Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T10:06:01.968Z Has data issue: false hasContentIssue false

Part I - Invertebrates

Published online by Cambridge University Press:  13 April 2017

Dustin R. Rubenstein
Affiliation:
Columbia University, New York
Patrick Abbot
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abbot, P., Abe, J., Alcock, J., et al. (2011) Inclusive fitness theory and eusociality. Nature, 471, E1E4.Google Scholar
Abril, A. B. & Bucher, E. H. (2002) Evidence that the fungus cultured by leaf-cutting ants does not metabolize cellulose. Biology Letters, 5, 325328.Google Scholar
Achenbach, A. & Foitzik, S. (2009) First evidence for slave rebellion: Enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus. Evolution, 63, 10681075.Google Scholar
Aesop (2011) Aesop’s Fables. London: Penguin Classics.Google Scholar
Agosti, D., & Johnson, N. F. (editors) (2005) Antbase. World Wide Web electronic publication. antbase.org, version (05/2005).Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325383.Google Scholar
Anderson, C. & Franks, N. R. (2001) Teams in animal societies. Behavioral Ecology, 12, 535540.Google Scholar
Anderson, K. E., Russell, J. A., Moreau, C. S., et al. (2012) Highly similar microbial communities are shared among related and trophically similar ant species. Molecular Ecology, 21, 22822296.Google Scholar
Andersson, M. (1984) The evolution of eusociality. Annual Review of Ecology and Systematics, 15, 165189.Google Scholar
Aylward, F. O., Burnum-Johnson, K. E., Tringe, S. G., et al. (2013) Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Applied and Environmental Microbiology, 79, 37703778.Google Scholar
Bacci, M., Anversa, M. M., & Pagnocca, F. C. (1995) Cellulose degradation by Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens rubropilosa. Antonie van Leeuwenhoek Journal of Microbiology, 67, 385386.Google Scholar
Bacci, M. J., Bueno, O. C., Rodrigues, A., et al. (2013) A metabolic pathway assembled by enzyme selection may support herbivory of leaf-cutter ants on plant starch. Journal of Insect Physiology, 59, 525531.Google Scholar
Bernasconi, G. & Strassmann, J. E. (1999) Cooperation among unrelated individuals: The ant foundress case. Trends in Ecology and Evolution, 14, 477482.Google Scholar
Beshers, S. N. & Fewell, J. W. (2001) Models of division of labor in social insects. Annual Review of Entomology, 46, 413440.Google Scholar
Billen, J. & Morgan, E. D. (1998) Pheromone communication in social insects: Sources and secretions. In: Vander Meer, R. K., Breed, M. D., Espelie, K. E., & Winston, M. L. (eds). Pheromone Communication in Social Insects. Boulder, CO: Westview Press, pp. 333.Google Scholar
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford: Oxford University Press.Google Scholar
Boomsma, J. J. (1996) Split sex ratios and queen–male conflict over sperm allocation. Proceedings of the Royal Society of London B, 263, 697704.Google Scholar
Boomsma, J. J. (2007) Kin selection versus sexual selection: Why the ends do not meet. Current Biology, 17, R673R683.Google Scholar
Boomsma, J. J. (2013) Beyond promiscuity: Mate-choice commitments in social breeding. Philosophical Transactions of the Royal Society of London B, 368, 20120050.Google Scholar
Boomsma, J. J., Baer, B. & Heinze, J. (2005) The evolution of male traits in social insects. Annual Review of Entomology, 50, 395420.Google Scholar
Bourke, A. F. G. (1988) Dominance orders, worker reproduction, and queen–worker conflict in the slave-making ant Harpagoxenus sublaevis. Behavioral Ecology and Sociobiology, 23, 323333.Google Scholar
Bourke, A. F. G. (1999) Colony size, social complexity and reproductive conflict in social insects. Journal of Evolutionary Biology, 12, 245257.Google Scholar
Bourke, A. F. G. (2011) Principles of Social Evolution. Oxford: Oxford University Press.Google Scholar
Bourke, A. F. G. (2007) Kin selection and the evolutionary theory of aging. Annual Review of Ecology, Evolution and Systematics, 38, 103128.Google Scholar
Bourke, A. F. G. & Franks, N. R. (1995) Social Evolution in Ants. Princeton, N.J.: Princeton University Press.Google Scholar
Bourke, A. F. G. & Heinze, J. (1994) The ecology of communal breeding: The case of multiply-queened leptothoracine ants. Philosophical Transactions of the Royal Society B, 345, 359372.Google Scholar
Brandt, M., Foitzik, S., Fischer-Blass, B. & Heinze, J. (2005) The coevolutionary dynamics of obligate ant social parasite systems — between prudence and antagonism. Biological Reviews, 80, 251267.Google Scholar
Brunner, E., Kellner, K., & Heinze, J. (2009) Policing and dominance behaviour in the parthenogenetic ant Platythyrea punctata. Animal Behaviour, 78, 14271431.Google Scholar
Brown, M. J. F. & Bonhoeffer, S. (2003) On the evolution of claustral colony founding in ants. Evolutionary Ecology Research, 5, 305313.Google Scholar
Brown, M. J. F. & Schmid-Hempel, P. (2003) The evolution of female multiple mating in social Hymenoptera. Evolution, 57, 20672081.Google Scholar
Buschinger, A. (1986) Evolution of social parasitism in ants. Trends in Ecology and Evolution, 1, 155160.Google Scholar
Buschinger, A. (2009) Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecological News, 12, 219235.Google Scholar
Cassill, D. L., Butler, J., Vinson, S. B., & Wheeler, D. E. (2005) Cooperation during prey digestion between workers and larvae in the ant, Pheidole spadonia. Insectes Sociaux, 52, 339343.Google Scholar
Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003) Sexual conflict. Trends in Ecology and Evolution, 18, 4147.Google Scholar
Cole, B. J. (1983) Multiple mating and the evolution of social behavior in the Hymenoptera. Behavioral Ecology and Sociobiology, 12, 191201.Google Scholar
Cole, B. J. & Wiernasz, D. C. (1999) The selective advantage of low relatedness. Science, 285, 891893.Google Scholar
Cook, J. M. (1993) Sex determination in the Hymenoptera: A review of models and evidence. Heredity, 71, 421435.Google Scholar
Corley, M. & Fjerdingstad, E. J. (2011) Mating strategies of queens in Lasius niger ant: Is environment type important? Behavioral Ecology and Sociobiology, 65, 889897.Google Scholar
Cremer, S. & Heinze, J. (2002) Adaptive production of fighter males: Queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. Proceedings of the Royal Society of London B, 269, 417422.Google Scholar
Crozier, R. H. & Pamilo, P. (1996) Evolution of Social Insect Colonies. Oxford: Oxford University Press.Google Scholar
Davidson, D. W. (1985) An experimental study of diffuse competition in harvester ants. The American Naturalist, 125, 500505.Google Scholar
Dawkins, R. (1979) Twelve misunderstandings of kin selection. Zeitschrift für Tierpsychologie, 51, 184200.Google Scholar
Debout, G., Schatz, B., Elias, M., & McKey, D. (2007) Polydomy in ants: What we know, what we think we know, and what remains to be done. Biological Journal of the Linnean Society, 90, 319348.Google Scholar
de Fine Licht, H. H. & Boomsma, J. J. (2010) Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecological Entomology, 35, 259269.Google Scholar
de Fine Licht, H. H., Schiøtt, M., Mueller, U. G., & Boomsma, J. J. (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution, 64, 20552069.Google Scholar
d’Ettorre, P. & Moore, A. J. (2008) Chemical communication and the coordination of social interactions in insects. In: d’Ettorre, P & Hughes, D. P., D. P. (eds). Sociobiology of Communication: An Interdisciplinary Perspective. Oxford: Oxford University Press, pp. 8196.Google Scholar
Dietemann, V., Peeters, C. & Hölldobler, B. (2004) Gamergates in the Australian ant subfamily Myrmeciinae. Naturwissenschaften, 91, 432435.Google Scholar
Dorigo, M. & Stützle, T. (2004) Ant Colony Optimization. Boston, MA: MIT Press.Google Scholar
Dornhaus, A., Powell, S. & Bengston, S. (2012) Group size and its effects on collective organization. Annual Review of Entomology, 57, 123141.Google Scholar
Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J. L. (2004) Optimal traffic organization in ants under crowded conditions. Nature, 428, 7073.Google Scholar
Erthal, M., Silva, C., Cooper, R., & Samuels, R. (2009) Hydrolytic enzymes of leaf-cutting ant fungi. Comparative Biochemistry and Physiology B, 152, 5459.Google Scholar
Feldhaar, H., Straka, J., Krischke, M., et al. (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biology, 5, 48.Google Scholar
Foitzik, S. & Heinze, J. (2000) Intraspecific parasitism and split sex ratios in a monogynous and monandrous ant (Leptothorax nylanderi). Behavioral Ecology and Sociobiology, 47, 424431.Google Scholar
Forsyth, A. (1980) Worker control of queen density in hymenopteran societies. The American Naturalist, 116, 895898.Google Scholar
Foster, K. R., Wenseleers, T., Ratnieks, F. L. W., & Queller, D. C. (2006) There is nothing wrong with inclusive fitness. Trends in Ecology and Evolution, 21, 599600.Google Scholar
Fournier, D., Estoup, A., Orivel, J., et al. (2005) Clonal reproduction by males and females in the little fire ant. Nature, 435, 12301234.Google Scholar
Fournier, D., Battaille, G., Timmermans, I. & Aron, S. (2008) Genetic diversity, worker size polymorphism and division of labour in the polyandrous ant Cataglyphis cursor. Animal Behaviour, 75, 151158.Google Scholar
Gadau, J., Helmkampf, M., Nygaard, S., et al. (2012) The genomic impact of 100 million years of social evolution in seven ant species. Trends in Genetics, 28, 1421.Google Scholar
Gardner, A. & Ross, L. (2013) Haplodiploidy, sex-ratio adjustment, and eusociality. The American Naturalist, 181, E60E67.Google Scholar
Gardner, A., Alpedrinha, J. & West, S. A. (2012) Haplodiploidy and the evolution of eusociality: Split sex ratios. The American Naturalist, 179, 240256.Google Scholar
Garnier, S., Gautrais, J. & Theraulaz, G. (2007) The biological principles of swarm intelligence. Swarm Intelligence, 1, 331.Google Scholar
Giraud, T., Pedersen, J. S., & Keller, L. (2002) Evolution of supercolonies: The Argentine ants of southern Europe. Proceedings of the National Academy of Sciences USA, 99, 60756079.Google Scholar
Gordon, D. M. (1996) The organization of work in social insect colonies. Nature, 380, 121124.Google Scholar
Gordon, D. M., Holmes, S. & Nacu, S. (2008) The short-term regulation of foraging in harvester ants. Behavioral Ecology, 19, 217222.Google Scholar
Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989) Self-organized shortcuts in the Argentine Ant. Naturwissenschaften, 76, 579581.Google Scholar
Greene, M. J. & Gordon, D. M. (2003) Social insects: Cuticular hydrocarbons inform task decisions. Nature, 432, 32.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behaviour. I & II. Journal of Theoretical Biology, 7, 152.Google Scholar
Hamilton, W. D. (1978) Evolution and diversity under bark. In: Mound, L. A. & Waloff, N. (eds.) Diversity of Insect Faunas. Oxford: Blackwell Scientific, pp. 154175.Google Scholar
Hammond, R. L. & Keller, L. (2004) Conflict over male parentage in social insects. PLoS Biology, 2, e248.Google Scholar
Hammond, R. L., Bruford, M. W. & Bourke, A. F. G. (2002) Ant workers selfishly bias sex ratios by manipulating female development. Proceedings of the Royal Society of London B, 269, 173178.Google Scholar
Hannonen, M. & Sundström, L. (2003) Sociobiology: Worker nepotism among polygynous ants. Nature, 421, 910.Google Scholar
Hartfelder, K. & Emlen, D. J. (2012) Endocrine control of insect polyphenism. In: Gilbert, L. I. (ed.) Insect Endocrinology. London: Academic Press, pp. 651703.Google Scholar
