Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T07:48:23.326Z Has data issue: false hasContentIssue false

6 - Sociality in Aphids and Thrips

from Part I - Invertebrates

Published online by Cambridge University Press:  13 April 2017

Dustin R. Rubenstein
Affiliation:
Columbia University, New York
Patrick Abbot
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, P. (2009) On the evolution of dispersal and altruism in aphids. Evolution, 63, 26872696.Google Scholar
Abbot, P. (2011) A closer look at the spatial architecture of aphid clones. Molecular Ecology, 20, 45874589.Google Scholar
Abbot, P. (2015) The physiology and genomics of social transitions in aphids. In: Zayed, A. & Kent, C.F. (eds.) Genomics, Physiology and Behavior of Social Insects. Advances in Insect Physiology, Volume 48. New York: Academic Press, pp. 163188.Google Scholar
Abbot, P. & Chhatre, V. (2007) Kin structure provides no explanation for intruders in social aphids. Molecular Ecology, 16, 36593670.Google Scholar
Abbot, P. & Withgott, J. H. (2004) Phylogenetic and molecular evidence for allochronic speciation in gall-forming aphids (Pemphigus). Evolution, 58, 539553.Google Scholar
Abbot, P., Withgott, J. H., & Moran, N. A. (2001) Genetic conflict and conditional altruism in social aphid colonies. Proceedings of the National Academy of Sciences of the United States of America, 98, 1206812071.Google Scholar
Akimoto, S. (1989) Gall-invading behavior of Eriosoma aphids (Homoptera, Pemphigidae) and its significance. Japanese Journal of Entomology, 57, 210220.Google Scholar
Akimoto, S. (1996) Ecological factors promoting the evolution of colony defense in aphids: Computer simulations. Insectes Sociaux, 43, 115.Google Scholar
Akimoto, S., & Yamaguchi, Y. (1997) Gall usurpation by the gall-forming aphid, Tetraneura sorini (Insecta Homoptera). Ethology Ecology and Evolution, 9, 159168.Google Scholar
Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991) The evolution of eusociality. In: Sherman, P.W., Jarvis, J. U. M., & Alexander, R.D. (eds.) The Biology of the Naked Mole Rat. Princeton: Princeton University Press, pp. 344.Google Scholar
Alton, K. (1999) The biology of Pemphigus spyrothecae galls on poplar leaves. PhD thesis, Nottingham: University of Nottingham.Google Scholar
Aoki, S. (1976) Occurrence of dimorphism in the first instar larva of Colophina clematis (Homoptera, Aphidoidea) Kontyû, 44, 130137.Google Scholar
Aoki, S. (1979) Dimorphic first instar larvae produced by the fundatrix of Pachypappa marsupialis (Homoptera: Aphidoidea) Kontyû, 47, 390398.Google Scholar
Aoki, S. & Kurosu, U. (2004) How many soldiers are optimal for an aphid colony? Journal of Theoretical Biology, 230, 313317.Google Scholar
Aoki, S. & Kurosu, U. (2010) A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche: A Journal of Entomology, 2010, 134.Google Scholar
Aoki, S., Yamane, S., & Kiuchi, M. (1977) On the biters of Astegopteryx styracicola (Homoptera, Aphidoidea). Kontyû, 45, 563570.Google Scholar
Aoki, S., Kurosu, U., & Stern, D. L. (1991) Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Animal Behaviour, 42, 865866.Google Scholar
Aoki, S., Kurosu, U., & Buranapanichpan, S. (2007) Female production within the gall and male production on leaves by individual alates of a social aphid. Insectes Sociaux, 54, 356362.CrossRefGoogle Scholar
Benton, T. G. & Foster, W. A. (1992) Altruistic housekeeping in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 247, 199202.Google Scholar
Blackman, R. L. & Eastop, V. F. (1994) Aphids on the World’s Trees: An Identification and Information Guide. London: University Press.Google Scholar
Boomsma, J. J., Huszár, D. B., & Pedersen, J. S. (2014) The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Animal Behaviour, 92, 241252.Google Scholar
