecht, Netherlands: Kluwer, 59–79.Google Scholar
Geist, J., and Wang, C. S. (1983). ‘New calculations of the quantum yield of silicon in the near ultraviolet,’ Phys Rev. B, 27, 48414847.Google Scholar
Gildemeister, J. M., Lee, A. T., and Richards, P. L. (1999). ‘A fully lithographed voltagebiased superconducting spiderweb bolometer,’ App. Phys. Let., 74, 868870.Google Scholar
Goldsmid, H. J. (1965). The Thermal Properties of Solids. New York: Dover Publications.Google Scholar
Goldsmith, P. F. (1998). Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications. New York: Chapman and Hall. The ultimate source on quasi-optics.CrossRefGoogle Scholar
Goldsmith, P. F., Itoh, T., and Stophan, K. D. (1989). ‘Quasi-optical techniques,’ in Handbook of Microwave and Optical Components, ed. K. Chang. New York: Wiley, 1, 344–363.Google Scholar
Gonzalez, A. (2016). ‘Frequency independent design of quasi-optical systems,’ J. Infrared Mm THz Waves, 37, 147159.Google Scholar
Gordon, K. D., Engelbracht, C. W., Fadda, D., et al. (2007). ‘Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging,’ PASP, 119, 10191037.Google Scholar
Graeme, J. G. (1996). Photodiode Amplifiers: Op Amp Solutions. Boston: McGraw Hill. Detailed discussion of TIA and related amplifiers, but virtually no discussion of integrating versions.Google Scholar
Graf, U. U., Honingh, C. E., Jacobs, K., and Stutzki, J. (2015). ‘Terahertz heterodyne array receivers for astronomy,’ J. Infrared Mm THz Waves, 36, 896921.Google Scholar
Grant, B. (2011). Field Guide to Radiometry, Bellingham, WA: SPIE Publications. Short and practical guide to practice of radiometry.Google Scholar
Grum, F. C., and Becherer, R. J. (1979). Optical Radiation Measurement I. Radiometry. New York: Academic Press. Classic description of radiometry.Google Scholar
Guériaux, V., de L’Isle, N. B., Berurier, A., et al. (2011). ‘Quantum well infrared photodetectors: present and future,’ Opt. Eng., 50, 061013-1–19.Google Scholar
Gunapala, S. D., and Bandara, S. V. (2000). ‘Quantum well infrared photodetectors (QWIP),’ in Handbook of Thin Film Devices, Vol. 2, ed. A. G. U. Perera and H. C. Liu. San Diego; London: Academic Press, 63–99.Google Scholar
Hadfield, R. H. (2009). ‘Single-photon detectors for optical quantum information applications,’ Nature Phot., 3, 696–705. Review of a broad variety of optical single-photon detectors, including APDs.Google Scholar
Haegel, N. M., Simoes, J. C., White, A. M., and Beeman, J. W. (1999). ‘Transient behavior of infrared photoconductors: application of a numerical model,’ App. Opt., 38, 19101919.Google Scholar
Haegel, N. M., Schwartz, W. R., Zinter, J., White, A. M., and Beeman, J. W. (2001). ‘Origin of the hook effect in extrinsic photoconductors,’ App. Opt., 40, 57485754.Google Scholar
Hall, D. N. B., Aikens, R. S., Joyce, R., and McCurnin, T. W. (1975). ‘Johnson noise limited operation of photovoltaic InSb detectors.’ App. Opt., 14, 450453.Google Scholar
Haller, E. E., Hueschen, M. R., and Richards, P. L. (1979). ‘Ge:Ga photoconductors in low infrared backgrounds,’ App. Phys. Let., 34, 495497.Google Scholar
Hamamatsu (2007). Photomultiplier Tubes: Basics and Applications, 3rd edn, Hamamatsu Corp., www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf. Up to date, thorough (theory and practice), and free!Google Scholar
Hamden, E. T., Jewell, A. D., Shapiro, C. A., et al. (2016). ‘Charge-coupled device detectors with high quantum efficiency at UV wavelengths,’ J. Ast. Tel., Inst. Sys., 2, 036003-1–11.Google Scholar
Hanson, C. M. (1997). ‘Hybrid pyroelectric-ferroelectric bolometer arrays,’ in Semiconductors and Semimetals, ed. P. Kruse and D. Skatrud. San Diego, CA: Academic Press, 47, 123–174.Google Scholar
Hawking, S. (1988). A Brief History of Time: From the Big Bang to Black Holes, London: Bantam Press.Google Scholar
Hartmann, R., Buttler, W., Gorky, H., et al. (2006). ‘A high-speed pnCCD detector system for optical applications,’ Nuc. Inst. Meth. Phys. Res., Sect. A, 568, 118123.Google Scholar
Hays, K. M., Laviolette, R. A., Stapelbroek, M. G., and Petroff, M. D. (1989). ‘The solid state photomultiplier: status of photon counting beyond the near-infrared,’ in Proceedings of the Third Infrared Detector Technology Workshop, ed. C. R. McCreight. NASA Technical Memorandum 102209, 59–80.Google Scholar
Hinken, J. H. (1989). Superconductor Electronics: Fundamentals and Microwave Applications. Heidelberg; New York: Springer. An excellent discussion of superconductivity, SIS junctions, and other devices as used for heterodyne receivers.Google Scholar
Hoffman, A., Loose, M., and Suntharalingam, V. (2005). ‘CMOS detector technology,’ Exp. Ast., 19, 111134.Google Scholar
Holland, A. (2013). ‘X-ray CCDs,’ in Observing Photons in Space, 2nd edn, ed. M. C. E., Huber, A., Pauluhn, J. L., Culhane, et al., Heidelberg; New York: Springer, 443–454.Google Scholar
Holland, W. S., Bintley, D., Chapin, E. L., et al. (2013). ‘SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope,’ MNRAS, 430, 25132535.Google Scholar
Holloway, H. (1986). ‘Collection efficiency and crosstalk in closely spaced photodiode arrays,’ J. App. Phys., 60, 10911096.Google Scholar