Hartmann, A. & Heinze, J. (2003) Lay eggs, live longer: Division of labor and life span in a clonal ant species. Evolution, 57, 24242429.Google Scholar
Heinze, J. (1993) Life history strategies of subarctic ants. Arctic, 46, 354358.Google Scholar
Heinze, J. (1998) Intercastes, intermorphs, and ergatoid queens: Who is who in ant reproduction? Insectes Sociaux, 45, 113124.Google Scholar
Heinze, J. (2004) Reproductive conflict in insect societies. Advances in the Study of Behavior, 34, 157.Google Scholar
Heinze, J. (2008) The demise of the standard ant. Myrmecological News, 11, 920.Google Scholar
Heinze, J. & d’Ettorre, P. (2009) Honest and dishonest communication in social Hymenoptera. Journal of Experimental Biology, 212, 17751779.Google Scholar
Heinze, J. & Hölldobler, B. (1993) Fighting for a harem of queens: Physiology of reproduction in Cardiocondyla male ants. Proceedings of the National Academy of Sciences USA, 90, 84128414.Google Scholar
Heinze, J. & Keller, L. (2000) Alternative reproductive strategies: A queen perspective in ants. Trends in Ecology and Evolution, 15, 508512.Google Scholar
Heinze, J. & Schrempf, A. (2008) Aging and reproduction in social insects. Gerontology, 54, 160167.Google Scholar
Helanterä, H., Strassmann, J. E., & Queller, D. C. (2009) Unicolonial ants: Where do they come from, what are they and where are they going? Trends in Ecology and Evolution, 24, 341349.Google Scholar
Helanterä, H., Aehle, O., Roux, M., Heinze, J., & d’Ettorre, P. (2013) Family-based guilds in the ant Pachycondyla inversa. Biology Letters, 9, 20130125.Google Scholar
Herbers, J. M. (1993) Ecological determinants of queen number in ants. In: Keller, L. (ed.) Queen Number and Sociality in Insects. Oxford: Oxford University Press, pp. 262293.Google Scholar
Hölldobler, B. (1995) The chemistry of social regulation: Multicomponent signals in ant societies. Proceedings of the National Academy of Sciences USA, 92, 1922.Google Scholar
Hölldobler, B. (1999) Multimodal signals in ant communication. Journal of Comparative Physiology A, 184, 129141.Google Scholar
Hölldobler, B. & Bartz, S. H. (1985) Sociobiology of reproduction in ants. In Hölldobler, B. & Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Stuttgart: Gustav Fischer, pp. 237257.Google Scholar
Hölldobler, B. & Wilson, E. O. (1977) The number of queens: An important trait in ant evolution. Naturwissenschaften, 64, 815.Google Scholar
Hölldobler, B. & Wilson, E. O. (1990) The Ants. Cambridge, MA: Harvard University Press.Google Scholar
Hölldobler, B. & Wilson, E. O. (2008) The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. New York, N.Y.: W.W. Norton & Co.Google Scholar
Hölldobler, B. & Wilson, E. O. (2011) The Leafcutter Ants. New York, NY: W.W. Norton.Google Scholar
Holman, L., Dreier, S. & d’Ettorre, P. (2010a) Selfish strategies and honest signalling: Reproductive conflicts in ant queen associations. Proceedings of the Royal Society of London B, 277, 20072015.Google Scholar
Holman, L., Jørgensen, C. G., Nielsen, J., & d’Ettorre, P. (2010b) Identification of an ant queen pheromone regulating worker sterility. Proceedings of the Royal Society of London B, 277, 37933800.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. D. (2002) The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Hughes, W. O. H & Boomsma, J. J. (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution, 58, 12511260.Google Scholar
Hughes, W. O. H., Sumner, S., Van Borm, S., & Boomsma, J. J. (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proceedings of the National Academy of Sciences USA, 100, 93949397.Google Scholar
Hughes, W. O. H., Oldroyd, B. P., Beekman, M., & Ratnieks, F. L. W. (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science, 320, 12131216.Google Scholar
Hunt, J. H. (2007) The Evolution of Social Wasps. Oxford: Oxford University Press.Google Scholar
Hunt, J. H. (2012) A conceptual model for the origin of worker behaviour and adaptation of eusociality. Journal of Evolutionary Biology, 25, 119.Google Scholar
Hunt, J. H. & Amdam, G. C. (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science, 308, 264267.Google Scholar
Kadochova, Š. & Frouz, J. (2012) Thermoregulation strategies in ants in comparison to other social insects, with a focus on Formica rufa. F1000Research, 2, 280.Google Scholar
Kaspari, M., O’Donnell, S., & Kercher, J. R. (2000) Energy, density, and constraints to species richness: Ant assemblages along a productivity gradient. The American Naturalist, 155, 280293.Google Scholar
Keller, L. & Genoud, M. (1997) Extraordinary lifespans in ants: A test of evolutionary theories of ageing. Nature, 389, 958960.Google Scholar
Keller, L. & Passera, L. (1989) Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia, 80, 236240.Google Scholar
Keller, L. & Reeve, H. K. (1994) Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution, 48, 694704.Google Scholar
Kellner, K., Ishak, H. D., Linksvayer, T. A., & Mueller, U. G. (2015) Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiologyl Ecology, 91, fiv073.Google Scholar
Khila, A. & Abouheif, E. (2010) Evaluating the role of reproductive constraints in ant social evolution. Philosophical Transactions of the Royal Society B, 365, 617630.Google Scholar
King, J. R. & Tschinkel, W. R. (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proceedings of the National Academy of Science USA, 105, 2033920343.Google Scholar
King, J. R., Warren, R. J., & Bradford, M. A. (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE, 8, e75843.Google Scholar
Kinomura, K. & Yamauchi, K. (1987) Fighting and mating behaviors of dimorphic males in the ant Cardiocondyla wroughtoni. Journal of Ethology, 5, 7581.Google Scholar
Kocher, S. D. & Grozinger, C. D. (2011) Cooperation, conflict and the evolution of queen pheromones. Journal of Chemical Ecology, 37, 12631275.Google Scholar
Korb, J. & Heinze, J. (2008) The ecology of social life: A synthesis. In: Korb, J. & Heinze, J. (eds.). Ecology of Social Evolution. Berlin: Springer, pp. 245259.Google Scholar
Korb, J. & Heinze, J. (2016) Major hurdles for the evolution of sociality. Annual Review of Entomology, 61. 297316.Google Scholar
Kusnezov, N. (1957) Numbers of species of ants in faunae of different latitudes. Evolution, 11, 298299.Google Scholar
Lach, L., Parr, C. L., & Abbott, K. L. (2009) Ant Ecology. Oxford: Oxford University Press.Google Scholar
LaPolla, J. S., Dlussky, G. M. & Perrichot, V. (2013) Ants and the fossil record. Annual Review of Entomology, 58, 609630.Google Scholar
Le Conte, Y. & Hefetz, A. (2008) Primer pheromones in social Hymenoptera. Annual Review of Entomology, 53, 523542.Google Scholar
Lenoir, A., d’Ettorre, P., Errard, C., & Hefetz, A. (2001) Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573599.Google Scholar
Liebig, J., Peeters, C., Oldham, N. J., Markstädter, C., & Hölldobler, B. (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proceedings of the National Academy of Sciences USA, 97, 41244131.Google Scholar
Linksvayer, T. A. (2010) Subsociality and the evolution of eusociality. In: Breed, M. D. & Moore, J. (eds.) Encyclopedia of Animal Behavior, vol. 3. Oxford: Academic Press, pp. 358362.Google Scholar
MacMahon, J. A., Mull, J. F., & Crist, T. O. (2000) Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annual Review of Ecology and Systematics, 31, 265291.Google Scholar
Mamsch, E. (1967) Quantitative Untersuchungen zur Regulation der Fertilität im Ameisenstaat durch Arbeiterinnen, Larven und Königin. Zeitschrift für vergleichende Physiologie, 55, 125.Google Scholar
Maynard Smith, J. & Szathmáry, E. (1995) The Major Transitions in Evolution. Oxford: Oxford University Press.Google Scholar
Meyer, S. T., Neubauer, M., Sayer, E., et al. (2013) Leaf-cutting ants as ecosystem engineers: Topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability. Ecological Entomology, 38, 497504.Google Scholar
Michener, C. D. & Brothers, D. J. (1974) Were workers of eusocial Hymenoptera initially altruistic or oppressed? Proceedings of the National Academy of Sciences USA, 71, 671674.Google Scholar
Mintzer, A. C. (1987) Primary polygyny in the ant Atta texana: Number and weight of females and colony foundation success in the laboratory. Insectes Sociaux, 34, 108117.Google Scholar
Mlot, N. J., Tovey, C. A., & Hu, D. L. (2011) Fire ants self-assemble into waterproof rafts to survive floods. Proceedings of the National Academy of Sciences USA, 108, 76697673.Google Scholar
Monnin, T. (2006) Chemical recognition of reproductive status in social insects. Annales Zoologici Fennici, 43, 515530.Google Scholar
Monnin, T. & Peeters, C. (1999) Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behavioral Ecology, 10, 323332.Google Scholar
Monnin, T., Ratnieks, F. L. W., Jones, G.R. & Beard, R. (2002) Pretender punishment induced by chemical signalling in a queenless ant. Nature, 419, 6165.Google Scholar
Moreau, C. S. & Bell, C. D. (2013) Testing the museum versus cradle tropical biological diversity hypothesis: Phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution, 67, 22402257.Google Scholar
Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006) Phylogeny of the ants: Diversification in the age of angiosperms. Science, 312, 101104.Google Scholar
Morrison, L. W. (2014) The ants of remote Polynesia revisited. Insectes Sociaux, 61, 217228.Google Scholar
Mueller, U., Mikheyev, A., Hong, E., et al. (2011) Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proceedings of the National Academy of Sciences USA, 108, 40534056.Google Scholar
Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005) The evolution of agriculture in insects. Annual Review of Ecology and Systematics, 36, 563595.Google Scholar
Münch, D., Amdam, G. V., & Wolschin, F. (2008) Ageing in a eusocial insect: Molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology, 22, 407421.Google Scholar
Oettler, J., Schmid, V. S., Zankl, N., et al. (2013) Fermat’s principle of least time predicts refraction of ant trails at substrate borders. PLoS ONE, 8, e59739.Google Scholar
Ohkawara, K., Nakayama, M., Satoh, A., Trindl, A., & Heinze, J. (2006) Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biology Letters, 2, 359363.Google Scholar
Ólafsson, E. & Richter, S. H. (1985) Húsamaurinn (Hypoponera punctatissima). Náttúrufræđingurinn, 55: 139146.Google Scholar
Parker, J. D. (2010) What are social insects telling us about aging? Myrmecological News, 13, 103110.Google Scholar
Passera, L. & Aron, S. (2005) Les Fourmis: Comportement, organisation sociale et évolution. Ottawa: CNRC·NRC.Google Scholar
Passera, L., Roncin, E., Kaufmann, B., & Keller, L. (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379, 630631.Google Scholar
Pearcy, M. & Aron, S. (2006) Local resource competition and sex ratio in the ant Cataglyphis cursor. Behavioral Ecology, 17, 569574.Google Scholar
Pearcy, M., Goodisman, M. A. D., & Keller, L. (2011) Sib-mating without inbreeding in the Crazy ant. Proceedings of the Royal Society of London B, 278, 26772681.Google Scholar
Peeters, C. (1991) Ergatoid queens and intercastes in ants: Two distinct adult forms which look morphologically intermediate between workers and winged queens. Insectes Sociaux, 38, 115.Google Scholar
Peeters, C. (1997) Morphologically ‘primitive’ ants: Comparative review of social characters, and the importance of queen-worker dimorphism. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behaviour in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 372391.Google Scholar