Bono, J. M. (2007) Patterns of kleptoparasitism and inquilinism in social and non-social Dunatothrips on Australian Acacia. Ecological Entomology, 32, 411418.Google Scholar
Bono, J. M. & Crespi, B. J. (2006) Costs and benefits of joint colony founding in Australian Acacia thrips. Insectes Sociaux, 53, 489495.CrossRefGoogle Scholar
Bono, J. M. & Crespi, B. J. (2008) Cofoundress relatedness and group productivity in colonies of social Dunatothrips (Insecta: Thysanoptera) on Australian Acacia. Behavioral Ecology and Sociobiology, 62, 14891498.CrossRefGoogle ScholarPubMed
Cappuccino, N. (1987) Comparative population dynamics of two goldenrod aphids: Spatial patterns and temporal constancy. Ecology, 68, 16341646.Google Scholar
Chapman, T. W. & Crespi, B. J. (1998) High relatedness and inbreeding in two species of haplodiploid eusocial thrips (Insecta: Thysanoptera) revealed by microsatellite analysis. Behavioral Ecology and Sociobiology, 43, 301306.CrossRefGoogle Scholar
Chapman, T. W. & Perry, S. P. (2006) Evolution of fighting ability in soldiers of Australian gall thrips. In: Kipyatkov, V. (ed.) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg: St. Petersburg University Press, pp. 113120.Google Scholar
Chapman, T. W., Crespi, B. J., Kranz, B. D., & Schwarz, M. P. (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proceedings of the National Academy of Sciences of the United States of America, 97, 16481650.Google Scholar
Chapman, T. W., Kranz, B. D., Bejah, K. L., & Crespi, B. J. (2002) The evolution of soldier reproduction in social thrips. Behavioral Ecology, 13, 519525.CrossRefGoogle Scholar
Chapman, T. W., Geyer, K. F., & Schwarz, M. P. (2006) The impact of kleptoparasitic invasions on the evolution of gall-size in social and solitary Australian Acacia thrips. Insect Science, 13, 391400.CrossRefGoogle Scholar
Chapman, T. W., Crespi, B. J., & Perry, S. P. (2008) The evolutionary ecology of eusociality in Australian gall thrips: A “model clades” approach. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin: Springer-Verlag, pp. 5783.CrossRefGoogle Scholar
Childers, C. C., Beshear, R. J., Frantz, G., & Nelms, M. (2005) A review of thrips species biting man including records in Florida and Georgia between 1986–1997. Florida Entomologist, 88, 447451.Google Scholar
Choe, J. C. & Crespi, B. J. (1997) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press.Google Scholar
Clutton-Brock, T. (2009) Cooperation between non-kin in animal societies. Nature, 462, 5157.Google Scholar
Costa, J. T. (2006) The Other Social Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Costa, J. T. & Fitzgerald, T. D. (2005) Social terminology revisited: Where are we ten years later? Annales Zoologici Fennici, 2, 559564.Google Scholar
Crespi, B. J. (1986) Territoriality & fighting in a colonial thrips, Hoplothrips pedicularius, and sexual dimorphism in Thysanoptera. Ecological Entomology, 11, 119130.CrossRefGoogle Scholar
Crespi, B. J. (1988) Alternative male mating tactics in a thrips: Effects of sex ratio variation and body size. American Midland Naturalist, 119, 8392.Google Scholar
Crespi, B. J. (1992a) Eusociality in Australian gall thrips. Nature, 359, 724726.Google Scholar
Crespi, B. J. (1992b) Behavioral ecology of Australian gall thrips (Insecta, Thysanoptera). Journal of Natural History, 26, 769809.Google Scholar
Crespi, B. J. (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Sociaux, 41, 395400.CrossRefGoogle Scholar
Crespi, B. J. (1996) Comparative analysis of the origins and losses of eusociality: Causal mosaics and historical uniqueness. In: Martins, E. (ed.) Phylogenies and the Comparative Method in Animal Behavior. Oxford: Oxford University Press, pp. 253287.Google Scholar