Holmes, W. A., Bock, J. J., Crill, B. P., et al. (2008). ‘Initial test results on bolometers for the Planck high frequency instrument,’ App. Opt., 47, 5996–6008. Detailed discussion of the HFI bolometers, starting with theory and showing how the design and construction were developed.Google Scholar
Holst, G. C. (2008). Testing and Evaluation of Infrared Imaging Systems, 3nd edn. Bellingham, WA: SPIE Publications.Google Scholar
Horowitz, P., and Hill, W. (2015). The Art of Electronics, 3rd edn. Cambridge; New York: Cambridge University Press. An excellent practical discussion of electronic circuitry.Google Scholar
Howell, S. B. (2006). Handbook of CCD Astronomy. 2nd edn. Cambridge; New York: Cambridge University Press.Google Scholar
Hynecek, J. (2001). ‘Impactron–a new solid state image intensifier,’ IEEE Trans. Elec. Dev., 48, 22382241.Google Scholar
Irwin, K. D., and Hilton, G. C. (2005). ‘Transition-edge sensors,’ in Cryogenic Particle Detection, ed. Ch. Enss, Topics in Applied Physics, 99. Heidelberg; New York: Springer, 63–150. Excellent and thorough review of this key type of bolometer thermometer.Google Scholar
Itsuno, A. M. (2012). ‘Bandgap-engineered mercury cadmium telluride infrared detector structures for reduced cooling requirements,’ Ph.D. thesis in electrical engineering, The University of Michigan.Google Scholar
Jackson, B. D., Baryshev, A. M., de Lange, G., et al. (2001). ‘Low-noise 1 THz superconductor-insulator-superconductor mixer incorporating a NbTiN/SiO2/Al tuning circuit,’ Appl. Phys. Let., 79, 436438.Google Scholar
Jacoby, G. H. (1990). CCDs in Astronomy. ASP Conference Series, Vol. 8. San Francisco: Astronomical Society of the Pacific. Conference proceedings that give a summary of research in CCDs.Google Scholar
James, T. H. (ed.) (1977). The Theory of the Photographic Process, 4th edn. New York: Macmillan. The standard advanced treatment of the photographic process, consisting of individual articles prepared by members of the staff of Kodak. Not particularly suitable as an introduction.Google Scholar
James, T. H., and Higgins, G. C. (1960). Fundamentals of Photographic Theory, 2nd edn. Hastings-on-Hudson, NY: Morgan and Morgan.Google Scholar
Janesick, J. R. (2001). Scientific Charge-Coupled Devices. Bellingham, WA: SPIE Publications. The standard encyclopedia of CCDs – essential reading on this topic.Google Scholar
Janesick, J. R., Elliot, T., Dingizian, A., et al. (1990). ‘New advances in charge-coupled technology – sub-electron noise and 4096×4096 pixel CCDs,’ in CCDs in Astronomy, ed. G. H. Jacoby, ASP Conference Series, Vol. 8, 18–39.Google Scholar
Janesick, J. R., and Elliott, S. T. (1992). ‘History and advancement of large area array scientific CCD imagers,’ in Astronomical CCD Observing and Reduction Techniques, ed. S. B. Howell, ASP Conference Series, Vol. 23, 1–67. A detailed review of astronomical CCDs.Google Scholar
Jerram, P., Pool, P. J., Bell, R., et al. (2001). ‘The LLCCD: low-light imaging without the need for an intensifier,’ Proc. SPIE, 4306, 178186.Google Scholar
Joint, F., Gay, G., Vigneron, P.-B., et al. (2019). ‘Compact and sensitive heterodyne receiver at 2.7 THz exploiting a quasi-optical HEB-QCL coupling scheme,’ App. Phys. Let., 115, 231104-1–5.Google Scholar
Jones, R. C. (1953). ‘The general theory of bolometer performance,’ JOSA, 43, 1–14. A classic development of the theory of the bolometer and relevant figures of merit.Google Scholar
Joseph, C. L. (1995). ‘UV image sensors and associated technologies,’ Exp. Ast., 6, 97127.Google Scholar
Joseph, C. L., Argabright, V. S., Abraham, J., et al. (1995). ‘Performance results of the STIS flight MAMA detectors,’ Proc. SPIE, 2551, 248259.Google Scholar
Kaneda, T. (1985). ‘Silicon and germanium avalanche photodiodes,’ in Semiconductors and Semimetals, ed. W. T. Tsang. Orlando, FL: Academic Press, 22D, 247328.Google Scholar
Kaufmann, P., Marcon, R., Abrantes, A., et al. (2014). ‘THz photometers for solar flare observations from space,’ Exp. Ast., 37, 579598.Google Scholar
Kazanskii, A. G., Richards, P. L., and Haller, E. E. (1977). ‘Far-infrared photoconductivity of uniaxially stressed germanium,’ App. Phys. Let., 31, 496497.Google Scholar
Kemmer, J., and Lutz, G. (1987). ‘New detector concepts,’ Nucl. Inst. Meth. Phys. Res., A, 253, 365377.Google Scholar
Kenny, T. W. (1997). ‘Tunneling infrared sensors,’ in Semiconductors and Semimetals, ed. P. Kruse and D. Skatrud. San Diego, CA: Academic Press, 47, 227–267.Google Scholar
Kerr, A. R., Pan, S.-K., Claude, S. M. X., et al. (2014). ‘Development of the ALMA band-3 and band-6 sideband-separating SIS mixers.’ IEEE Trans. THz Sci. Tech., 4, 201212.Google Scholar
Keyes, R. J., and Quist, T. M. (1970). ‘Low-level coherent and incoherent detection in the infrared,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 5, 321–359.Google Scholar
Kinch, M. A. (2008). ‘A theoretical model for the HgCdTe electron avalanche photodiode,’ J. Elec. Mat., 37, 14531459.Google Scholar
Kinch, M. A., Beck, J. D., Wan, C.-F., Ma, F., and Campbell, J. (2004). ‘HgCdTe electron avalanche photodiodes,’ J. Elec. Mat., 33, 630639.Google Scholar