Peeters, C. & Higashi, S. (1989) Reproductive dominance controlled by mutilation in the queenless ant Diacamma australe. Naturwissenschaften, 76, 177180.Google Scholar
Peeters, C. & Ito, F. (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annual Review of Entomology, 46, 601630.Google Scholar
Pie, M. R. & Tschà, M. K. (2009) The macroevolutionary dynamics of ant diversification. Evolution, 63, 30233030.Google Scholar
Pinter-Wollman, N., Bala, A., Merrell, A., et al. (2013) Harvester ants use interactions to regulate forager activation and availability. Animal Behaviour, 86, 197207.Google Scholar
Pratt, S. C., Mallon, E. B., Sumpter, D. J., & Franks, N. R. (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52, 117127.Google Scholar
Queller, D. C. (2000) Pax argentinica. Nature, 405, 519520.Google Scholar
Queller, D. C. & Strassmann, J.E. (2013) The veil of ignorance can favour biological cooperation. Biology Letters, 9, 20130365.Google Scholar
Rabeling, C. & Kronauer, D. J. C. (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Annual Review of Entomology, 58, 273292.Google Scholar
Ratnieks, F. L. W. (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. The American Naturalist, 132, 217236.Google Scholar
Ratnieks, F. L. W. & Reeve, H. K. (1992) Conflict in single-queen Hymenopteran societies: The structure of conflict and processes that reduce conflict in advanced eusocial species. Journal of Theoretical Biology, 158, 3365.Google Scholar
Ravary, F., Lecoutey, E., Kaminski, G., Châline, N., & Jaisson, P. (2007) Individual experience alone can generate lasting division of labor in ants. Current Biology, 17, 13081312.Google Scholar
Reber, A., Castella, G., Christe, P., & Chapuisat, M. (2008) Experimentally increased group diversity improves disease resistance in an ant species. Biology Letters, 11, 682689.Google Scholar
Robinson, E. J. H., Jackson, D. E., Holcombe, M., & Ratnieks, F. L. W. (2005) Insect communication: ‘No entry’ signal in ant foraging. Nature, 438, 442.Google Scholar
Ross, K. G. & Carpenter, J. M. (1991) Phylogenetic analysis and the evolution of queen number in eusocial Hymenoptera. Journal of Evolutionary Biology, 4, 117130.Google Scholar
Rousset, F. & Lion, S. (2011) Much ado about nothing: Nowak, et al.’s charge against inclusive fitness theory. Journal of Evolutionary Biology, 24, 13861392.Google Scholar
Rüger, M.H., Fröba, J. & Foitzik, S. (2008) Larval cannibalism and worker-induced separation of larvae in Hypoponera ants: A case of conflict over caste determination? Insectes Sociaux, 55, 1221.Google Scholar
Savolainen, R. & Vepsäläinen, K. (2003) Sympatric speciation through intraspecific social parasitism. Proceedings of the National Academy of Sciences USA, 100, 71697174.Google Scholar
Savolainen, R., Vepsäläinen, K. & Wuorenrinne, H. (1989) Ant assemblages in the taiga biome: Testing the role of territorial wood ants. Oecologia, 81, 481486.Google Scholar
Schlick-Steiner, B. C., Steiner, F. M., Konrad, H., et al. (2008) Specificity and transmission mosaic of ant nest-wall fungi. Proceedings of the National Academy of Sciences USA, 105, 940943.Google Scholar
Schrader, L., Simola, D. F., Heinze, J., & Oettler, J. (2015) Sphingolipids, transcription factors, and conserved toolkit genes: Developmental plasticity in the ant Cardiocondyla obscurior. Molecular Biology and Evolution, 32, 14741486.Google Scholar
Schrempf, A., Heinze, J., & Cremer, S. (2005) Sexual cooperation: Mating increases longevity in ant queens. Current Biology, 15, 267270.Google Scholar
Schrempf, A., Aron, S. & Heinze, J. (2006) Sex determination and inbreeding depression in an ant with regular sib-mating. Heredity, 97, 7580.Google Scholar
Schrempf, A., Cremer, S., & Heinze, J. (2011) Social influence on age and reproduction: Reduced lifespan and fecundity in multi-queen ant colonies. Journal of Evolutionary Biology, 24, 14551461.Google Scholar
Schultner, E., Gardner, A., Karhunen, M., & Helanterä, H. (2014) Ant larvae as players in social conflict: Relatedness and individual identity mediate cannibalism intensity. The American Naturalist, 184, E161E174.Google Scholar
Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P., & Keller, L. (2010) Nature versus nurture in social insect caste differentiation. Trends in Ecology and Evolution, 25, 275282.Google Scholar
Scott, J., Budsberg, K., Suen, G., et al. (2010) Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PLoS ONE, 5, e9922.Google Scholar
Seal, J. N. (2009) Scaling of body weight and fat content in fungus-gardening ant queens: Does this explain why leaf-cutting ants found claustrally? Insectes Sociaux, 56, 135141.Google Scholar
Seal, J. N. & Tschinkel, W. R. (2006) Colony productivity of the fungus-gardening ant, Trachymyrmex septentrionalis McCook, in a Florida pine forest (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 99, 673682.Google Scholar
Seal, J. N., Schiøtt, M. & Mueller, U. G. (2014) Ant-fungal species combinations engineer physiological activity of fungus gardens. Journal of Experimental Biology 217, 25402547.Google Scholar
Sherman, P. W., Seeley, T. D., & Reeve, H. K. (1988) Parasites, pathogens, and polyandry in social Hymenoptera. The American Naturalist, 131, 602610.Google Scholar
Singh, M. & Boomsma, J. J. (2015) Policing and punishment across the domains of social evolution. Oikos, 124, 971982.Google Scholar
Smith, A. A., Hölldobler, B., & Liebig, J. (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biology, 19, 7881.Google Scholar
Starr, C. (2006) Steps toward a general theory of the colony cycle in social insects. In: Kipyatkov, V. (ed.) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg: St. Petersburg University Press, pp. 120.Google Scholar
Stille, M. (1996) Queen/worker thorax volume ratios and nest-founding strategies in ants. Oecologia, 105, 8792.Google Scholar
Stoll, S., Gadau, J., Gross, R., & Feldhaar, H. (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biological Journal of the Linnean Society, 90, 399412.Google Scholar
Stroeymeyt, N., Brunner, E., & Heinze, J. (2007) “Selfish worker policing” controls reproduction in a Temnothorax ant. Behavioral Ecology and Sociobiology, 61, 14491457.Google Scholar
Sundström, L., Chapuisat, M., & Keller, L. (1996) Conditional manipulation of sex ratios by ant workers: A test of kin selection theory. Science, 274, 993995.Google Scholar
Tinaut, A. & Heinze, J. (1992) Wing reduction in ant queens from arid habitats Naturwissenschaften, 79, 8485.Google Scholar
Toth, A. L. & Robinson, G. E. (2007) Evo-devo and the evolution of social behaviour. Trends in Genetics, 23, 334341.Google Scholar
Trivers, R. L. & Hare, H. (1976) Haplodiploidy and the evolution of social insects. Science, 191, 249263.Google Scholar
Trunzer, B., Heinze, J., & Hölldobler, B. (1998) Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Sociaux, 45, 267276.Google Scholar
Tschinkel, W. R. (1996) A newly-discovered mode of colony founding among fire ants. Insectes Sociaux, 43, 267276.Google Scholar
Tschinkel, W. R. (1999) Sociometry and sociogenesis of colony-level attributes of the Florida harvester ant (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 92, 8089.Google Scholar
Tsuji, K. (1988) Obligate parthenogenesis and reproductive division of labor in the Japanese queenless ant Pristomyrmex pungens. Behavioral Ecology and Sociobiology, 23, 247255.Google Scholar
Tsuji, K., Nakata, K. & Heinze, J. (1996) Lifespan and reproduction in a queenless ant. Naturwissenschaften, 83, 577578.Google Scholar
Tsutsui, N. D. & Suarez, A. V. (2003) The colony structure and population biology of invasive ants. Conservation Biology, 17, 4858.Google Scholar
Tsutsui, N. D., Suarez, A. V., Holway, D. A., & Case, T. J. (2000) Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences USA, 97, 59485953.Google Scholar
Van Wilgenburg, E., Driessen, G., & Beukeboom, L. W. (2006) Single locus complementary sex determination in Hymenoptera: An “unintelligent” design. Frontiers in Zoology, 3, 1.Google Scholar
Van Zweden, J. S., Brask, J. B., Christensen, J. H., et al. (2010) Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. Journal of Evolutionary Biology, 23, 14891508.Google Scholar
von Wyschetzki, K., Rueppell, O., Oettler, J., & Heinze, J. (2015) Transcriptomic signatures mirror the lack of the fecundity/longevity trade-off in ant queens. Molecular Biology and Evolution, 32, 31733185.Google Scholar
Wenseleers, T. & Ratnieks, F. L. W. (2006a) Enforced altruism in insect societies. Nature, 444, 50.Google Scholar
Wenseleers, T. & Ratnieks, F. L. W. (2006b) Comparative analysis of worker reproduction and policing in eusocial Hymenoptera supports relatedness theory. The American Naturalist, 168, E163E179.Google Scholar
Wetterer, J. K., Espadaler, X., & Ashmole, P. (2007) Ants (Hymenoptera: Formicidae) of the South Atlantic islands of Ascension Island, St Helena, and Tristan da Cunha. Myrmecological News, 10, 2937.Google Scholar
Whitcomb, W. H., Bhatkar, A., & Nickerson, J. C. (1973) Predators of Solenopsis invicta queens prior to successful colony establishment. Environmental Entomology, 2, 11011103.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Wilson, E. O. (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta III. Ergonomic resiliency in foraging by A. cephalotes. Behavioral Ecology and Sociobiology, 14, 4754.Google Scholar
Wilson, E. O. (2012) The Social Conquest of Earth. New York, NY: Liveright Publishing Co.Google Scholar
Wilson, E. O. & Hölldobler, B. (1980) Sex differences in cooperative silk-spinning by weaver ant larvae. Proceedings of the National Academy of Sciences USA, 77, 23432347.Google Scholar
Wilson, E. O. & Hölldobler, B. (2005) The rise of the ants: A phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences USA, 102, 74117414.Google Scholar
Witte, V. & Maschwitz, U. (2008) Mushroom harvesting ants in the tropical rain forest. Naturwissenschaften, 95, 10491054.Google Scholar
Yamauchi, K., Oguchi, S., Nakamura, Y., et al. (2001) Mating behavior of dimorphic reproductives of the ponerine ant, Hypoponera nubatama. Insectes Sociaux, 48, 8387.Google Scholar
Yamauchi, K., Ishida, Y., Hashim, R. & Heinze, J. (2006) Queen–queen competition by precocious male production in multiqueen ant colonies. Current Biology, 16, 24242427.Google Scholar
Yanoviak, S. P., Dudley, R., & Kaspari, M. (2005) Directed aerial descent in canopy ants. Nature, 433, 624626.Google Scholar

References

Abrams, J. & Eickwort, G. C. (1981) Nest switching and guarding by the communal sweat bee Agapostemon virescens (Hymenoptera, Halictidae). Insectes Sociaux, 28, 105116.Google Scholar
Alcock, J. (1980) Natural selection and the mating systems of solitary bees. American Scientist, 68, 146153.Google Scholar
Alcock, J. (1996) The relation between male body size, fighting, and mating success in Dawson’s burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Journal of Zoology, 239, 663674.Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325383.Google Scholar
Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991) The evolution of eusociality. In: Sherman, P. W., Jarvis, J. U. M., & Alexander, R. D. (eds.) The Biology of the Naked Mole Rat. Princeton, NJ: Princeton University Press, pp. 344.Google Scholar
Amdam, G. V., Fennern, E., & Havukainen, H. (2012) Vitellogenin in honey bee behavior and lifespan. In: Galizia, G., Eisenhardt, D., & Giurfa, M. (eds.) Honeybee Neurobiology and Behavior. Netherlands: Springer, pp. 1729.Google Scholar
Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M., & Degrandi-Hoffman, G. (2011) An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux, 58, 431444.Google Scholar