Crespi, B. J. & Abbot, P. (1999) The behavioral ecology and evolution of kleptoparasitism in Australian gall thrips. The Florida Entomologist, 82, 147.Google Scholar
Crespi, B. J. & Worobey, M. (1998) Comparative analysis of gall morphology in Australian gall thrips: The evolution of extended phenotypes. Evolution, 52, 1686.Google Scholar
Crespi, B. J. & Yanega, D. (1995) The definition of eusociality. Behavioral Ecology, 6: 109115.Google Scholar
Crespi, B. J., Carmean, D. A., & Chapman, T. W. (1997) Ecology and evolution of galling thrips and their allies. Annual Review Of Entomology, 42, 5171.Google Scholar
Crespi, B. J., Carmean, D. A., Mound, L. A., & Worobey, M. (1998) Phylogenetics of social behavior in Australian gall-forming thrips: Evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. Molecular Phylogenetics and Evolution, 9, 163180.Google Scholar
Crespi, B. J., Morris, D. C., & Mound, L. A. (2004) Evolution of ecological and behavioral diversity: Australian Acacia thrips as model organisms. CSIRO, Canberra: Australian Biological Resources Study & Australian National Insect Collection.Google Scholar
de Bruijn, P. J. A. & Egas, M. (2014) Effects of kinship or familiarity? Small thrips larvae experience lower predation risk only in groups of mixed-size siblings. Behavioral Ecology and Sociobiology, 68, 10291035.Google Scholar
De Facci, M., Svensson, G. P., Chapman, T. W., & Anderbrant, O. (2013) Evidence for caste differences in anal droplet alarm pheromone production and responses in the eusocial thrips Kladothrips intermedius. Ethology, 119, 11181125.Google Scholar
De Facci, M., Wang, H-L., Yuvaraj, J. K., et al. (2014) Chemical composition of anal droplets of the eusocial gall-inducing thrips Kladothrips intermedius. Chemoecology, 24, 8594.Google Scholar
de Kogel, W. J., Bosco, D., Van der Hoek, M., & Mollema, C. (1999) Effect of host plant on body size of Frankliniella occidentalis (Thysanoptera: Thripidae) and its correlation with reproductive capacity. European Journal of Entomology, 96, 365368.Google Scholar
Dixon, A. F. G. (1998) Aphid Ecology. 2nd Edn. London: Chapman & Hall.Google Scholar
Emlen, S. T. (1982) The evolution of helping. I. An ecological constraints model. American Naturalist, 119, 2939.CrossRefGoogle Scholar
Fernandes, G. W. & Price, P. W. (1988) Biogeographical gradients in galling species richness. Oecologia, 76, 161167.Google Scholar
Foster, W. A. (1990) Experimental evidence for effective and altruistic colony defense against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae). Behavioral Ecology and Sociobiology 27, 421430.Google Scholar
Foster, W. A. (1996) Duelling aphids: Intraspecific fighting in Astegopteryx minuta (Homoptera: Hormaphididae). Animal Behavior, 51, 645655.Google Scholar
Foster, W. A. (2009) Aphid sex ratios. In: Hardy, I.C.W. (ed.) Sex Ratios Concepts and Research Methods. Cambridge: Cambridge University Press, pp. 254265.Google Scholar
Foster, W. A. & Benton, T. G. (1992) Sex ratio, local mate competition and mating behavior in the aphid Pemphigus spyrothecae. Behavioral Ecology and Sociobiology, 30, 297307.CrossRefGoogle Scholar
Foster, W. A., & Northcott, N. A. (1994) Galls and the evolution of social behavior in aphids. In: Williams, M.A.J. (ed.) Plant Galls: Organisms, Interactions, Populations. Oxford: Oxford University Press, pp. 161182.CrossRefGoogle Scholar
Foster, W. A. & Rhoden, P. (1998) Soldiers effectively defend aphid colonies against predators in the field. Animal Behaviour, 55, 761765.Google Scholar
Gilbert, J. D. J. (2014) Thrips domiciles protect larvae from desiccation in an arid environment. Behavioral Ecology, 25, 13381346.CrossRefGoogle Scholar