Kinch, M. A., and Rollin, B. V. (1963). ‘Detection of millimetre and submillimetre wave radiation by free carrier absorption in a semiconductor,’ Brit. J. App. Phys., 14, 672676.Google Scholar
Kinch, M. A., and Yariv, A. (1989). ‘Performance limitations of GaAs/AlGaAs infrared superlattices,’ App. Phys. Let., 55, 20932095.Google Scholar
Kocherov, V. F., Taubkin, I. I., and Zaletaev, N. B. (1995). ‘Extrinsic silicon and germanium detectors,’ in Infrared Photon Detectors, ed. A. Rogalski. Bellingham, WA: SPIE Publications, 189–297.Google Scholar
Kogan, Sh. (1996). Electronic Noise and Fluctuations in Solids. Cambridge; New York: Cambridge University Press.Google Scholar
Korneev, A., Matvienko, V., Minaeva, O., et al. (2005). ‘Quantum efficiency and noise equivalent power of nanostructured, NbN, single photon detectors in the wavelength range from visible to infrared,’ IEEE Trans. App. Supercond., 15, 571574.Google Scholar
Kraus, J. D. (1986). Radio Astronomy, 2nd edn. Powell, OH: Cygnus-Quasar Books. Dated, but still the classic reference for many principles of radio astronomy.Google Scholar
Krause, P. (1989). ‘Color photography,’ in Imaging Processes and Materials, Neblette’s Eighth Edition, ed. J. Sturge, V. Walworth, and A. Shepp. New York: van Nostrand, 110–134.Google Scholar
Kruse, P. W. (1997). ‘Principles of uncooled infrared focal plane arrays,’ in Semiconductors and Semimetals, ed. P. Kruse and D. Skatrud. San Diego, CA: Academic Press, 47, 17–44.Google Scholar
Lacaita, A. L., Zappa, F., Bigliardi, S., and Manfredi, M. (1993). ‘On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,’ IEEE Trans. Elec. Dev., 40, 577582.Google Scholar
Lampton, M. (1981). ‘The microchannel image intensifier,’ Scientific American, 245, 62–71. A non-technical explanation of the manufacture and applications of microchannel plates in image intensifiers.Google Scholar
Lampton, M., Sigmund, O., and Raffanti, R. (1987). ‘Delay line anodes for microchannel-plate spectrometers,’ Rev. Sci. Inst., 58, 22982305.Google Scholar
Lamsal, C. (2014). ‘Electronic, thermoelectric and optical properties of vanadium oxides: VO2, V2O3 and V2O5,’ Ph.D. thesis, Rutgers University. digitalcommons.njit.edu/dissertations/100.Google Scholar
Laviolette, R. A., and Stapelbroek, M. G. (1989). ‘A non-Markovian model of avalanche gain statistics for a solid-state photomultiplier,’ J. App. Phys., 65, 830836.Google Scholar
Lee, D., Carmody, M., Piquette, E., et al. (2016). ‘High-operating temperature HgCdTe: a vision for the near future,’ J. Elec. Mat., 45, 45874595,Google Scholar
Lee, Y.-J., and Talghader, J. J. (2018). ‘Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission,’ Phys. Rev. A, 97, ID 013844, 1–11.Google Scholar
Lei, Wen, Antoszewski, J., and Faraone, L. (2015). ‘Progress, challenges, and opportunities for HgCdTe infrared materials and detectors,’ App. Phys. Rev., 2, ID 041303-1–34. Broad review of the status of this important detector type, with emphasis on detector architectures and processing.Google Scholar
Leitz, C., Rabe, S., Prigozhin, I., et al. (2017). ‘Germanium CCDs for large-format SWIR and X-ray imaging,’ J. Instrum, 12, C05014.Google Scholar
Lesser, M. (2015). ‘A summary of charge-coupled devices for astronomy,’ PASP, 127, 1097–1104. A short and readable review of the use of modern CCDs in astronomy.Google Scholar
Lesser, M. P., and Iyer, V. (1998). ‘Enhancing back-illuminated performance of astronomical CCDs,’ Proc. SPIE, 3355, 446456.Google Scholar
Levine, B. F. (1990). ‘Comment on “Performance limitations of GaAs/AlGaAs infrared superlattices”,’ App. Phys. Let., 56, 2354–2356. Followed by a response from M. A. Kinch and A. Yariv (above).Google Scholar
Levine, B. F. (1993). ‘Quantum-well infrared photodetectors,’ J. App. Phys., 74, R1–R81.Google Scholar
Lim, B. W., Chen, Q. C., Yang, J. Y., and Asif Khan, M. (1996). ‘High responsivity intrinsic photoconductor based on Alx Ga1−x N,’ App. Phys. Let., 68, 3761–3762.Google Scholar
Liu, H. C. (2000). ‘An introduction to the physics of quantum well infrared photodetectors and other related new devices,’ in Handbook of Thin Film Devices, Vol. 2, ed. A. G. U. Perera and H. C. Liu. San Diego, CA; London: Academic Press, 101–134.Google Scholar
London, F., and London, H. (1935). ‘The electromagnetic equations of the supraconductor,’ Proc. Roy. Soc. London, Ser. A, 149, 7188.Google Scholar
Low, F. J. (1961). ‘Low-temperature germanium bolometer,’ JOSA, 51, 1300–1304. A classic paper that describes the first high performance semiconductor bolometer.Google Scholar
Lutz, G., Porro, M., Aschauer, S., Wölfel, S., and Strüder, L. (2016). ‘The DEPFET sensor-amplifier structure: a method to beat 1/f noise and reach sub-electron noise in pixel detectors,’ Sensors, 16, 608621.Google Scholar
Maas, S. A. (1993). Microwave Mixers, 2nd edn. Boston, MA: Artech. Excellent, thorough discussion of Schottky diode misers and supporting devices such as HEMTs.Google Scholar
Martin, D. D. E., and Verhoeve, P. (2013). ‘Superconducting tunnel junctions,’ in Observing Photons in Space, 2nd edn, ed. M. C. E. Huber, A. Pauluhn, J. L. Curhane, et al. Heidelberg; New York: Springer, 479–496.Google Scholar
