Skip to main content Accessibility help
×
Home
A Course in Model Theory
  • Cited by 54
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This concise introduction to model theory begins with standard notions and takes the reader through to more advanced topics such as stability, simplicity and Hrushovski constructions. The authors introduce the classic results, as well as more recent developments in this vibrant area of mathematical logic. Concrete mathematical examples are included throughout to make the concepts easier to follow. The book also contains over 200 exercises, many with solutions, making the book a useful resource for graduate students as well as researchers.

Reviews

‘The book is very well written and a pleasure to read.’

Tim Netzer Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

REFERENCES
References
[1] James, Ax, The elementary theory of finite fields, Annals of Mathematics. Second Series, vol. 88 (1968), pp. 239–271.
[2] J. T., Baldwin and A. H., Lachlan, On strongly minimal sets, The Journal of Symbolic Logic, vol. 36 (1971), pp. 79–96.
[3] John T., Baldwin, αT is finite for ℵ1–categorical T, Transactions of the American Mathematical Society, vol. 181 (1973), pp. 37–51.
[4] John T., Baldwin, Fundamentals of Stability Theory, Perspectives in Mathematical Logic, Springer Verlag; Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.
[5] John T., Baldwin, An almost strongly minimal non-Desarguesian projective plane, Transactions of the American Mathematical Society, vol. 342 (1994), no. 2, pp. 695–711.
[6] A., Baudisch, A., Martin-Pizarro, and M., Ziegler, Red fields, The Journal of Symbolic Logic, vol. 72 (2007), no. 1, pp. 207–225.
[7] Andreas, Baudisch, A new uncountably categorical group, Transactions of the American Mathematical Society, vol. 348 (1996), no. 10, pp. 3889–3940.
[8] Andreas, Baudisch, Martin, Hils, Amador, Martin-Pizarro, and Frank O., Wagner, Die böse Farbe, Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu, vol. 8 (2009), no. 3, pp. 415–443.
[9] Paul, Bernays, Axiomatic Set Theory With a historical introduction by Abraham A., Fraenkel, Dover Publications Inc., New York, 1991, Reprint of the 1968 edition.
[10] N., Bourbaki, XI, Algébre, Chapitre 5, Corps Commutatifs, Hermann, Paris, 1959.
[11] Elisabeth, Bouscaren, The group configuration – after E. Hrushovski, The Model Theory of Groups (Notre Dame, IN, 1985–1987), Notre Dame Math. Lectures, vol. 11, Univ. Notre Dame Press, Notre Dame, IN, 1989, pp. 199–209.
[12] Steven, Buechler, Essential Stability Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1996.
[13] Francis, Buekenhout, An introduction to incidence geometry, Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 1–25.
[14] Enrique, Casanovas, Simple Theories and Hyperimaginaries, Lecture Notes in Logic, vol. 39, Cambridge University Press, 2011.
[15] C. C., Chang and H. J., Keisler, Model Theory, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990.
[16] Zoé, Chatzidakis, Théorie des modèles des corps finis et pseudo-fini, Unpublished Lecture Notes, 1996.
[17] Zoé, Chatzidakis and Ehud, Hrushovski, Model theory of difference fields, Transactions of the American Mathematical Society, vol. 351 (1999), no. 8, pp. 2997–3071.
[18] M. M., Erimbetov, Complete theories with 1-cardinal formulas, Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika, vol. 14 (1975), no. 3, pp. 245–257, 368.
[19] Ju. L., Eršov, Fields with a solvable theory, Doklady Akademii Nauk SSSR, vol. 174 (1967), pp. 19–20, English transl., Soviet Math. Dokl., 8:575-576, 1967.
[20] Ulrich, Felgner, Comparison of the axioms of local and universal choice, Polska Akademia Nauk. Fundamenta Mathematicae, vol. 71 (1971), no. 1, pp. 43–62, (errata insert).
[21] Steven, Givant and Paul, Halmos, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009.
[22] Victor, Harnik, On the existence of saturated models of stable theories, Proceedings of the American Mathematical Society, vol. 52 (1975), pp. 361–367.
[23] Deirdre, Haskell, Ehud, Hrushovski, and Dugald, Macpherson, Stable Domination and Independence in Algebraically Closed Valued Fields, Lecture Notes in Logic, vol. 30, Association for Symbolic Logic, Chicago, IL, 2008.
[24] Wilfrid, Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.
[25] Wilfrid, Hodges, A Shorter Model Theory, Cambridge University Press, 1997.
[26] Ehud, Hrushovski, A stable ℵ0-categorical pseudoplane, Preprint, 1988.
[27] Ehud, Hrushovski, Unidimensional Theories are Superstable, Annals of Pure and Applied Logic, vol. 50 (1990), pp. 117–138.
[28] Ehud, Hrushovski, A new strongly minimal set, Stability in model theory, III (Trento, 1991), Annals of Pure and Applied Logic, vol. 62 (1993), no. 2, pp. 147–166.