Arias, M. C. & Sheppard, W. S. (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 5, 557566.Google Scholar
Arias, M. C. & Sheppard, W. S. (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37, 2535.Google Scholar
Ayasse, M. & Paxton, R. J. (2002) Brood protection in social insects. In: Hilker, M. & Meiners, T. (eds.) Chemoecology of Insects Eggs and Egg Deposition. Berlin: Blackwell, pp. 117148.Google Scholar
Ayasse, M., Paxton, R. J. & Tengö, J. (2001) Mating behavior and chemical communication in the order Hymenoptera. Annual Review of Entomology, 46, 3178.Google Scholar
Baer, B. & Schmid-Hempel, P. (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution, 55, 16391643.Google Scholar
Bateman, A. J. (1948) Intra-sexual selection in Drosophila. Heredity, 2, 249368.Google Scholar
Batra, S. W. T. (1966) Social behavior and nests of some nomiine bees in India (Hymenoptera, Halictidae). Insectes Sociaux, 13, 145154.Google Scholar
Beshers, S. N. & Fewell, J. H. (2001) Models of division of labor in social insects. Annual Review of Entomology, 46, 413440.Google Scholar
Boomsma, J. J., Beekman, M., Cornwallis, C. K., Griffin, A. S., Holman, L., et al. (2011) Only full-sibling families evolved eusociality. Nature, 471, E4E5.Google Scholar
Bosch, J. & Vicens, N. (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behavioral Ecology and Sociobiology, 60, 2633.Google Scholar
Brady, S. G., Sipes, S., Pearson, A., & Danforth, B. N. (2006) Recent and simultaneous origins of eusociality in halictid bees. Proceedings of the Royal Society of London B, 273, 16431649.Google Scholar
Breed, M. D. (1998) Chemical cues in kin-recognition: Criteria for identification, experimental approaches, and the honey bee as an example. In: Vander Meer, R. K., Breed, M. D., Espelie, K. E., & Winston, M. L. (eds.) Pheromone Communication in Social Insects. Boulder: Westview Press, pp. 5778.Google Scholar
Breed, M. D., Guzmán-Novoa, E., & Hunt, G. J. (2004) Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Reviews in Entomology, 49, 271298.Google Scholar
Bromley, S. W. (1948) Honey-bee predators. Journal of the New York Entomological Society, 56, 195199.Google Scholar
Buchwald, R. & Breed, M. D. (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Animal Behaviour, 70, 13311337Google Scholar
Cameron, S. A. & Mardulyn, P. (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae). Systematic Biology, 50, 194214.Google Scholar
Cardinal, S. & Danforth, B. N. (2011) The antiquity and evolutionary history of social behavior in bees. PLoS ONE, 6, e21086.Google Scholar
Cardinal, S. & Danforth, B. N. (2013) Bees diversified in the age of eudicots. Proceedings of the Royal Society of London B, 280, 20122686.Google Scholar
Carlin, N. F. & Frumhoff, P. C. (1990) Nepotism in the honey bee. Nature, 346, 706707.Google Scholar
Cartar, R. V. & Dill, L. M. (1990) Colony energy requirements affect the foraging currency of bumblebees. Behavioral Ecology and Sociobiology, 27, 377383.Google Scholar
Châline, N., Martin, S. J., & Ratnieks, F. L. (2005) Absence of nepotism toward imprisoned young queens during swarming in the honey bee. Behavioral Ecology, 16, 403409.Google Scholar
Costa, J. T. & Fitzgerald, T. D. (2005) Social terminology revisited: Where are we ten years later? Annales Zoologici Fennici, 42, 559564.Google Scholar
Crozier, R. H., Smith, B. H., & Crozier, Y. C. (1987) Relatedness and population structure of the primitively eusocial bee Lasioglossum zephyrum (Hymenoptera: Halictidae) in Kansas. Evolution, 41, 902910.Google Scholar
Danforth, B. N. (1991a) Female foraging and intranest behavior of a communal bee, Perdita portalis (Hymenoptera: Andrenidae). Annals of the Entomological Society of America, 84, 537548.Google Scholar
Danforth, B. N. (1991b) The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera: Andrenidae). Behavioral Ecology and Sociobiology, 29, 235247.Google Scholar
Danforth, B. N. (2002) Evolution of sociality in a primitively lineage of bees. Proceedings of the National Academy of Sciences USA, 99, 286290.Google Scholar
Danforth, B. N., Conway, L. & Ji, S. (2003) Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Systematic Biology, 52, 2336.Google Scholar
Danforth, B. N., Brady, S. G., Sipes, S. D., & Pearson, A. (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology, 53, 309326.Google Scholar
Danforth, B. N., Sipes, S., Fang, J., & Brady, S. G. (2006) The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences USA, 103, 1511815123.Google Scholar
Danforth, B. N., Cardinal, S., Praz, C., Almeida, E. A. B., & Michez, D. (2013) The impact of molecular data our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58, 5778.Google Scholar
Dani, F. R., Fratini, S., & Turillazzim, S. (1996) Behavioural evidence for the involvement of Dufour’s gland secretion in nestmate recognition in the social wasp Polistes dominulus (Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 38, 311319.Google Scholar
Dew, R. M., Tierney, S. M., & Schwarz, M. P. (2015) Social evolution and casteless societies: Needs for new terminology and a new evolutionary focus. Insectes Sociaux, 1, 5-14.Google Scholar
Dornhaus, A. & Chittka, L. (1999) Insect behaviour: Evolutionary origins of bee dances. Nature, 401, 38.Google Scholar
Dornhaus, A., Powell, S., & Bengston, S. (2012) Group size and its effects on collective organization. Annual Review of Entomology, 57, 123141.Google Scholar
Dunn, T. & Richards, M. H. (2003) When to bee social: Interactions among environmental constraints, incentives, guarding, and relatedness in a facultatively social carpenter bee. Behavioral Ecology, 14, 417424.Google Scholar
Dyer, F. C. (2002) The biology of the dance language. Annual Review of Entomology, 47, 917949.Google Scholar
Eberhard, W. G. & Wcislo, W. T. (2011) Grade changes in brain–body allometry: Morphological and behavioural correlates of brain size in miniature spiders, insects and other invertebrates. Advances in Insect Physiology, 40, 155.Google Scholar
Eickwort, G. C. & Kukuk, P. F. (1990) The relationship between nest architecture and sociality in halictine bees. In: Veeresh, G. K., Mallik, B. & Viraktamath, C. A. (eds.) Social Insects and the Environment. New Dehli: Oxford & IBH Publishing Co. pp. 664665.Google Scholar
Eickwort, G. C., Eickwort, J. M., Gordon, J., Eickwort, M. A., & Wcislo, W. T. (1996) Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 38, 227233.Google Scholar
Engel, P. & Moran, N. A. (2013) The gut microbiota of insects: Diversity in structure and function. FEMS Microbiology Reviews, 37, 699735.Google Scholar
Evans, H. E. (1977) Commentary: Extrinsic versus intrinsic factors in the evolution of insect sociality. Bioscience, 27, 613617.Google Scholar
Farris, S. M. (2013) Evolution of complex higher brain centers and behaviors: Behavioral correlates of mushroom body elaboration in insects. Brain, Behavior and Evolution, 82, 918.Google Scholar
Fewell, J. H. (2003) Social insect networks. Science, 301, 18671870.Google Scholar
Fewell, J. H. & Winston, M. L. (1992) Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behavioral Ecology and Sociobiology, 30, 387393.Google Scholar
Fewell, J. H., Schmidt, S. K., & Taylor, T. (2009) Division of labor in the context of complexity. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge, MA: Harvard University Press, pp. 483502.Google Scholar
Field, J., Paxton, R. J., Soro, A., & Bridge, C. (2010) Cryptic plasticity underlies a major evolutionary transition. Current Biology, 20, 20282031.Google Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press.Google Scholar
Fletcher, D. J. C. & Michener, C. D. (eds.) (1987) Kin Recognition in Animals. Chichester: Wiley.Google Scholar
Flores-Prado, L. (2012) Evolución de la sociabilidad en hymenopteras: Rasgos conductuales vinculados a niveles sociales y precursors de sociabilidad en especies solitarias. Revista Chilena de Historia Natural, 85, 245266.Google Scholar
Frohlich, D. R. & Tepedino, V. J. (1986) Sex ratio, parental investment, and interparent variability in nesting success in a solitary bee. Evolution, 40, 142151.Google Scholar
Gadagkar, R. (1991) Demographic predisposition to the evolution of eusociality: A hierarchy of models. Proceedings of the National Academy of Sciences USA, 88, 1099310997.Google Scholar
Gerling, D., Velthuis, H. H. W., & Hefetz, A. (1989) Bionomics of the large carpenter bees of the genus Xylocopa. Annual Review of Entomology, 34, 163190.Google Scholar
Gibbs, J., Brady, S. G., Kanda, K., & Danforth, B. N. (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Molecular and Phylogenetic Evolution, 65, 926939.Google Scholar
Gronenberg, W. & Riveros, A. J. (2009) Social brains and behavior: Past and present. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge: Harvard University Press, pp. 377401.Google Scholar
Grüter, C., Kärcher, M. H., & Ratnieks, F. L. W. (2011) The natural history of nest defence in a stingless bee, Tetragonisca angustula (Latreille) (Hymenoptera: Apidae), with two distinct types of entrance guards. Neotropical Entomology, 40, 5561.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7, 1752.Google Scholar
Hamilton, W. D. (1972) Altruism and related phenomena, mainly in social insects. Annual Review of Ecology and Systematics, 3, 193232.Google Scholar
Harrison, J. F., Woods, H. A., & Roberts, S. P. (2012) Ecological and Environmental Physiology of Insects. Oxford: Oxford University Press.Google Scholar
Heinrich, B. (1985) The social physiology of temperature regulation in honeybees. In: Hölldobler, B. & Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Sunderland, MA: Sinauer, pp. 393406.Google Scholar
Heinrich, B. (2004) Bumblebee Economics. Cambridge, MA: Harvard University Press.Google Scholar
Hepburn, H. R. & Radloff, S. E. (2011a) Biogeography of the dwarf honeybees, Apis andreniformis and Apis florea. Apidologie, 42, 293300.Google Scholar
Hepburn, H. R. & Radloff, S. E. (2011b) Honeybees of Asia. Berlin: Springer.Google Scholar
Hines, H. M. (2008) Historical biogeography, divergence times, and diversification patterns of bumblebees (Hymenoptera: Apidae: Bombus). Systematic Biology, 57, 5875.Google Scholar
Hogendoorn, K. & Velthuis, H. H. W. (1999) Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insectes Sociaux, 46, 198207.Google Scholar
Holbrook, C. T., Clark, R. M., Jeanson, R., Bertram, S. M., Kukuk, P. F., et al. (2009) Emergence and consequences of division of labor in associations of normally solitary sweat bees. Ethology, 115, 301310.Google Scholar
Houston, A., Schmid-Hempel, P., & Kacelnik, A. (1988) Foraging strategy, worker mortality, and the growth of the colony in social insects. The American Naturalist, 131, 107114.Google Scholar
Hunt, J. H. (2007) The Evolution of Social Wasps. Oxford: Oxford University Press.Google Scholar
Hunt, J. H. & Amdam, G. V. (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science, 308, 264267.Google Scholar
Jaramillo, C. & Cárdenas, A. (2013) Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41, 741766.Google Scholar
Jeanson, R., Kukuk, P. F., & Fewell, J. H. (2005) Emergence of division of labour in halictine bees: Contributions of social interactions and behavioural variance. Animal Behaviour, 70, 11831193.Google Scholar
Johnson, M. D. (1988) The relationship of provision weight to adult weight and sex ratio in the solitary bee, Ceratina calcarata. Ecological Entomology, 13, 165170.Google Scholar