Martin, D. D. E., Verhoeve, R., Oosterbroek, T., et al. (2006). ‘Accurate time-resolved optical photospectroscopy with superconducting tunnel junction arrays,’ Proc. SPIE, 6269, 62690O–11.Google Scholar
Mather, J. C. (1982). ‘Bolometer noise: nonequilibrium theory,’ App. Opt., 21, 1125–1129. The complete development of modern theory of bolometer operation in five pages – not for the faint of heart.Google Scholar
Mauskopf, P. D. (2018). ‘Transition edge sensors and kinetic inductance detectors in astronomical instruments,’ PASP, 130, 082001–082028. This provides a quite advanced discussion of these two detector types. Some preliminary material might be advisable before tackling this review.Google Scholar
McCammon, D. (2005). ‘Semiconductor thermistors,’ in Cryogenic Particle Detection, Topics in Applied Physics. Heidelberg; New York: Springer, 99, 35–61. A very thorough and definitive review of this type of bolometer thermometer.Google Scholar
McCluney, W. R. (2014). Introduction to Radiometry and Photometry, 2nd edn. Boston, MA: Artech House. Thorough introduction to radiometry.Google Scholar
McCulloch, M. A., Grahn, J., Melhuish, S. J., et al. (2017). ‘Dependence of noise temperature on physical temperature for cryogenic low-noise amplifiers,’ J. Ast. Tel. Inst. Syst., 3, 014003-1–014003-4.Google Scholar
McGrath, W. R., Karasik, B. S., Skalare, A., et al. (1999). ‘Hot-electron superconductive mixers for THz frequencies,’ Proc. SPIE, 3617, 8088.Google Scholar
McIntyre, R. J. (1972). ‘The distribution of gains in uniformly multiplying avalanche photodiodes: theory,’ IEEE Trans. Elec. Dev., ED-19, 703713.Google Scholar
McMurtry, C., Lee, D., Beletic, J., et al. (2013). ‘Development of sensitive long-wave infrared detector arrays for passively cooled space missions,’ Opt. Eng., 52, 091804-1–9.Google Scholar
McMurtry, C., Dorn, M. L., Cabrera, M. S., et al. (2016a). ‘Candidate 10 micron HgCdTe arrays for the NEOCam space mission,’ Proc. SPIE, 9915, 99150D–8.Google Scholar
McMurtry, C., Cabrera, M. S., Dorn, M. L., Pipher, J. L., and Forrest, W. J. (2016b). ‘13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy,’ Proc. SPIE, 9915, 99150E–10.Google Scholar
Meeker, S. R., Mazin, B. A., Walter, A. B., et al. (2018). ‘DARKNESS: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy,’ PASP, 130, 065001–65017.Google Scholar
Melen, R., and Buss, D. (eds.) (1977). Charge Coupled Devices: Technology and Applications. New York: IEEE Press.Google Scholar
Mizrahi, U., Argaman, N., Elkind, S., et al. (2013). ‘Large-format 17μm high-end VOx μ-bolometer infrared detector,’ Proc. SPIE, 8704, 87041H-8.Google Scholar
Monroy, E., Omnès, F., and Calle, F. (2003). ‘Wide-bandgap semiconductor ultraviolet photodetectors,’ Semicond. Sci. Tech., 18, R33–R51. Review of semiconductor materials useful for ultraviolet detectors.Google Scholar
Moroni, G. F., Estrada, J., Paolini, E. E., et al. (2011). ‘Achieving sub-electron readout noise in skipper CCDs,’ arXiv 1106.1839.Google Scholar
Müller-Seidlitz, J., Bähr, A., Meidinger, N., and Treverspurg, W. (2018). ‘Recent improvements on high-speed DEPFET detectors for x-ray astronomy,’ Proc. SPIE, 10709, 107090F–8.Google Scholar
Muth, J. F., Brown, J. D., Johnson, M. A. L., et al. (1999). ‘Absorption coefficient and refractive index of GaN, AIN, and AlGaN alloys,’ MRS Internet J. Nitride Semicond. Res. 4, 502507.Google Scholar
Nahum, M., Richards, P. L., and Mears, C. A. (1993). ‘Design analysis of a novel hot-elecron microbolometer,’ IEEE Trans. Appl. Supercond., 3, 21242127.Google Scholar
Nakagawa, H., Aoki, S., Sagawa, H., et al. (2016). ‘IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakala, Hawaii,’ Planetary Space Sci., 126, 3448.Google Scholar
National Institute of Standards and Technology (2020). physics.nist.gov/PhysRefData/FFast/html/form.html.Google Scholar
Council, National Research (2014). ‘Laser radar: progress and opportunities in active electro-optical sensing,’ Washington, DC: National Academies Press.Google Scholar
Newhall, B. (1983). Latent Image: The Discovery of Photography. Albuquerque, NM: University of New Mexico Press.Google Scholar
Niigaki, M., Hirohata, T., Suzuki, H. K., and Hiruma, T. (1997). ‘Field-assisted photoe-mission from InP/InGaAsP photocathode with p/n junction,’ App. Phys. Let., 71, 24932495.Google Scholar
Nikzad, S., Hoenk, M. E., Greer, F., et al. (2012). ‘Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications,’ App. Opt., 51, 365369.Google Scholar
Norton, P. R., Braggins, T., and Levinstein, H. (1973). ‘Impurity and lattice scattering parameters as determined from Hall and mobility analysis in n-type silicon,’ Phys. Rev. B, 8, 56325653.Google Scholar
Novoselov, E., and Cherednichenko, S. (2017). ‘Low noise terahertz MgB2 hot electron bolometer mixers with an 11 GHz bandwidth,’ App. Phys. Let., 110, 032601-1–5.Google Scholar
Palaio, N. P., Rodder, M., Haller, E. E., and Kreysa, E. (1983). ‘Neutron-transmutation-doped germanium bolometers,’ Int. J. IR Mm Waves, 4, 933943.Google Scholar
Palmer, J. M., and Grant, B. G. (2009). The Art of Radiometry, Bellingham, WA: SPIE Publications. A thorough introduction, starting from first principles.Google Scholar