Gilbert, J. D. J. & Mound, L. A. (2012) Biology of a new species of socially parasitic thrips (Thysanoptera: Phlaeothripidae) inside Dunatothrips nests, with evolutionary implications for inquilinism in thrips. Biological Journal of the Linnean Society, 107, 112122.Google Scholar
Gilbert, J. D. J. & Simpson, S. J. (2013) Natural history and behavior of Dunatothrips aneurae Mound (Thysanoptera: Phlaeothripidae), a phyllode-gluing thrips with facultative pleometrosis. Biological Journal of the Linnean Society, 109, 802816.Google Scholar
Gonsalves, G. (2010) Host exploitation and fidelity in Acacia gall-invading parasites. Masters thesis, Memorial University of Newfoundland. Newfoundland: St. Johns.Google Scholar
Grimaldi, D. & Engels, M. S. (2005) Evolution of the Insects. New York: Cambridge University Press, pp. 755.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behavior. II. Journal of Theoretical Biology 7, 152.CrossRefGoogle Scholar
Hamilton, W. D. (1972) Altruism and related phenomena, mainly in social insects. Annual Review of Ecology and Evolution, 3, 193232.Google Scholar
Hamilton, W. D. (1996) Narrow Roads of Gene Land, Vol. 1. Oxford: Oxford University Press.Google Scholar
Hattori, M. & Itino, T. (2008) Soldiers’ armature changes seasonally and locally in an eusocial aphid (Homoptera: Aphididae). Sociobiology, 52, 429436.Google Scholar
Hattori, M., Kishida, O., & Itino, T. (2012) Buying time for colony mates: The anti-predatory function of soldiers in the eusocial aphid Ceratovacuna japonica (Homoptera, Hormaphidinae). Insectes Sociaux, 60, 1521.Google Scholar
Ijichi, N., Shibao, H., Miura, T., Matsumoto, T., & Fukatsu, T. (2005) Analysis of natural colonies of a social aphid Colophina arma: Population dynamics, reproductive schedule, and survey for ecological correlates with soldier production. Applied Entomology and Zoology, 40, 239245.Google Scholar
Inbar, M. (1998) Competition, territoriality & maternal defense in a gall-forming aphid. Ethology Ecology and Evolution, 10, 159170.Google Scholar
Inbar, M., Eshel, A., & Wool, D. (1995) Interspecific competition among phloem-feeding insects mediated by induced host-plant sinks. Ecology, 76, 15061515.CrossRefGoogle Scholar
Jaquiery, J., Stoeckel, S., Rispe, C., Mieuzet, L., Legeai, F., & Simon, J. C. (2012) Accelerated evolution of sex chromosomes in aphids, an X0 system. Molecular Biology and Evolution, 29, 837847.CrossRefGoogle ScholarPubMed
Jedličková, V., Jedlička, P., & Lee, H.-J. (2015) Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. General and Comparative Endocrinology, 223, 19.Google Scholar
Kiester, A. R., & Strates, E. (1984) Social behavior in a thrips from Panama. Journal of Natural History, 18, 303314.Google Scholar
Kranz, B. D. (2005) Egg size and reproductive allocation in eusocial thrips. Behavioral Ecology, 16, 779787.CrossRefGoogle Scholar
Kranz, B. D., Schwarz, M. P., Mound, L. A., & Crespi, B. J. (1999) Social biology and sex ratios of the eusocial gall-inducing thrips Kladothrips hamiltoni. Ecological Entomology, 24, 432442.Google Scholar
Kranz, B. D., Schwarz, M. P., Giles, L. C., & Crespi, B. J. (2000) Split sex ratios and virginity in a gall-inducing thrips. Journal of Evolutionary Biology, 13, 700706.Google Scholar
Kranz, B. D., Schwarz, M. P., Mound, L. A., & Crespi, B. J. (2001a) Social biology and sex ratios of the eusocial gall-inducing thrips Kladothrips hamiltoni. Ecological Entomology, 24, 432442.CrossRefGoogle Scholar
Kranz, B. D., Chapman, T. W., Crespi, B. J., & Schwarz, M. P. (2001b) Social biology and sex ratios in the gall-inducing thrips, Oncothrips waterhousei and Oncothrips habrus. Insectes Sociaux, 48, 315323.Google Scholar