Kapheim, K. M., Nonacs, P., Smith, A. R., Wayne, R. K., & Wcislo, W. T. (2015) Kinship, parental manipulation and evolutionary origins of eusociality. Proceedings of the Royal Society of London B, 282, 20142886.Google Scholar
Ken, T., Hepburn, H. R., Radloff, S. E., Yusheng, Y., Yiqiu, L., et al. (2005) Heat-balling wasps by honeybees. Naturwissenschaften, 92, 492495.Google Scholar
Kocher, S. D. & Paxton, R. J. (2014) Comparative methods offer powerful insights into social evolution in bees. Apidologie, 45, 289305.Google Scholar
Kukuk, P. F. & Schwarz, M. (1987) Intranest behavior of the communal sweat bee Lasioglossum (Chilalictus) erythrurum (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 60, 5864.Google Scholar
Kukuk, P. F., Bitney, C. & Forbes, S. H. (2005) Maintaining low intragroup relatedness: Evolutionary stability of nonkin social groups. Animal Behaviour, 70, 13051311.Google Scholar
Lenoir, A., d’Ettorre, P., Errard, C., & Hefetz, A. (2001) Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573599.Google Scholar
Lin, N. & Michener, C. D. (1972) Evolution of sociality in insects. Quarterly Review of Biology, 47, 131159.Google Scholar
Linsenmair, K. E. (1987) Kin recognition in subsocial arthropods, in particular the desert isopod Hemilepistus reaumuri. In: Fletcher, D. J. C. & Michener, C. D. (eds.) Kin Recognition in Animals. New York: John Wiley, pp. 121208.Google Scholar
Linsley, E. (1958) The ecology of solitary bees. Hilgardia, 27, 543599.Google Scholar
Malyshev, S. I. (1968) Genesis of the Hymenoptera and the Phases of their Evolution. Republished by Springer Online (2012).Google Scholar
McFrederick, Q., Wcislo, W., Hout, M., Mueller, U. 2014. Host developmental stage, not host sociality, affects bacterial community structure in socially polymorphic bee. FEMS Microbiology Ecology 88: 398406.Google Scholar
Michener, C. D. (1954) Bees of Panama. Bulletin of the American Museum Natural History, 104, 1176.Google Scholar
Michener, C. D. (1958) The evolution of social behavior in bees. Proceedings of the 10th International Congress of Entomology, 2, 441447.Google Scholar
Michener, C. D. (1964) Evolution of the nests of bees. American Zoologist, 4, 227239.Google Scholar
Michener, C. D. (1969) Comparative social behavior of bees. Annual Review of Entomology, 14, 299342.Google Scholar
Michener, C. D. (1974) The Social Behavior of the Bees: A Comparative Study. Cambridge, MA: Harvard University Press.Google Scholar
Michener, C. D. (1977) Discordant evolution and the classification of allodapine bees. Systematic Zoology, 26, 3256.Google Scholar
Michener, C. D. (1985) From solitary to eusocial: Need there be a series of intervening species? In: Holldobler, B. & Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Stuttgart: Fischer, pp. 293305.Google Scholar
Michener, C. D. (1990) Reproduction and castes in social halictine bees. In: Engels, W. (ed.) Social Insects. Berlin: Springer, pp. 77121Google Scholar
Michener, C. D. (2007) The Bees of the World, 2nd Edition. Baltimore: Johns Hopkins University Press.Google Scholar
Minckley, R. L., Wcislo, W. T., Yanega, D., & Buchmann, S. L. (1994) Behavior and phenology of a specialist bee (Dieunomia) and sunflower (Helianthus) pollen availability. Ecology, 75, 14061419.Google Scholar
Moldenke, A. R. (1979) Host–plant coevolution and the diversity of bees in relation to the flora of North America. Phytology, 43, 357419Google Scholar
Moore, A. J. & Kukuk, P. F. (2002) Quantitative genetic analysis of natural populations. Nature Reviews Genetics, 3, 971978.Google Scholar
Moran, N. A. (2015) Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 2228.Google Scholar
Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006) Phylogeny of the ants: Diversification in the age of angiosperms. Science, 312, 101104.Google Scholar
Mueller, U. G. (1991) Haplodiploidy and the evolution of facultative sex ratios in a primitively eusocial bee. Science, 254, 442444.Google Scholar
Müller, H. (1872) Anwendung der Darwinschen Lehre auf Bienen. Verhhandlungen des naturhistorischen Vereines der preussischen Rheinlande und Westphalens, 29, 196.Google Scholar
Nieh, J. C. (1999) Stingless-bee communication. American Scientist, 87, 428435.Google Scholar
Nieh, J. C., Kruizinga, K., Barreto, L. S., Contrera, F. A. L., & Imperatriz-Fonseca, V. L. (2005) Effect of group size on the aggression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Sociaux, 52, 147154.Google Scholar
Noll, F. B., Zucchi, R., Jorge, J. A., & Mateus, S. (1996) Food collection and maturation in the necrophagous stingless bee, Trigona hypogea (Hymenoptera: Meliponinae). Journal of the Kansas Entomological Society, 69, 287293.Google Scholar
O’Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S., et al. (2015) Distributed cognition and social brains: Reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proceedings of the Royal Society of London B, 282, 20150791Google Scholar
Oldroyd, B. P. & Fewell, J. H. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends in Ecology and Evolution 22, 408413.Google Scholar
O’Neil, K. M. (2001) Solitary Wasps. Behavior and Natural History. Ithaca: Comstock Publishing Associates.Google Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and Ecology in the Social Insects. Princeton: Princeton University Press.Google Scholar
Packer, L. & Owen, R. E. (1994) Relatedness and sex ratio in a primitively eusocial halictine bee. Behavioral Ecology and Sociobiology, 34, 110.Google Scholar
Page, R. E. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.). Genetics, 96, 263273.Google Scholar
Page, R. E., Robinson, G. E., & Fondrk, M. K. (1989) Genetic specialists, kin recognition and nepotism in honey-bee colonies. Nature, 338, 576579.Google Scholar
Palmer, K. A. & Oldroyd, B. P. (2000) Evolution of multiple mating in the genus Apis. Apidologie, 31, 235248.Google Scholar
Pankiw, T., Page, R. E., & Fondrk, M. K. (1998) Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behavioral Ecology and Sociobiology, 44, 193198.Google Scholar
Paxton, R. J. (2005) Male mating behaviour and mating systems of bees: An overview. Apidologie, 36, 145156.Google Scholar
Paxton, R. J., Thorén, P. A., Tengö, J., Estoup, A., & Pamilo, P. (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Molecular Ecology, 5, 511519.Google Scholar
Paxton, R. J., Kukuk, P. F., & Tengö, J. (1999) Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae). Insectes Sociaux, 46, 109118.Google Scholar
Peters, J. M., Queller, D. C., Imperatriz-Fonseca, V. L., Roubik, D. W. & Strassmann, J. E. (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees. Proceedings of the Royal Society of London B, 266, 379384.Google Scholar
Plateaux-Quénu, C., Plateaux, L., & Packer, L. (2000) Population-typical behaviours are retained when eusocial and non-eusocial forms of Evylaeus albipes (F.) (Hymenoptera, Halictidae) are reared simultaneously in the laboratory. Insectes Sociaux, 47, 263270.Google Scholar
Prager, S. M. (2014) Comparison of social and solitary nesting carpenter bees in sympatry reveals no advantage to social nesting. Biological Journal of the Linnean Society, 113, 9981010.Google Scholar
Queller, D. C. & Strassmann, J. E. (1998) Kin selection and social insects. Bioscience, 48, 165175.Google Scholar
Ratnieks, F. L. & Visscher, P. K. (1989) Worker policing in the honeybee. Nature, 342, 796797.Google Scholar
Rehan, S. M., Leys, R., & Schwarz, M. P. (2012) A mid-Cretaceous origin of sociality in Xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS ONE, 7, e34690.Google Scholar
Rehan, S. M., Richards, M. H., Adams, M., & Schwarz, M. P. (2014) The costs and benefits of sociality in a facultatively social bee. Animal Behaviour, 97, 7785.Google Scholar
Richards, M. H. (2000) Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Canadian Journal of Zoology, 78, 12591266.Google Scholar
Rosenheim, J. A. (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary Hymenoptera. Annals of the Entomological Society of America, 83, 277286.Google Scholar
Roubik, D. W. (1982) Seasonality in colony food storage, brood production and adult survivorship: Studies of Melipona in tropical forest (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 55, 789800.Google Scholar
Roubik, D. W. (1989) Ecology and Natural History of Tropical Bees. Cambridge: Cambridge University Press.Google Scholar
Roubik, D. W. (2006) Stingless bee nesting biology. Apidologie, 37, 124143.Google Scholar
Roubik, D. W. (2012) Ecology and Social Organization of Bees. In: eLS. Chichester: John Wiley & Sons Ltd, www.els.net.Google Scholar
Roubik, D. W. & Ackerman, J. D. (1987) Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama. Oecologia, 73, 321333.Google Scholar
Sakagami, S.F. & Michener, C. D. (1962) The Nest Architecture of the Sweat Bees (Halictinae): A Comparative Study of Behavior. Lawrence, Kansas: University of Kansas Press.Google Scholar
Schmickl, T. & Crailsheim, K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie, 35, 249263.Google Scholar
Schmid-Hempel, P. (1998) Parasites in Social Insects. Princeton: Princeton University Press.Google Scholar
Schmid-Hempel, R. & Schmid-Hempel, P. (2000) Female mating frequencies in Bombus spp. from Central Europe. Insectes Sociaux, 47, 3641.Google Scholar
Schlüns, H., Moritz, R. F., Neumann, P., Kryger, P., & Koeniger, G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Animal Behaviour, 70, 125131.Google Scholar
Schürch, R., Accleton, C., & Field, J. (2016) Consequences of a warming climate for social organisation in sweat bees. Behavioral Ecology and Sociobiology, 70, 11311139.Google Scholar
Schwarz, M. P., Bull, N. J., & Hogendoorn, K. (1998) Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Insectes Sociaux, 45, 349368.Google Scholar
Schwarz, M. P., Tierney, S. M., Zammit, J., Schwarz, P. M., & Fuller, S. (2005) Brood provisioning and colony composition of a Malagasy species of Halterapis: Implications for social evolution in the allodapine bees (Hymenoptera: Apidae: Xylocopinae). Annals of the Entomological Society of America, 98, 126133.Google Scholar
Schwarz, M. P., Richards, M. H. & Danforth, B. N. (2007) Changing paradigms in insect social evolution: Insights from halictine and allodapine bees. Annual Review of Entomology, 52, 127150.Google Scholar
Schwarz, M. P., Tierney, S. M., Rehan, S. M., Chenoweth, L. B., & Cooper, S. J. B. (2011) The evolution of eusociality in allodapine bees: Workers began by waiting. Biological Letters, 7, 277280.Google Scholar
Seeley, T. D. (1994) Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology, 34, 5162.Google Scholar
Seeley, T. D. (1997) Honey bee colonies are group-level adaptive units. The American Naturalist, 150, S22-S41.Google Scholar
Seeley, T. D. (2009) The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Cambridge, MA: Harvard University Press.Google Scholar
Seeley, T. D. & Tarpy, D. R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London B, 274, 6772.Google Scholar
Séguret, A., Bernadou, A., & Paxton, R. J. 2016. Facultative social insects can provide insights into the reversal of the longevity/fecundity trade-off across the eusocial insects. Current Opinion in Insect Science 16, 95103.Google Scholar
Shorter, J. R. & Rueppell, O. (2012) A review on self-destructive defense behaviors in social insects. Insectes Sociaux, 59, 110.Google Scholar
Smith, A. R., Kapheim, K. M., O’Donnell, S. & Wcislo, W. T. (2009) Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae). Animal Behaviour, 78, 10431050.Google Scholar