Pearsall, T. P., and Pollack, M. A. (1985). ‘Compound semiconductor photodiodes,’ in Semiconductors and Semimetals, ed. W. T. Tsang. Orlando, FL: Academic Press, 22D, 173–245.Google Scholar
Perera, A. G. U., Shen, W. Z., Matsik, S. G., et al. (1998). ‘GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28μm,’ App. Phys. Let., 72, 15961598.Google Scholar
Perkin Elmer Corp. (2003). ‘Avalanche Photodiodes: A User Guide,’ www.perkinelmer.com/CMSResources/Images/44-6538APP_AvalanchePhotodiodesUsersGuide.pdf.Google Scholar
Perley, R. A., Chandler, C. J., Butler, B. J., and Wrobel, J. A. (2011). ‘The expanded Very Large Array: a new telescope for new science,’ ApJL, 739, 15.Google Scholar
Petroff, M. D., Stapelbroek, M. G., and Kleinhans, W. A. (1987). ‘Detection of individual 0.4–28μm wavelength photons via impurity-impact ionization in a solid-state photo-multiplier,’ App. Phys. Let., 51, 406408.Google Scholar
Phillips, J. D., Edwall, D. D., and Lee, D. L. (2002). ‘Control of very-long-wavelength infrared HgCdTe detector-cutoff wavelength,’ J. Elec. Mat., 31, 664668.Google Scholar
Pierret, R. F. (1996). Semiconductor Device Fundamentals, 2nd edn., Reading, MA: Addison-Wesley. A highy recommended text on semiconductor devices.Google Scholar
Pinkie, B., Schuster, J., and Bellotti, E. (2013). ‘Physics-based simulation of the modulation transfer function in HgCdTe infrared detector arrays,’ Opt. Let., 38, 25462549.Google Scholar
Pobell, F., and Luth, S. (1996). Matter and Methods at Low Temperatures, Heidelberg; New York: Springer. A modern overview of methods for achieving low temperatures.Google Scholar
Pollock, D. D. (1985). Thermoelectricity: Theory, Thermometry, Tool. Philadelphia: ASTM Special Publication no. 852.Google Scholar
Polyakov, S. V. (2013). ‘Photomultiplier tubes,’ in Single-Photon Generation and Detection, Vol. 45, ed. A. Migdall, S. V. Polykov, J. Fan, and J. C. Bienfang. Waltham, MA: Academic Press, 69–82.Google Scholar
Pozar, D. M. (1998). Microwave Engineering, 2nd edn. New York: Wiley.Google Scholar
Press, W. H., Teukolsky, , S. A, Vetterling, W. T., and Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing, 3rd edn, Cambridge; New York: Cambridge University Press. A thorough and practical general description of numerical methods, including Fourier transformation.Google Scholar
Putley, E. H. (1970). ‘The pyroelectric detector,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 5, 259–285.Google Scholar
Putley, E. H. (1977). ‘InSb submillimeter photoconductive devices,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 12, 143–168.Google Scholar
Rana, V. R., Cook, W. R., III, Harrison, F. A., Mao, P. H., and Miyasaka, H. (2009). ‘Development of focal plane detectors for the Nuclear Spectroscopic Telescope Array (NuSTAR) mission,’ Proc. SPIE, 7435, 743503743508.Google Scholar
Razeghi, M., and Nguyen, Binh-Minh (2014). ‘Advances in mid-infrared detection and imaging: a key issues review,’ Rep. Prog. Phys, 77, 082401–17.Google Scholar
Reddy, S. H., Kudale, S., Gokhale, U., et al. (2017). ‘A wideband digital back-end for the upgraded GMRT,’ J. Astr. Inst., 6, 1641011-336.Google Scholar
Ressler, M. E., Cho, Hyung, Lee, R. A. M., et al. (2008). ‘Performance of the JWST/MIRI Si:As detectors,’ Proc. SPIE, 7021, 70210O-1–12.Google Scholar
Richards, P. L. (1994). ‘Bolometers for infrared and millimeter waves,’ J. Appl. Phys., 76, 124.Google Scholar
Rieke, F. F., DeVaux, L. H., and Tuzzolino, A. J. (1959). ‘Single-crystal infrared detectors based upon intrinsic absorption,’ Proc. IRE, 47, 14751478.Google Scholar
Rieke, G. H. (2007). ‘Infrared detector arrays for astronomy,’ Ann. Rev. A&A, 45, 77–115. General review of high-performance detector arrays operating from 1 to 1000 μm, reasonably current except for far infrared, submillimeter ranges.Google Scholar
Rieke, G. H., Montgomery, E. F., Lebofsky, M. J., and Eisenhardt, P. R. M. (1981). ‘High sensitivity operation of discrete solid state detectors at 4K,’ App. Opt., 20, 814818.Google Scholar
Rieke, G. H., Ressler, M. E., Morrison, J. E., et al. (2015). ‘The mid-infrared instrument for the James Webb Space Telescope, VII: the MIRI detectors,’ PASP, 127, 665674.Google Scholar
Robinson, F. N. H. (1962). Noise in Electrical Circuits. London: Oxford University Press.Google Scholar
Rogalski, A. (2010). Infrared Detectors, 2nd edn, Boca Raton, FL: CRC Press. Comprehensive discussion of virtually all infrared detector types.Google Scholar
Rogalski, A. (2012). ‘Progress in focal plane array technologies,’ Prog. Quant. Elec., 36, 342–473. Useful general review of infrared detector arrays.Google Scholar
Rogalski, A., and Piotrowski, J. (1988). ‘Intrinsic infrared detectors,’ Prog. Quant. Elec., 12, 87289.Google Scholar
Rosfjord, K. M., Yang, J. K., Dauler, E. A., et al. (2006). ‘Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,’ Opt. Exp., 14, 527534.Google Scholar
Ruggiero, S. T. and Rudman, D. A. (2013). Superconducting Devices. New York: Academic Press.Google Scholar
Saito, Terubumi (2012). ‘Optical properties of semiconductor photodiodes/solar cells,’ Metrologia, 49, S118–S123.Google Scholar