[29] Ehud, Hrushovski, A non-PAC field whose maximal purely inseparable extension is PAC, Israel Journal of Mathematics, vol. 85 (1994), no. 1-3, pp. 199–202.
[30] Ehud, Hrushovski and Boris, Zilber, Zariski geometries, Journal of the American Mathematical Society, vol. 9 (1996), no. 1, pp. 1–56.
[31] Thomas, Jech, Set Theory, The third millennium edition, revised and expanded. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[32] Klaus, Kaiser, Über eine Verallgemeinerung der Robinsonschen Modell-vervollständigung, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 37–48.
[33] Akihiro, Kanamori, The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[34] Byunghan, Kim and Anand, Pillay, From stability to simplicity, The Bulletin of Symbolic Logic, vol. 4 (1998), no. 1, pp. 17–36.
[35] Serge, Lang, Algebra, second ed., Addison-Wesley Publishing Company, 1984.
[36] Serge, Lang and André, Weil, Number of points of varieties in finite fields, American Journal of Mathematics, vol. 76 (1954), pp. 819–827.
[37] Daniel, Lascar, Stability in Model Theory, Longman, New York, 1987.
[38] Angus, Macintyre, On ω1-categorical theories of fields, Polska Akademia Nauk. Fundamenta Mathematicae, vol. 71 (1971), no. 1, pp. 1–25, (errata insert).
[39] David, Marker, Model Theory, An introduction, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002.
[40] M., Morley, Categoricity in Power, Transactions of the American Mathematical Society, vol. 114 (1965), pp. 514–538.
[41] David, Pierce and Anand, Pillay, A note on the axioms for differentially closed fields of characteristic zero, Journal of Algebra, vol. 204 (1998), no. 1, pp. 108–115.
[42] Anand, Pillay, An Introduction to Stability Theory, Oxford Logic Guides, vol. 8, Oxford University Press, New York, 1983.
[43] Anand, Pillay, The geometry of forking and groups of finite Morley rank, The Journal of Symbolic Logic, vol. 60 (1995), pp. 1251–1259.
[44] Anand, Pillay, Geometric Stability Theory, Oxford Logic Guides, vol. 32, Oxford University Press, New York, 1996.
[45] Bruno, Poizat, Cours de Théorie des Modèles, Nur Al-Mantiq Wal-Ma'rifah, Villeurbanne, 1985.
[46] Bruno, Poizat, Groupes Stables, Nur Al-Mantiq Wal-Mari'fah, Villeurbanne, 1987.
[47] Mike, Prest, Model Theory and Modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988.
[48] Alex, Prestel and Charles N., Delzell, Mathematical Logic and Model Theory: A Brief Introduction, Universitext, Springer, 2011.
[49] V. A., Puninskaya, Vaught's conjecture, Journal of Mathematical Sciences (New York), vol. 109 (2002), no. 3, pp. 1649–1668, Algebra, 16.
[50] Gerald E., Sacks, Saturated Model Theory, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972.
[51] Igor R., Shafarevich, Basic Algebraic Geometry. 1, Varieties in projective space, second ed., Springer-Verlag, Berlin, 1994, Translated from the 1988 Russian edition and with notes by Miles Reid.
[52] Saharon, Shelah, Every two elementarily equivalent models have isomorphic ultrapowers, Israel Journal of Mathematics, vol. 10 (1971), pp. 224–233.
[53] Saharon, Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order-theories, The Journal of Symbolic Logic, vol. 37 (1972), pp. 107–113.
[54] Saharon, Shelah, Classification Theory, North Holland, Amsterdam, 1978.
[55] Saharon, Shelah, On uniqueness of prime models, The Journal of Symbolic Logic, vol. 43 (1979), pp. 215–220.
[56] Saharon, Shelah, Simple unstable theories, Annals of Mathematical Logic, vol. 19 (1980), no. 3, pp. 177–203.
[57] Joseph R., Shoenfield, Mathematical Logic, Association for Symbolic Logic, Urbana, IL, 2001, Reprint of the 1973 second printing.
[58] Katrin, Tent, Very homogeneous generalized n-gons of finite Morley rank, Journal of the London Mathematical Society. Second Series, vol. 62 (2000), no. 1, pp. 1–15.
[59] Jouko, Väänänen, Barwise: abstract model theory and generalized quantifiers, The Bulletin of Symbolic Logic, vol. 10 (2004), no. 1, pp. 37–53.
[60] Frank, Wagner, Simple Theories, Kluwer Adacemic Publishers, Dordrecht, 2000.
[61] Frank O., Wagner, Stable Groups, London Mathematical Society Lecture Note Series, vol. 240, Cambridge University Press, Cambridge, 1997.
[62] John S., Wilson, Profinite Groups, London Mathematical Society Monographs. New Series, vol. 19, Oxford University Press, New York, 1998.
[63] Martin, Ziegler, Model theory of modules, Annals of Pure and Applied Logic, vol. 26 (1984), no. 2, pp. 149–213.
[64] Boris, Zilber, Strongly minimal countably categorical theories. II, III, Akademiya Nauk SSSR. Sibirskoe Otdelenie. Sibirskii Matematicheskii Zhurnal, vol. 25 (1984), no. 4, pp. 63–77.
[65] Boris, Zilber, Analytic and pseudo-analytic structures, Logic Colloquium 2000, Lecture Notes in Logic, vol. 19, Association for Symbolic Logic, Urbana, IL, 2005, pp. 392–408.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.