Smith, A. R., Seid, M. A., Jimenez, L. & Wcislo, W. T. (2010) Socially induced brain development in the mushroom bodies of a facultatively social sweat bee Megalopta genalis. Proceedings of the Royal Society Series B, 277, 21572163.Google Scholar
Soro, A., Field, J., Bridge, C., Cardinal, S. C. & Paxton, R. J. (2010) Genetic differentiation across the social transition in socially polymorphic sweat bee, Halictus rubicundus. Molecular Ecology, 19, 33513363.Google Scholar
Soucy, S. L. (2002) Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Annals of the Entomological Society of America, 95, 5765.Google Scholar
Soucy, S. L. & Danforth, B. N. (2002) Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution, 56, 330341.Google Scholar
Southwick, E. E. (1983) The honey bee cluster as a homeothermic superorganism. Comparative Biochemistry and Physiology A, 75, 641645.Google Scholar
Southwick, E. E., Roubik, D. W., & Williams, J. M. (1990) Comparative energy balance in groups of Africanized and European honey bees: Ecological implications. Comparative Biochemistry and Physiology A, 97, 17.Google Scholar
Starks, P. T. & Gilley, D. C. (1999) Heat shielding: A novel method of colonial thermoregulation in honey bees. Naturwissenschaften, 86, 438440.Google Scholar
Starks, P. T., Johnson, R. N., Siegel, A. J., & Decelle, M. M. (2005) Heat shielding: A task for youngsters. Behavioral Ecology, 16, 128132.Google Scholar
Stow, A., Briscoe, D., Gillings, M., Holley, M., Smith, S., et al. (2007) Antimicrobial defences increase with sociality in bees. Biological Letters, 3, 422424.Google Scholar
Strassmann, J. (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Sociaux, 48, 113.Google Scholar
Strausfeld, N. J., Buschbeck, E. K., & Gomez, R. S. (1995) The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach, O. & Kutsch, W. (eds.) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Basel: Birkhäuser, pp. 349381.Google Scholar
Strohm, E. & Bordon-Hauser, A. (2003) Advantages and disadvantages of large colony size in a halictid bee: The queen’s perspective. Behavioral Ecology, 14, 546553.Google Scholar
Tarpy, D. R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society of London B, 270, 99103.Google Scholar
Tarpy, D. R., Gilley, D. C., & Seeley, T. D. (2004) Levels of selection in a social insect: A review of conflict and cooperation during honey bee (Apis mellifera) queen replacement. Behavioral Ecology and Sociobiology, 55, 513523.Google Scholar
Thorne, B. L. (1997) Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 2754.Google Scholar
Tierney, S. M., Smith, J. A., Chenoweth, L., & Schwarz, M. P. (2008). Phylogenetics of allodapine bees: A review of social evolution, parasitism and biogeography. Apidologie, 39, 315.Google Scholar
Trivers, R. L. & Hare, H. (1976) Haploidploidy and the evolution of the social insect. Science, 191, 249263.Google Scholar
Ulrich, Y., Perrin, N., & Chapuisat, M. (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Molecular Ecology, 18, 17911800.Google Scholar
von Frisch, K. (1967) The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University PressGoogle Scholar
Wcislo, W. T. (1987) The role of learning in the mating biology of a sweat bee Lasioglossum zephyrum (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 20, 179185.Google Scholar
Wcislo, W. T. (1992) Attraction and learning in mate-finding by solitary bees, Lasioglossum (Dialictus) figueresi Wcislo and Nomia triangulifera Vachal (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 31, 139148.Google Scholar
Wcislo, W. T. (1997) Are behavioral classifications blinders to studying natural variation?. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 8-13.Google Scholar
Wcislo, W. T. (2005) Social labels: We should emphasize biology over terminology and not vice versa. Annales Zoologici Fennici, 42, 565568.Google Scholar
Wcislo, W. T. & Cane, J. H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annual Review of Entomology, 41, 257286.Google Scholar
Wcislo, W. T. & Danforth, B. N. (1997) Secondarily solitary: The evolutionary loss of social behavior. Trends in Ecology and Evolution, 12, 468474.Google Scholar
Wcislo, W. T. & Engel, M. S. (1996) Social behavior and nest architecture of nomiine bees (Hymenoptera: Halictidae; Nomiinae). Journal of the Kansas Entomological Society, 69, 158167.Google Scholar
Wcislo, W. T. & Tierney, S. M. (2009) The evolution of communal behavior in bees and wasps: An alternative to eusociality. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity, Cambridge, MA: Harvard University Press, pp. 148169.Google Scholar
Wcislo, W. T., Wille, A. & Orozco, E. (1993) Nesting biology of tropical solitary and social sweat bees, Lasioglossum (Dialictus) figueresi Wcislo and L.(D.) aeneiventre (Friese) (Hymenoptera: Halictidae). Insectes Sociaux, 40, 2140.Google Scholar
Wcislo, D., Vargas, G., Ihle, K., & Wcislo, W. (2012) Nest construction behavior by the orchid bee Euglossa hyacinthina. Journal of Hymenoptera Research, 29, 1520.Google Scholar
Weidenmüller, A., Kleineidam, C., & Tautz, J. (2002) Collective control of nest climate parameters in bumblebee colonies. Animal Behaviour, 63, 10651071.Google Scholar
Wheeler, W. M. (1928) The Social Insects Their Origin And Evolution. London: Kegan Paul Trench Trubner and Co Ltd.Google Scholar
Wheeler, D. E. (1986) Developmental and physiological determinants of caste in social Hymenoptera: Evolutionary implications. The American Naturalist, 128, 1334.Google Scholar
Whitfield, C. W., Behura, S. K., Berlocher, S.H., Clark, A. G., Johnston, J. S., et al. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science, 314, 642645.Google Scholar
Wille, A. & Orozco, E. (1970). The life cycle and behavior of the social bee Lasioglossum (Dialictus) umbripenne (Hymenoptera: Halictidae). Revista de Biologia Tropical 17, 199245.Google Scholar
Williams, P., Cameron, S. A., Hines, H. M. Cederberg, B., & Rasmont, P. (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39: 4674.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Wilson, E. O. & Hölldobler, B. (2005) The rise of the ants: A phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences USA, 102, 74117414.Google Scholar
Winston, M. L. (1991) The Biology of the Honey Bee. Cambridge: Harvard University Press.Google Scholar
Winston, M. L. (1992) The biology and management of Africanized honey bees. Annual Review of Entomology, 37, 173193.Google Scholar
Winston, M. L. & Michener, C. D. (1977) Dual origin of highly social behavior among bees. Proceedings of the National Academy of Sciences USA, 74, 11351137.Google Scholar
Yagi, N. & Hasegawa, E. (2012) A halictid bee with sympatric solitary and eusocial nests offers evidence for Hamilton’s rule. Nature Communications, 3, 939.Google Scholar
Yanega, D. (1990) Philopatry and nest founding in a primitively social bee, Halictus rubicundus. Behavioral Ecology and Sociobiology, 27, 3742.Google Scholar
Yanega, D. (1992) Does mating determine caste in sweat bees? (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 65, 231237.Google Scholar
Yanega, D. (1996) Sex ratio and sex allocation in sweat bees (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 69, 98115.Google Scholar
Yanega, D. (1997) Demography and sociality in halictine bees (Hymenoptera: Halictidae). In: Choe, J. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge, MA: Harvard University Press, pp. 293315.Google Scholar

References

Abbot, P., Withgott, J. H., & Moran, N. A. (2001) Genetic conflict and conditional altruism in social aphid colonies. Proceedings of the National Academy of Sciences USA, 98, 1208612071.Google Scholar
Agrahari, M. & Gadagkar, R. (2004) Hard working nurses rather than over-aged nurses permit Ropalidia marginata to respond to the loss of young individuals. Insectes Sociaux 51, 306307.Google Scholar
Akre, R. D. (1982) Social wasps. In: Hermann, H. R. (ed.) Social Insects Vol. IV, New York: Academic Press, pp. 1105.Google Scholar
Akre, R. D. & Myhre, E. A. (1992) Nesting biology and behavior of the baldfaced hornet, Dolichovespula maculata (L.) (Hymenoptera: Vespidae) in the Pacific Northwest. Melanderia, 48, 133.Google Scholar
Alam, S. M. (1958) Some interesting revelations about the nest of Polistes hebroeus Fabr. (Vespidae, Hymenoptera) - the common yellow wasp of India. Proceedings of the Zoological Society of Calcutta, 11, 113122.Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325383Google Scholar
Archer, M. E. (1981) Successful and unsuccessful development of colonies of Vespula vulgaris (Linn.) (Hymenoptera: Vespidae). Ecological Entomology, 6, 110.Google Scholar
Archer, M. E. (1984) Life and fertility tables for the wasp species Vespula vulgaris and Dolichovespula sylvesteris (Hymenoptera: Vespidae) in England. Entomologia Generalis, 9, 181188.Google Scholar
Archer, M. E. (1993) The life-history and colonial characteristics of the Hornet, Vespa crabro L. (Hym., Vespinae). Entomologist’s Monthly Magazine, 124, 117122.Google Scholar
Archer, M. E. (2012) Vespine Wasps of the World: Behaviour, Ecology & Taxonomy of the Vespinae. Manchester: Siri Scientific Press.Google Scholar
Baracchi, D., Petrocelli, I., Cusseau, G., et al. (2013) Facial markings in the hover wasps: Quality signals and familiar recognition cues in two species of Stenogastrinae. Animal Behaviour, 85, 302212.Google Scholar
Beani, L. & Calloni, C. (1991) Male rubbing behavior and the hypothesis of pheromonal release in polistine wasps (Hymenoptera: Vespidae). Ethology Ecology & Evolution, Special Issue 1, 5154.Google Scholar
Beani, L. & Turillazzi, S. (1994) Aerial patrolling and the stripes-display in males of Parischnogaster mellyi (Hymenoptera Stenogastrinae).. Ethology Ecology & Evolution, 6, Supplement 1, 4346.Google Scholar
Beani, L., Cervo, R., Lorenzi, C. M., & Turillazzi, S. (1992) Landmark-based mating systems in 4 Polistes species (Hymenoptera, Vespidae). Journal of the Kansas Entomological Society 65, 211217.Google Scholar
Beggs, J. (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate source. Biolgical Conservation 99, 1728.Google Scholar
Berens, A. J., Hunt, J. H., & Toth, A. L. (2015) Comparative transciptomics of convergent evolution: Different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Molecular Biology and Evolution, 32, 690703.Google Scholar
Bhadra, A., Mitra, A., Sujata, A. D., et al. (2010) Regulation of reproduction in the primitively eusocial wasp Ropalidia marginata: On the trail of the queen pheromone. Journal of Chemical Ecology, 36, 424431.Google Scholar
Bohm, M. K. (1972) Effects of environment and juvenile hormone on ovaries of the wasp, Polistes metricus. Journal of Insect Physiology, 18, 18751883.Google Scholar
Bourke, A. F. G. (2005) Genetics, relatedness and social behaviour in insect societies. Symposium - Royal Entomological Society of London, 22, 130.Google Scholar
Brennan, B. J. (2007) Abdominal wagging in the social paper wasp Polistes dominulus: Behavior and substrate vibrations. Ethology, 113, 692702.Google Scholar
Brockmann, H. J. (1997) Cooperative breeding in wasps and vertebrates: The role of ecological constraints. In: Choe, J. C., & Crespi, B. J. (eds.) Social Behavior in Insects and Arachnids, Cambridge University Press, pp. 347371.Google Scholar
Bunn, D. S. (1986) The nesting cycle of the hornet Vespa crabro L. (Hym., Vespidae). Entomologists Monthly Magazine, 124, 117122.Google Scholar
Cardinal, S., & Danforth, B. N. (2011) The antiquity and evolutionary history of social behavior in bees. PLoS ONE, 6, e21086.Google Scholar
Carpenter, J. M. (1982) The phylogenetic relationships and natural classification of the Vespoidea (Hymenoptera). Systematic Entomology, 7, 1138.Google Scholar