Schlaerth, J., Golwala, S., Zmuidzinas, J., et al. (2009). ‘Sensitivity optimization of millimeter/submillimeter MKID camera pixel device design,’ AIP Conf. Proc., 1185, 180183.Google Scholar
Schmit, J. L., and Stelzer, E. L. (1969). ‘Temperature and alloy compositional dependences of the energy gap of Hg1−x Cdx Te,’ J. App. Phys., 40, 48654869.Google Scholar
Schmülling, F., Klumb, B., Harter, M., et al. (1998). ‘High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,’ App. Opt., 37, 57715776.Google Scholar
Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P., and Prober, D. E. (1998). ‘The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer,’ Science, 280, 12381242.Google Scholar
Scholze, F., Rabus, H., and Ulm, G. (1998). ‘Mean energy required to produce an electron-hole pair in silicon for photons of energies between 50 and 1500 eV,’ J. App. Phys., 84, 29262939.Google Scholar
Schubert, J., Fouks, B. I., Lemke, D., and Wolf, J. (1995). ‘Transient response of ISOPHOT Si:Ga infrared photodetectors: experimental results and application of the theory of nonstationary processes,’ Proc. SPIE, 2553, 461469.Google Scholar
Schühle, U., and Hochedez, J.-F. (2013). ‘Solar-blind UV detectors based on wide band gap semiconductors,’ in Observing Photons in Space, 2nd edn., ed. M. C. E. Huber, A. Pauluhn, J. L. Curhane, et al. Heidelberg; New York: Springer, 467–478.Google Scholar
Schulman, T. (2006). ‘Si, CdTe and CdZnTe radiation detectors for imaging applications,’ Ph.D. thesis in physics, University of Helsinki, Finland.Google Scholar
Sclar, N. (1984). ‘Properties of doped silicon and germanium infrared detectors,’ Prog. Quant. Elec., 9, 149–257. An advanced review addressed specifically to extrinsic photoconductivity with extensive details on behavior with different dopants and on nonlinear effects.Google Scholar
Semenov, A. D., Gol’tsman, G. N., and Sobolewski, R. (2002). ‘Hot-electron effect in superconductors and its applications for radiation sensors,’ Supercond. Sci. Tech., 15, R1–R16.Google Scholar
Séquin, C. H., and Tompsett, M. F. (1975). ‘Charge transfer devices,’ in Advances in Electronics and Electron Physics, Supplement 8. New York: Academic Press. A dated but very thorough review of the operational principles of CCDs and related devices.Google Scholar
Shaw, M. D., Bueno, J., Day, P., Bradford, C. M., and Echternach, P. M. (2009). ‘Quantum capacitance detector: a pair-breaking radiation detector based on the single Cooper-pair box,’ Phys. Rev. B, 79, 144511.Google Scholar
Shi, S.-C., and Noguchi, T. (1998). ‘Low-noise superconducting receivers for millimeter and submillimeter wavelengths,’ IEICE Trans. Electron., E81-C, 15841594.Google Scholar
Shockley, W. (1961). ‘Problems related to p-n junctions in silicon,’ Sol.-St. Elec., 2, 3567.Google Scholar
Shu, S., Calvo, M., Leclercq, S., et al. (2018). ‘Prototype high angular resolution LEKIDs for NIKA2,’ J. Low Temp. Phys., 193, 141148.Google Scholar
Siegel, P. H. (2012). ‘Terahertz technology: an overview,’ Int. J. High Speed Elec. Sys., 13, 351394.Google Scholar
Simoens, F. (2013). ‘THz bolometer detectors,’ in Physics and Applications of Terahertz Radiation, ed. M. Perenzoni and D. Paul, Springer Series in Optical Sciences, Vol. 173. Heidelberg; New York: Springer. 35–75.Google Scholar
Singh, A., Srivastav, V., and Pal, R. (2011). ‘HgCdTe avalanche photodiodes: a review.’ Opt. Laser Tech., 43, 13581370.Google Scholar
Sizov, F. (2018). ‘Terahertz radiation detectors: the state-of-the-art,’ Semicond. Sci. Tech., 33, 123001123026.Google Scholar
Smith, A. G., and Hoag, A. A. (1979). ‘Advances in astronomical photography at low light levels,’ Ann. Rev. A&A, 17, 4371.Google Scholar
Solymar, L. (1972). Superconducting Tunneling and Applications. London: Chapman and Hall. A readable yet extensive account of the physical principles behind SIS and Josephson junction mixers.Google Scholar
Sonnabend, G., Sornig, M., Krötz, P., Stupar, D., and Schieder, R. (2008). ‘Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,’ J. Quan. Spec. Rad. Transfer, 109, 10161029.Google Scholar
Spicer, W. E. (1977). ‘Negative affinity 3-5 photocathodes: their physics and technology,’ App. Phys., 12, 115130.Google Scholar
Stevens, N. B. (1970). ‘Radiation thermopiles,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 5, 287–318.Google Scholar
Stillman, G. E., and Wolfe, C. M. (1977). ‘Avalanche photodiodes,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 12, 291–393.Google Scholar
Stratton, J. A. (1941). Electromagnetic Theory. New York; London: McGraw-Hill.Google Scholar
Streetman, B. G., and Banerjee, S. (2014). Solid State Electronic Devices, 7th edn. London: Pearson. A standard text on the operation and construction of solid state electronic devices.Google Scholar
Strüder, L., and Meidinger (2008). ‘CCD detectors,’ in The Universe in X-rays, ed. J. E. Trümper and G. Hasinger. Heidelberg; New York: Springer, 51–71.Google Scholar
Strüder, L., Kanbach, G., Meidinger, N., et al. (2008) ‘The development of avalanche amplifying pnCCDs: a status report,’ in High Time Resolution Astrophysics, Astrophysics and Space Science Library, Vol. 351, ed. D. Phelan, O. Ryan, and A. Shearer. Heidelberg; New York: Springer, 281–289.Google Scholar