Kranz, B. D., Schwarz, M. P., Wills, T., Chapman, T. W., Morris, D. C., & Crespi, B. J. (2001c) A fully reproductive fighting morph in a soldier clade of gall-inducing thrips (Oncothrips morrisi). Behavioral Ecology and Sociobiology, 50, 151161.Google Scholar
Kranz, B. D., Schwarz, M. P., Morris, D. C., & Crespi, B. J. (2002) Life history of Kladothrips ellobus and Oncothrips rodwayi: Insight into the origin and loss of soldiers in gall-inducing thrips. Ecological Entomology, 27, 4957.CrossRefGoogle Scholar
Kurosu, U. & Aoki, S. (2009) Extremely long-closed galls of a social aphid. Psyche: A Journal of Entomology, 2009, 19.Google Scholar
Kurosu, U., Buranapanichpan, S., & Aoki, S. (2006) Astegopteryx spinocephala (Hemiptera: Aphididae), a new aphid species producing sterile soldiers that guard eggs laid in their gall. Entomological Science, 9, 181190.Google Scholar
Kutsukake, M., Shibao, H., Nikoh, N., et al. (2004) Venomous protease of aphid soldier for colony defense. Proceedings of the National Academy of Sciences of the United States of America, 101, 1133811343.Google Scholar
Kutsukake, M., Shibao, H., Uematsu, K., & Fukatsu, T. (2009) Scab formation and wound healing of plant tissue by soldier aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 276, 15551563.Google Scholar
Lamb, R. J., MacKay, P. A., & Migui, S. M. (2012) Measuring the performance of aphids: Fecundity versus biomass. The Canadian Entomologist, 141, 401405.Google Scholar
Lawson, S. P., Legan, A. W., Graham, C., & Abbot, P. (2014a) Comparative phenotyping across a social transition in aphids. Animal Behaviour, 96, 117125.Google Scholar
Lawson, S. P., Christian, N., and Abbot, P. (2014b) Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. Fungal Diversity, 66, 8997.Google Scholar
Lewis, T. (1973) Thrips, Their Biology, Ecology and Economic Importance. New York: Academic Press.Google Scholar
McLeish, M. J., Perry, S. P., Gruber, D., & Chapman, T. W. (2003) Dispersal patterns of an Australian gall-forming thrips and its host tree (Oncothrips tepperi and Acacia oswaldii). Ecological Entomology, 28, 243246.Google Scholar
McLeish, M. J., Chapman, T. W., & Crespi, B. J. (2006) Inbreeding ancestors: The role of sibmating in the social evolution of gall thrips. Journal of Heredity, 97, 3138.Google Scholar
McLeish, M. J., Crespi, B. J., Chapman, T. W., & Schwarz, M. P. (2007) Parallel diversification of Australian gall-thrips on Acacia. Molecular Phylogenetics and Evolution, 43, 714725.Google Scholar
Michener, C. D. (1969) Comparative social behavior of bees. Annual Review Of Entomology, 14, 299342.Google Scholar
Miller, D. G. III (1998) Consequences of communal gall occupation and a test for kin discrimination in the aphid Tamalia coweni (Cockerell) (Homoptera: Aphididae). Behavioral Ecology and Sociobiology, 43, 95103.Google Scholar
Miller, D. G. III (2005) Ecology and radiation of galling aphids (Tamalia; Hemiptera: Aphididae) on their host plants (Ericaceae). Basic and Applied Ecology, 6, 463469.Google Scholar
Miller, N. J., Kift, N. B., & Tatchell, G. M. (2005) Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.). Heredity, 94, 556564.Google Scholar
Minaei, K. (2014) New record of predatory thrips, Aeolothrips melaleucus (Thysanoptera, Aeolothripidae). Linzer Biologische Beitraege, 46, 637642.Google Scholar
Moran, N. A. (1992) The evolution of aphid life cycles. Annual Review of Entomology, 37, 321348.Google Scholar
Moran, N. A. (1993a) Defenders in the North American aphid Pemphigus obesinymphae. Insectes Sociaux, 40, 391402.Google Scholar
Moran, N. A. (1993b) Evolution of sex ratio variation in aphids. In: Wrensch, D. L. & Ebbert, M. A. (eds.) Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 346368.Google Scholar