Carpenter, J. M. (1986) A synonymic generic checklist of the Eumeninae (Hymenoptera: Vespidae). Psyche, 93, 6190.Google Scholar
Carpenter, J. M. (2004) Synonymy of the genus Marimbonda Richards, 1978, with Leipomeles Möbius, 1856 (Hymenoptera: Vespidae; Polistinae), and a new key to the genera of paper wasps of the New World. American Museum Novitates, 3465, 116.Google Scholar
Carpenter, J. M. & Kimsey, L. S. (2009) The genus Euparagia Cresson (Hymennoptera: Vespidae; Euparagiinae). American Museum Novitates, 3643, 111.Google Scholar
Cervo, R. & Dani, F. R. (1996) Social parasitism and its evolution in Polistes. In: Turillazzi, S., S. & West-Eberhard, M. J. (eds.) Natural History and Evolution of Paper-wasps, Oxford: Oxford University Press, pp. 98112.Google Scholar
Cervo, R., Dapporto, L., Beani, L., Strassmann, J. E & Turillazzi, S. (2008) On status badges and quality signals in the paper wasp Polistes dominulus: Body size, facial colour patterns and herarchical rank. Proceeding of the Royal Society of London B, 275, 11891196.Google Scholar
Chandrashekara, K. & Gadagkar, R. (1991) Behavioural castes, dominance and division of labour in a primitively eusocial wasp. Ethology, 87, 269283.Google Scholar
Clement, S. L. & Grissell, E. E. (1968) Observatons of the nesting habits of Eupargia scutellaris Cresson. The Pan-Pacific Entomologist, 44, 3437.Google Scholar
Cowan, D. P. 1991. The solitary and presocial Vespidae. In Ross, K. G. and Matthews, R. W. (eds.), The Social Biology of Wasps, pp. 3373. Comstock Publishing Associates, Cornell University Press, Ithaca.Google Scholar
Crespi, B. J. & Yanega, D. (1995) The definition of eusociality. Behavioral Ecology. 6:109115.Google Scholar
Cummings, D. L. D., Gamboa, G. J., & Harding, B. J. (1999) Lateral vibrations by social wasps signal larvae to withold salivary secretions (Polistes fuscatus, Hymenoptera: Vespidae). Journal of Insect Behavior, 12, 465473.Google Scholar
Dani, F. R., Foster, K. R., Zacchi, F., et al. (2004) Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proceeding of the Royal Society of London B, 271, 745753.Google Scholar
Dapporto, L., Palagi, E., Cini, A., & Turillazzi, S. (2006) Prehibernating aggregations of Polistes dominulus: An occasion to study early dominance assessment in social insects. Naturwissenschaften, 93, 321324.Google Scholar
Deleurance, É.-P. (1948) Le comportement reproducteur est indépendant de la presence des ovaries chez Polistes (Hyménoptères Véspides). Comptes rendus hebdomadaires des Séances de l’Académie des Sciences Paris, 227, 866867.Google Scholar
Deleurance, É.-P. (1949) Sur le déterminisme de l’apparition des ouvrières et des fondatrices-filles chez les Polistes (Hyménoptères: Vespides). Comptes rendus hebdomadaires des Séances de l’Académie des Sciences Paris, 229, 303304.Google Scholar
Deleurance, É.-P. (1952) Le polymorphisme sociale et son déterminisme chez les guêpes. Colloques internationaux du Centre National de la Recherche scientifique, 34, 141155.Google Scholar
Edwards, R. (1980) Social Wasps: Their Biology and Control. East Grinstead: Rentokill Limited.Google Scholar
Evans, H. E. & Hook, A. W. (1982) Communal nesting in the digger wasp Cerceris australis (Hymenoptera: Sphecidae). Australian Journal of Zoology, 30, 557568.Google Scholar
Evans, H. E. & West-Eberhard, M. J. (1970) The Wasps. Ann Arbor, MI: University of Michigan Press.Google Scholar
Evans, H. E. & Yoshimoto, C. M. (1962) The ecology and nesting behavior of the Pompilidae of the northeastern United States. Miscellaneous Publications of the Entomological Society of America, 3, 66119.Google Scholar
Evans, J. D. & Wheeler, D. E. (1999) Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences USA, 96, 55755580.Google Scholar
Felippotti, G. T., Tanaka, G. M. Jr., Noll, F. B., & Wenzel, J. W. (2009) Discrete dimorphism among castes of the bald-faced hornet Dolichovespula maculata (Hymenoptera: Vespidae) in different phases of the colony cycle. Journal of Natural History, 43, 24812490.Google Scholar
Field, J. (2008) The ecology and evolution of helping in hover wasps (Hymenoptera: Stenogastrinae). In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution, pp. 85107. Springer, Heidelberg.Google Scholar
Field, J., Foster, W., Shreeves, G., & Sumner, S. (1998a) Ecological constraints on independent nesting in facultatively eusocial hover wasps. Proceedings of the Royal Society of London B, 265, 973977.Google Scholar
Field, J., Solís, C. R., Queller, D. C., & Strassman, J. E. (1998b) Social and genetic structure of paper wasp cofoundress associations: Tests of reproductive skew models. The American Naturalist, 151, 545563.Google Scholar
Field, J., Shreeves, G., & Sumner, S. (1999) Group size, queuing and helping decisions in facultatively eusocial hover wasps. Behavioral Ecology and Sociobiology, 45, 378385.Google Scholar
Foster, K. R., Seppä, P., Ratnieks, F. L.W., & Thorén, P. A. (1999) Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behavioral Ecology and Sociobiology, 46,252257.Google Scholar
Foster, K. R., Ratnieks, F. L. W., Gyllenstrand, N., & Thorén, P. A. (2001) Colony kin structure and male production in Dolichovespula wasps. Molecular Ecology, 10, 10031010.Google Scholar
Foster, K. R., Wenseleers, T., & Ratnieks, F. L. W. (2006) Kin selection is the key to altruism. Trends in Ecology and Evolution, 21, 5760.Google Scholar
Fucini, S., Di Bona, V., Mola, F., Piccaluga, C., & Lorenzi, M. C. (2009) Social wasps without workers: Geographic variation of caste expression in the paper wasp Polistes biglumis. Insectes Sociaux, 56, 347358.Google Scholar
Fukuda, H., Kojima, J., & Jeanne, R. L. (2003) Colony specific morphological caste differences in an old world, swarm-founding polistine, Ropalidia romandi (Hymenoptera: Vespidae). Entomological Science, 6, 3747.Google Scholar
Gadagkar, R. (1980) Dominance hierarchy and division of labour in the social wasp, Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Current Science, 49, 772775.Google Scholar
Gadagkar, R. (1991a) Belonogaster, Mischocyttarus, Parapolybia, and independent-founding Ropalidia. In: Ross, K. G. & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca, NY: Comstock Publishing Associates, Cornell University Press, pp. 149190.Google Scholar
Gadagkar, R. (1996) The evolution of eusociality, including a review of the social status of Ropalidia marginata. In: Turillazzi, S. & West-Eberhard, M. J. (eds.) Natural History and Evolution of Paper-wasps. Oxford: Oxford University Press, 248271.Google Scholar
Gadagkar, R. (2001) The Social Biology of Ropalidia marginata - Toward Understanding the Evolution of Eusociality. Cambridge, MA: Harvard University Press.Google Scholar
Gadagkar, R. & Joshi, N. V. (1983) Quantitative ethology of social wasps: Time-activity budgets and caste differentiation in Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Animal Behaviour, 31, 2631.Google Scholar
Gadagkar, R., Chandrashekara, K., Chandran, S., & Bhagavan, S. (1993) Serial polygyny in the primitively eusocial wasp Ropalidia marginata: Implications for the evolution of sociality. In: Keller, L. (ed.) Queen Number and Sociality in Insects, Oxford: Oxford University Press, pp. 188214.Google Scholar
Gamboa, G. J. (1988) Sister, ant-niece, and cousin recognition by social wasps. Behavior Genetics, 18, 409423.Google Scholar
Gamboa, G. J. (2004) Kin recognition in eusocial wasps. Annales Zoologici Fennici, 41, 789808.Google Scholar
Gamboa, G. J., Reeve, H. K., Ferguson, I. D., & Wacker, T. L. (1986) Nestmate recognition in social wasps: The origin and acquisition of recognition odours. Animal Behaviour, 34, 685695.Google Scholar
Gamboa, G. J., Klahn, J. E., Parman, A. O., & Ryan, R. E. (1987) Discrimination between nestmate and non-nestmate kin by social wasps (Polistes fuscatus, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 21, 125128.Google Scholar
Gess, S. K. (1996) The Pollen Wasps: Ecology and Natural History of the Masarinae. Cambridge, MA: Harvard University Press.Google Scholar
Giannotti, E. (1999) Social organization of the eusocial wasp Mischocyttarus cerberus styx (Hymenoptera: Vespidae). Sociobiology, 33, 325338.Google Scholar
Gibo, D. L. (1978) The selective advantage of foundress associations in Polistes fuscatus (Hymenoptera: Vespidae): A field study of the effects of predation on productivity. Canadian Entomologist, 110, 519540.Google Scholar
Gibo, D. L., Yarascavitch, R. M., & Dew, H. E. (1974a) Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera-Vespidae) under normal conditions and under cold stress. Canadian Entomologist, 106, 503507.Google Scholar
Gibo, D. L., Dew, H. E., & Hajduk, A. S. (1974b) Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera-Vspidae). 2. Relation between colony biomass and calorie production. Canadian Entomologist, 106, 873879.Google Scholar
Gobbi, N., Noll, F. B, & Penna, M. A. H. (2006) “Winter” aggregations, colony cycle, and seasonal phenotypic change in the paper wasp Polistes versicolor in Brazil. Naturwissenschaften, 93, 487494.Google Scholar
Gotoh, A., Billen, J., Hashim, R., & Ito, F. (2008) Comparison of spermatheca morphology between reproductive and non-reproductive females in social wasps. Arthropod Structure and Development, 37, 199209.Google Scholar
Green, J. P. & Field, J. (2011) Inter-population variation in status signalling in the paper wasp Polistes dominulus. Animal Behaviour, 81, 205209.Google Scholar
Green, J. P., Leadbeater, E., Carruthers, J. M., et al. (2013) Clypeal patterning in the paper wasp Polistes dominulus: No evidence of adaptive value in the wild. Behavioral Ecology, 24, 623633.Google Scholar
Greene, A. (1991) Dolichovespula and Vespula. In: Ross, K. G., & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca, NY: Comstock Publishing Associates, Cornell University Press, pp. 263305.Google Scholar
Haggard, C. M. & Gamboa, G. J. (1980) Seasonal variation in body size and reproductive condition of a paper wasp, Polistes metricus (Hymenoptera: Vespidae). The Canadian Entomologist, 112, 239248.Google Scholar
Hansell, M. H. (1987) Elements of eusociality in colonies of Eustenogaster calyptodoma (Sakagami & Yoshikawa) (Stenogastrinae, Vespidae). Animal Behaviour, 35, 131141.Google Scholar
Harris, R. J. (1991) Diet of the wasps Vespula vulgaris and V. germanica in honeydew beech forest of the South Island, New Zealand. New Zealand Journal of Zoology, 18, 159170.Google Scholar
Heinrich, B. (1984) Strategies of thermoregulation and foraging in two vespid wasps, Dolichovespula maculata and Vesupla vulgaris. Journal of Comparative Physiology B, 154, 175180.Google Scholar
Henshaw, M. T., Strassmann, J. E., & Queller, D. C. (2000) The independent origin of a queen number bottleneck that promotes cooperation in the African swarm-founding wasp, Polybioides tabidus. Behavioral Ecology and Sociobiology, 48, 478483.Google Scholar
Henshaw, M. T., Robson, S. K. A., & Crozier, R. H. (2004) Queen number, queen cycling and queen loss: The evolution of complex multiple queen societies in the social wasp genus Ropalidia. Behavioral Ecology and Sociobiology, 55, 469476.Google Scholar
Hines, H. M., Hunt, J. H., O’Connor, T. K., Gillespie, J. J., & Cameron, S. A. (2007) Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proceedings of the National Academy of Sciences USA, 104, 32953299.Google Scholar
Hook, A. (1982) Observations on a declining nest of Polistes tepidus (F.) (Hymenoptera: Vespidae). Journal of the Australian Entomological Society, 21, 277278.Google Scholar