Sturmer, D. M., and Marchetti, A. P. (1989). ‘Silver halide imaging,’ in Imaging Processes and Materials, Neblette’s Eighth Edition, ed. J. Sturge, V. Walworth, and A. Shepp. New York: van Nostrand, 71–109.Google Scholar
Sze, S. M. (2000). Semiconductor Devices, Physics and Technology. 2nd edn. New York: Wiley. A standard and widely used text on solid state physics and the construction and operation of solid state electronic devices.Google Scholar
Szmulowicz, F., and Madarsz, F. L. (1987). ‘Blocked impurity band detectors - an analytical model: figures of merit.’ J. App. Phys., 62, 2533–2540. One of the few descriptions of silicon IBC detectors available in the general literature.Google Scholar
Szypryt, P., Mazin, B. A., Ulbricht, G., et al. (2016). ‘High quality factor platinum silicide microwave kinetic inductance detectors,’ App. Phys. Let., 109, 151102-1–151102-4.Google Scholar
Szypryt, P., Meeker, S. R., Coiffard, G., et al. (2017). ‘Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy,’ Optics Exp., 25, 2589425909.Google Scholar
Tabbert, B., and Goushcha, A. (2012). ‘Optical detectors,’ in Springer Handook of Lasers and Optics. Heidelberg/New York: Springer, 543–619.Google Scholar
Takahashi, T., and Watanabe, S. (2001). ‘Recent progress in CdTe and CdZnTe detectors,’ IEEE Trans. Nuc. Sci., 48, 950959.Google Scholar
Teich, M. C. (1970). ‘Coherent detection in the infrared,’ in Semiconductors and Semimetals, ed. R. K. Willardson and A. C. Beer. New York: Academic Press, 5, 361–407.Google Scholar
Teranishi, N. (1997). ‘Thermoelectric uncooled infrared focal plane arrays,’ in Semiconductors and Semimetals, ed. P. Kruse and D. Skatrud. San Diego, CA: Academic Press, 47 , 203218.Google Scholar
Theuwissen, A. J. P. (1995). Solid-State Imaging with Charge-Coupled Devices. Dordrecht, Boston: Kluwer. A very thorough discussion of CCD principles, operation, and construction.Google Scholar
Timothy, J. G. (1988). ‘Photon-counting detector systems,’ in Instrumentation for Ground-based Optical Astronomy, Present and Future, ed. L. B. Robinson. Heidelberg; New York: Springer, 516–527.Google Scholar
Timothy, J. G., and Morgan, J. S. (1988). ‘Status of the MAMA detector development program,’ in Instrumentation for Groundbased Optical Astronomy, Present and Future, ed. L. B. Robinson. Heidelberg; New York: Springer, 557–567.Google Scholar
Timothy, J. G. (2013). ‘Microchannel plates for photon detection and imaging in space,’ in Observing Photons in Space, 2nd edn, ed. M. C. E. Huber, A. Pauluhn, J. L. Curhane, J. G. Timothy, K. Wilhelm, and A. Zehnder. Heidelberg; New York: Springer, 391–421.Google Scholar
Tinkham, M. (1996). Introduction to Superconductivity, 2nd edn. New York: McGraw-Hill. Classic textbook on superconductivity, brought up to date in a second edition.Google Scholar
Tong, C.-Y. E., Blundell, R., Bumble, B., Stern, J. A., and LeDuc, H. G. (1995). ‘Quantum-limited heterodyne detection in superconducting nonlinear transmission lines at submillimeter wavelengths,’ Appl. Phys. Let., 67, 13041306.Google Scholar
Tonry, J., and Burke, B. E. (1998). ‘The orthogonal transfer CCD,’ Exp. Ast., 8, 7787.Google Scholar
Torrey, H. C., and Whitmer, C. A. (1948). Crystal Rectifiers. Massachusetts Institute of Technology Radiation Laboratory Series, Vol. 15. New York: McGraw-Hill.Google Scholar
Tucker, J. R. (1979). ‘Quantum limited detection in tunnel junction mixers,’ IEEE J. Quant. Elec., QE-15, 12341258.Google Scholar
Tucker, J. R. (1980). ‘Predicted conversion gain in superconductor-insulator-superconductor quasiparticle mixers,’ App. Phys. Let., 36, 477479.Google Scholar
Tucker, J. R., and Feldman, M. J. (1985). ‘Quantum detection at millimeter wavelengths,’ Rev. Mod. Phys., 57, 10551113.Google Scholar
Tulloch, S. M., and Dhillon, V. S. (2011). ‘On the use of electron-multiplying CCDs for astronomical spectroscopy,’ MNRAS, 411, 211225.Google Scholar
Ullom, J. N., and Bennett, D. A. (2015). ‘Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,’ Supercond. Sci. Tech., 28, 084003084039.Google Scholar
Vampola, J. L. (1993). ‘Readout electronics for infrared sensors,’ in The Infrared & Electro-Optical Systems Handbook, Vol. 3, ed. J. S. Accetta and D. L. Shumaker. Bellingham, WA: SPIE Publications, 285–342.Google Scholar
Van Cleve, J. E., Herter, T., Pirger, B., et al. (1994). ‘The first large format Si:Sb BIB arrays,’ Exp. Ast., 3, 177178.Google Scholar
Van Cleve, J. E., Herter, T. L., Butturini, R., et al. (1995). ‘Evaluation of Si:As and Si:Sb blocked-impurity-band detectors for SIRTF and WIRE,’ Proc. SPIE, 2553, 502513.Google Scholar
Van der Ziel, A. (1976). Noise in Measurements. New York: Wiley.Google Scholar
Van Duzer, T., and Turner, T. W. (1998). Superconductive Devices and Circuits, 2nd edn. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Van Vliet, K. M. (1967). ‘Noise limitations in solid state photodetectors,’ App. Opt., 6, 11451169.Google Scholar
Vincent, J. D., Hodges, S., Vampola, J., Stegall, N., and Pierce, G. (2015). Fundamentals of Infrared and Visible Detector Operation and Testing, 2nd edn. New York: Wiley.Google Scholar