Morris, D. C. & Schwarz, M. P. (2002) Pleometrosis in phyllode-glueing thrips (Thysanoptera: Phlaeothripidae) on Australian Acacia. Biological Journal of the Linnean Society, 75, 467474.Google Scholar
Morris, D. C., Schwarz, M. P., Crespi, B. J., & Cooper, S. J. B. (2001) Phylogenetics of gall-inducing thrips on Australian Acacia. Biological Journal of the Linnean Society, 74, 7386.Google Scholar
Morris, D. C., Schwarz, M. P., Cooper, S. J. B., & Mound, L. A. (2002) Phylogenetics of Australian Acacia thrips: The evolution of behavior and ecology. Molecular Phylogenetics and Evolution, 25, 278292.Google Scholar
Mound, L. A. (2005) Thysanoptera: Diversity and interactions. Annual Review of Entomology, 50, 247269.Google Scholar
Mound, L. A. & Morris, D. C. (2007) The insect order Thysanoptera: Classification versus systematics. Zootaxa, 1668, 395411.Google Scholar
Perry, S. P., McLeish, M. J., Schwarz, M. P., & Boyette, A. H. (2003) Variation in propensity to defend by reproductive gall morphs in two species of gall-forming thrips. Insectes Sociaux, 50, 5458.Google Scholar
Perry, S. P., Chapman, T. W., Schwarz, M. P., & Crespi, B. J. (2004) Proclivity and effectiveness in gall defense by soldiers in five species of gall-inducing thrips: Benefits of morphological caste dimorphism in two species (Kladothrips intermedius and K. habrus). Behavioral Ecology and Sociobiology, 56, 602610.Google Scholar
Pike, N. & Foster, W. A. (2008) The ecology of altruism in a clonal insect. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin: Springer-Verlag, pp. 3756.Google Scholar
Pike, N., Richard, D., Foster, W., & Mahadevan, L. (2002) How aphids lose their marbles. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 12111215.Google Scholar
Pike, N., Braendle, C., & Foster, W. A. (2004) Seasonal extension of the soldier instar as a route to increased defense investment in the social aphid Pemphigus spyrothecae. Ecological Entomology, 29, 8995.Google Scholar
Pike, N., Whitfield, J.A., & Foster, W. A. (2007) Ecological correlates of sociality in Pemphigus aphids, with a partial phylogeny of the genus. BMC Evolutionary Biology, 7, 185.Google Scholar
Pope, R. D. (1983) Some aphid waxes, their form and function (Homoptera: Aphididae). Journal of Natural History, 17, 489506.Google Scholar
Prokopy, R. J. & Roitberg, B. D. (2001) Joining and avoidance behavior in nonsocial insects. Annual Review Of Entomology, 46, 631665.Google Scholar
Queller, D. C. & Strassmann, J. E. (1998) Kin selection and social Insects. Bioscience, 48, 165175.Google Scholar
Rhoden, P. K. & Foster, W. A. (2002) Soldier behavior and division of labour in the aphid genus Pemphigus (Hemiptera, Aphididae). Insectes Sociaux, 49, 257263.Google Scholar
Roisen, Y. (2006) Life history, life types and caste evolution in termites. In: Kipyatkov, V. (ed.) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg: St. Petersburg University Press, pp. 8595.Google Scholar
Rubenstein, D. R. & Lovette, I. J. (2007) Temporal environmental variability drives the evolution of cooperative breeding in birds. Current Biology, 17, 14141419.Google Scholar
Schütze, M. & Maschwitz, U. (1991) Enemy recognition and defense within trophobiotic associations with ants by the soldier caste of Pseudoregma sundanica (Homoptera: Aphidoidea). Entomologia Generalis, 16, 112.Google Scholar
Shibao, H. (1999) Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). Journal of Ethology, 17, 1724.Google Scholar
Shibao, H., Lee, J.-M., Kutsukake, M., & Fukatsu, T. (2003) Aphid soldier differentiation: Density acts on both embryos and newborn nymphs. Naturwissenschaften, 90, 501504.Google Scholar
Shibao, H., Kutsukake, M., & Fukatsu, T. (2004a) The proximate cue of density-dependent soldier production in a social aphid. Journal of Insect Physiology, 50, 143147.Google Scholar