Von Zanthier, C., Braeuninger, H., Dennerl, K., et al. (1998). ‘A fully depleted pn-junction CCD for infrared-, UV-, and X-ray detection,’ Exp. Ast., 8, 8996.Google Scholar
Walker, C. K. (2020). Terahertz Astronomy, Boca Raton, FL: CRC Press. An excellent, highly approachable overview of submillimeter astronomy covering both the instrumentation and how it is used.Google Scholar
Walker, C. K., Kooi, J. W., Chan, M., et al. (1992). ‘A low noise 492 GHz SIS waveguide receiver,’ Int. J. IR Mm Waves, 13, 785798.Google Scholar
Walker, D., Zhang, X., Saxler, A., et al. (1997). ‘Alx Ga1−x N (0 ≤ x ≤ 1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition,’ App. Phys. Let., 70, 949–951.Google Scholar
Wang, J.-Q., Richards, P. L., Beeman, J. W., Haegel, N. M., and Haller, E. E. (1986). ‘Optical efficiency of far-infrared photoconductors,’ App. Opt., 25, 41274134.Google Scholar
Ward, J., Rice, F., Chattopadhyay, G., and Zmuidzinas, J. (1999). ‘SuperMix: a flexible software library for high-frequency circuit simulation, including SIS mixers and superconducting electronics,’ Proceedings of the 10th International Symposium on Space THz Technology, 268–281.Google Scholar
White, D., McGenn, W., George, D., et al. (2019). ‘125–211 GHz low noise MMIC amplifier design for radio astronomy,’ Exp. Ast., 48, 137143.Google Scholar
Wild, W. (2013). ‘Coherent far-infrared/submillimetre detectors,’ in Observing Photons in Space, 2nd edn. ed. M. C. E. Huber, A. Pauluhn, J. L. Curhane, et al. Heidelberg; New York: Springer, 503–523.Google Scholar
Wilson, T. L. (2018). ‘Introduction to millimeter/sub-millimeter astronomy,’ in Millimeter Astronomy, ed. M. Dessauger-Zavadsky and D. Pfeniger. Heidelberg; New York: Springer, 1–110. A companion piece to ‘Tools…’ with more emphasis on the high frequencies.Google Scholar
Wilson, T. L., Rohlfs, K., and Hüttemeister, S. (2014). Tools of Radio Astronomy, 6th edn. Heidelberg; New York: Springer. The standard introduction to the tools and methods of radio astronomy; emphasizes cm-waves, but there is some discussion of underlying principles as well as mm- and submm-wave techniques.Google Scholar
Woodcraft, A. I., Sudiwala, R. V., Wakui, E., et al. (2000). ‘Thermal conductance measurements of a silicon nitride membrane at low temperatures,’ Physica B: Cond. Mat., 284–288, 19681969.Google Scholar
Woodward, J. T., Shaw, P.-S., Yoon, H. W., et al. (2018). ‘Invited article: advances in tunable laser-based radiometric calibration applications at the National Institute of Standards and Technology, USA,’ Rev. Sci. Inst., 89, 0913011-1–25.Google Scholar
Wyatt, C. L., Baker, D. J., and Frodsham, D. G. (1974). ‘A direct coupled low noise preamplifier for cryogenically cooled photoconductive IR detectors,’ IR Phys., 14, 165176.Google Scholar
Yagoubov, P., Mroczkowski, T., Belitsky, V., et al. (2019). ‘Wideband 67–116 GHz receiver development for ALMA Band 2,’ A&A, 634, A46–1–22.Google Scholar
Young, A. T. (1974). ‘Photomultipliers, their cause and cure,’ in Methods of Experimental Physics, Vol. 12: Astrophysics Part A, ed. N. P. Carleton, New York; London: Academic Press, 1–94. An extensive discussion of the theory, construction, and operation of photomultipliers, with emphasis on their use in accurate photometry.Google Scholar
Yun, Minhee, Beeman, J., Bhatia, R., et al. (2003). ‘Bolometric detectors for the Planck Surveyor,’ Proc. SPIE, 4855, 136147.Google Scholar
Zhang, J., Slysz, W., Verevkin, A., et al. (2003). ‘Response time characterization of NbN superconducting single-photon detector,’ IEEE Trans. App. Supercond., 13, 180183.Google Scholar
Zhang, Yijun, and Jiao, Gangcheng (2019). ‘Energy bandgap engineering of transmission-mode AlGaAs/GaAs photocathode,’ in Advances in Photodetectors - Research and Applications, ed. Chee, Kuan, London: IntechOpen.Google Scholar
Zmuidzinas, J. (2012). ‘Superconducting microresonators: physics and applications,’ Ann. Rev. Cond. Mat. Phys., 3, 169–214. Excellent in-depth review of MKIDs and related technologies.Google Scholar
Zmuidzinas, J., Kooi, J. W., Kawamura, J., et al. (1998). ‘Development of SIS mixers for 1 THz,’ Proc. SPIE, 3357, 5362.Google Scholar
Zmuidzinas, J., and Richards, P. L. (2004). ‘Superconducting detectors and mixers for millimeter and submillimeter astrophysics,’ Proc. IEEE, 92, 15971616.Google Scholar
Zwicker, H. R. (1977). ‘Photoemissive detectors,’ in Optical and Infrared Detectors, 2nd edn., ed. R. J. Keyes. Heidelberg; New York: Springer, 149–196. An extensive discussion of photocathodes, with an emphasis on negative electron affinity materials.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • George H. Rieke, University of Arizona
  • Book: Detection of Light
  • Online publication: 30 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781316407189.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • George H. Rieke, University of Arizona
  • Book: Detection of Light
  • Online publication: 30 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781316407189.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • George H. Rieke, University of Arizona
  • Book: Detection of Light
  • Online publication: 30 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781316407189.014
Available formats
×