Shibao, H., Kutsukake, M., & Fukatsu, T. (2004b) Density triggers soldier production in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, Suppl, 3, S71S74.CrossRefGoogle Scholar
Shibao, H., Kutsukake, M., Matsuyama, S., Fukatsu, T., & Shimada, M. (2010) Mechanisms regulating caste differentiation in an aphid social system. Communicative and Integrative Biology, 3, 15.Google Scholar
Shingleton, A. W. & Foster, W. A. (2000) Ant tending influences soldier production in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 18631868.Google Scholar
Shingleton, A. W. & Foster, W. A. (2001) Behavior, morphology and the division of labour in two soldier-producing aphids. Animal Behaviour, 62, 671679.Google Scholar
Stern, D. L. (1994) A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proceedings of the Royal Society of London. Series B: Biological Sciences, 256, 203209.Google Scholar
Stern, D. L. (1998) Phylogeny of the tribe Cerataphidini (Homoptera) and the evolution of the horned soldier aphids. Evolution, 52, 155.Google Scholar
Stern, D. L. & Foster, W. A. (1996) The evolution of soldiers in aphids, Biological Reviews of the Cambridge Philosophical Society, 71, 2779.Google Scholar
Strassmann, J. E. & Queller, D. C. (2010) The social organism: Congresses, parties, and committees. Evolution, 64, 605616.Google Scholar
Stone, G. N. & Schönrogge, K. (2003) The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18, 512522.Google Scholar
Toth, A. L., Varala, K., Newman, T. C., et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318, 441444.Google Scholar
Turnbull, C., Hoggard, S., Gillings, M., et al. (2011) Antimicrobial strength increases with group size: Implications for social evolution. Biology Letters, 7, 249252.Google Scholar
Turnbull, C., Caravan, H., Chapman, T., et al. (2012) Antifungal activity in thrips soldiers suggests a dual role for this caste. Biology Letters, 8, 526529.Google Scholar
Wcislo, W. T. (1997) Are behavioral classifications blinders to studying natural variation? In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. London: Cambridge University Press, pp. 813.Google Scholar
Wcislo, W. T. & Tierney, S. M. (2009) The evolution of communal behavior in bees and wasps: An alternative to eusociality. In: Gadau, J. & Fewell, J. (eds.) Organization of Insect Societies. Cambridge: Harvard University Press, pp. 148169.Google Scholar
Whitham, T. G. (1979) Territorial behavior of Pemphigus gall aphids. Nature, 279, 324325.Google Scholar
Whitham, T. G. (1986) Cost of benefits of territoriality: Behavioral and reproductive release by competing aphids. Ecology, 67, 139147.CrossRefGoogle Scholar
Wilch, M. H. (1999) Predation and prey response in the galls of Pemphigus populi-ramulorum. Masters thesis, Tucson: University of Arizona.Google Scholar
Wills, T. E., Chapman, T. W., Kranz, B. D., & Schwarz, M. P. (2001) Reproductive division of labour coevolves with gall size in Australian thrips with soldiers. Naturwissenschaften, 88, 526529.Google Scholar
Wills, T. E., Chapman, T. W., & Mound, L. A. (2004) Natural history and description of Oncothrips kinchega, a new species of gall-inducing thrips with soldiers (Thysanoptera: Phlaeothripidae). Australian Journal of Entomology, 43, 169176.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge: Harvard University Press.Google Scholar
Wilson, E. O. (1975) Sociobiology: The New Synthesis. Cambridge, MA: Harvard University Press, Belknap Press.Google Scholar
Withgott, J. H., Abbot, D. K., &. Moran, N. A (1997) Maternal death relaxes developmental inhibition in nymphal aphid defenders. Proceedings of the Royal Society B: Biological Sciences, 264, 11971202.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×