Howard, K. J. & Thorne, B. L. (2011) Eusocial evolution in termites and Hymenoptera. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis, Dordrecht: Springer, pp. 97132.Google Scholar
Hughes, C. R. & Strassmann, J. E. (1988) Age is more important than size in determining dominance among workers in the primitively eusocial wasp, Polistes instabilis. Behaviour, 107, 114.Google Scholar
Hunt, J. H. (1984) Adult nourishment during larval provisioning in a primitively social paper wasp, Polistes metricus Say. Insectes Sociaux, 31, 452460.Google Scholar
Hunt, J. H. (1991) Nourishment and the evolution of the social Vespidae. In: Ross, K. G. & Matthews, R. W. (eds.) The Social Biology of Wasps, Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 426450.Google Scholar
Hunt, J. H. (1993) Survivorship, fecundity, and recruitment in a mud dauber wasp, Sceliphron assimile (Hymenoptera: Sphecidae). Annals of the Entomological Society of America, 86, 5159.Google Scholar
Hunt, J. H. (1994) Nourishment and evolution in wasps sensu lato. In: Hunt, J. H. & Nalepa, C. A. (eds.) Nourishment and Evolution in Insect Societies. Boulder CO: Westview Press, pp. 211244.Google Scholar
Hunt, J. H. (1999) Trait mapping and salience in the evolution of eusocial vespid wasps. Evolution, 53, 225237.Google Scholar
Hunt, J. H. (2007) The Evolution of Social Wasps. New York: Oxford University Press.Google Scholar
Hunt, J. H. (2009) Interspecific adoption of orphaned nests by Polistes paper wasps (Hymenoptera: Vespidae). Journal of Hymenoptera Research, 18, 136139.Google Scholar
Hunt, J. H. & Amdam, G. V. (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science, 308, 264267.Google Scholar
Hunt, J. H. & Gamboa, G. J. (1978) Joint nest use by two paper wasp species. Insectes Sociaux, 25, 373374.Google Scholar
Hunt, J. H. & Richard, F.-J. (2013) Intracolony vibroacoustic communication in social insects. Insectes Sociaux, 60, 403417.Google Scholar
Hunt, J. H., Jeanne, R. L., Baker, I., & Grogan, D. E. (1987) Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis(Hymenooptera: Vespidae). Ethology, 75, 291305.Google Scholar
Hunt, J. H., Brown, P. A., Sago, K. M., & Kerker, J. A. (1991) Vespid wasps eat pollen (Hymenoptera: Vespidae). Journal of the Kansas Entomological Society, 64, 127130.Google Scholar
Hunt, J. H., Jeanne, R. L., & Keeping, M. G. (1995) Observations on Apoica pallens, a nocturnal Neotropical social wasp (Hymenoptera: Vespidae, Polistinae, Epiponini). Insectes Sociaux, 42, 223236.Google Scholar
Hunt, J. H., Brodie, R. J., Carithers, T. P., Goldstein, P. Z., & Janzen, D. H. (1999) Dry season migration by Costa Rican lowland paper wasps to high elevation cold dormancy sites. Biotropica, 31, 192196.Google Scholar
Hunt, J. H., O’Donnell, S., Chernoff, N., & Brownie, C. (2001a) Observations on two Neotropical swarm-founding wasps, Agelaia yepocapa and A. panamaensis (Hymenoptera: Vespidae). Annals of the Entomological Society of America, 94, 555562.Google Scholar
Hunt, J. H., Cave, R. D., & Borjas, G. R. (2001b). First records from Honduras of a yellowjacket wasp, Vespula squamosa (Drury) (Hymenoptera: Vespidae, Vespinae). Journal of the Kansas Entomological Society, 74, 118119.Google Scholar
Hunt, J. H., Kensinger, B. A., Kossuth, J., et al. (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proceedings of the National Academy of Sciences USA, 104, 1402014025.Google Scholar
Hunt, J. H., Wolschin, F., Henshaw, M. T., Newman, T. C., Toth, A. L. & Amdam, G. V. (2010) Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS ONE, 5, e10674.Google Scholar
Hunt, J. H., Mutti, N. S., Havukainen, H., Henshaw, M. T., & Amdam, G. V. (2011) Development of an RNA interference tool, characterization of its target, and an ecological test of caste differentiation in the eusocial wasp Polistes. PLoS ONE, 6, e26641.Google Scholar
Ishay, J. S. (1973) Thermoregulation by social wasps: Behavior and pheromones. Transactions of the New York Academy of Sciences, 35, 447462.Google Scholar
Jandt, J. M. & Toth, A. L. (2015) Chapter 3 - Physiological and genomic mechanisms of social organization in wasps (Family: Vespidae). Advances in Insect Physiology, 48, 95130.Google Scholar
Jandt, J. M. Tibbetts, E. A., & Toth, A. L. (2014) Polistes paper wasps: A model genus for the study of social dominance hierarchies. Insectes Sociaux, 61, 1127.Google Scholar
Jeanne, R. L. (1970) Chemical defence of Brood by a social wasp. Science, 168, 14651466.Google Scholar
Jeanne, R. L. (1972) Social biology of the neotropical wasp Mischocyttarus drewseni. Bulletin of the Museum of Comparative Zoology, Harvard University, 144, 63150.Google Scholar
Jeanne, R. L. (1975) Behavior during swarm movement in Stelopolybia areata (Hymenoptera: Vespidae). Psyche, 82, 259264.Google Scholar
Jeanne, R. L. (1986) The organization of work in Polybia occidentalis: The costs and benefits of specialization in a social wasp. Behavioral Ecology and Sociobiology, 19, 333341.Google Scholar
Jeanne, R. L. (1991a) The swarm-founding Polistinae. In: Ross, K. G., & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 191231.Google Scholar
Jeanne, R. L. (1991b) Polyethism. In: Ross, K. G. & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 389425.Google Scholar
Jeanne, R. L. & Hunt, J. H. (1992) Observations on the social wasp Ropalidia montana from peninsular India. Journal of Biosciences, 17, 114.Google Scholar
Jeanne, R. L. & Keeping, M. G. (1995) Venom spraying in Parachartergus colobopterus: A novel defensive behavior in a social wasp (Hymenoptera: Vespidae). Journal of Insect Behavior, 8, 433442.Google Scholar
Jeanne, R. L. & Morgan, R. C. (1992) The influence of temperature on nest site choice and reproductive strategy in a temperate zone Polistes wasp. Ecological Entomology, 17, 135141.Google Scholar
Jeanne, R. L., Downing, H. A., & Post, D. C. (1988) Age polyethism and individual variation in Polybia occidentalis, an advanced eusocial wasp. In: Jeanne, R. L. (ed.) Interindividual Behavioral Variability in Social Insects. Boulder CO: Westview Press, pp. 323357.Google Scholar
Jha, S., Casey-Ford, R.-G., Pedersen, , et al. (2006) The queen is not a pacemaker in the small colony wasps Polistes instabilis and P. dominulus. Animal Behaviour 71, 11971203.Google Scholar
Jones, J. C. & Oldroyd, B. P. (2007) Nest thermoregulation in social insects. Advances in Insect Physiology, 33, 153191.Google Scholar
Kasuya, E. (1981a) Male mating territory in a Japanese paper wasp, Polistes jadwigae Dalla Torre (Hymenoptera, Vespidae). Kontyû, 49, 607614.Google Scholar
Kasuya, E. (1981b) Internidal drifting of workers in the Japanese paper wasp Polistes chinensis antennalis (Vespidae; Hymenoptera). Insectes Sociaux, 28, 343346.Google Scholar
Keeping, M. G. (1992) Social organization and division of labor in colonies of the polistine wasp, Belonogaster petiolata. Behavioral Ecology and Sociobiology, 19, 333341.Google Scholar
Keeping, M. G. (2000) Morpho-physiological variability and differentiation of reproductive roles among foundresses of the primitively eusocial wasp, Belonogaster petiolata (DeGeer) (Hymenoptera, Vespidae). Insectes Sociaux, 47, 47154.Google Scholar
Keeping, M. G. (2002) Reproductive and worker castes in the primitively eusocial wasp Belonogaster petiolata (DeGeer) (Hymenoptera: Vespidae): Evidence for pre-imaginal differentiation. Journal of Insect Physiology, 48, 867879.Google Scholar
Keeping, M. G., Lipschitz, D., & Crewe, R. (1986) Chemical mate recognition and release of male sexual behavior in polybiine wasp, Belonogaster petiolata (Degeer) (Hymenoptera: Vespidae). Journal of Chemical Ecology, 12, 773779.Google Scholar
Kim, B., Kim, K. W., & Choe, J. C. (2012) Temporal polyethism in Korean yellowjacket foragers, Vespula koreensis. Insectes Sociaux, 59, 263268.Google Scholar
Klahn, J. E. (1979) Philopatric and nonphilopatric foundress associations in the social wasp Polistes fuscatus. Behavioral Ecology and Sociobiology, 5, 417424.Google Scholar
Klahn, J. E. (1988) Intraspecific comb usurpation in the social wasp Polistes fuscatus. Behavioral Ecology and Sociobiology, 23, 18.Google Scholar
Klahn, J. & Pilgrim, D. (1985) Kin recognition and brood tolerance in the paper wasp Polistes fuscatus (Hymenoptera: Vespidae). Journal of the Kansas Entomological Society, 58, 567568.Google Scholar
Kocher, S. D. & Grozinger, C. M. (2011) Cooperation, conflict, and the evolution of queen pheromones. Journal of Chemical Ecology, 37, 12631275.Google Scholar
Kojima, J., Hartini, S., Noerdjito, W. A., et al. (2001) Descriptions of pre-emergence nests and mature larvae of Vespa fervida, with a note on a multiple-foundress colony of V. affinis in Sulawesi (Hymenoptera: Vespidae; Vespinae). Entomological Science, 4, 355360.Google Scholar
Kundu, H. L. (1967) Observations on Polistes hebraeus (Hymenoptera). Birla Institute of Technological Science, Journal (Pilani), 1, 152161.Google Scholar
Landi, M., Queller, D. C., Turillazzi, S., & Strassmann, J. E. (2003) Low relatedness and frequent queen turnover in the stenogastrine wasp Eustenogaster fraterna favor the life insurance over the haplodiploid hypothesis for the origin of eusociality. Insectes Sociaux, 50, 262267.Google Scholar
Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S., & Field, J. (2011) Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science, 333, 874876.Google Scholar
Liebert, A. E. & Starks, P. T. (2006) Taming of the skew: Transactional models fail to predict reproductive partitioning in the paper wasp Polistes dominulus. Animal Behaviour, 71, 913923.Google Scholar
Linksvayer, T. A. & Wade, M. J. (2005) The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: Maternal effects, sib-social effects, and heterochrony. Quarterly Review of Biology, 80, 317336.Google Scholar
Litte, M. (1977) Behavioral ecology of the social wasp, Mischocyttarus mexicanus. Behavioral Ecology and Sociobiology, 2, 229246.Google Scholar
Lorenzi, M. C., Cervo, R., Zacchi, F., Turillazzi, S., & Bagnères, A. G. (2004) Dynamics of chemical mimicry in the social parasite wasp Polistes semenowi (Hymenoptera: Vespidae). Parasitology, 129, 643651.Google Scholar
Lucas, E. R. & Keller, L. (2014) Ageing and somatic maintenace in social insects. Current Opinion in Insect Science, 5, 3136.Google Scholar
Lucas, E. R., Martins, R. P, Zanette, L. R. S., & Field, J. (2011) Social and genetic structure in colonies of the social wasp Microstigmus nigrophthalmus. Insectes Sociaux, 58, 107114.Google Scholar
MacDonald, J. F. & Matthews, R. W. (1981) Nesting biology of the eastern yellowjacket, Vespula maculifrons (Hymenoptera: Vespidae). Journal of the Kansas Entomological Society, 54, 433457.Google Scholar
Makino, S. (1989) Usurpation and nest rebuilding in Polistes riparius: Two ways to reproduce after the loss of the original nest (Hymenoptera: Vespidae). Insectes Sociaux, 36, 116128.Google Scholar
Makino, S. & Sayama, K. (1991) Comparison of intraspecific nest usurpation between two haplometrotic paper wasp species (Hymenoptera: Vespidae: Polistes). Journal of Ethology, 9, 121128.Google Scholar
Makino, S. & Yamane, S. (1980) Heat production by the foundress of Vespa simillima, with description of its embryo nest (Hymenoptera: Vespidae). Insecta Matsumurana, 19, 89101.Google Scholar
Manzanilla, J., de Sousa, L., & Sánchez, D. (2000) High densities of Polistes versicolor versicolor (Oliver 1791) (Hymenoptera: Vespidae) at Cerro La Laguna, Turimiquire massif, Anzoátegui State, Venezuela. Boletín de Entomología Venezolana, 15, 245248.Google Scholar
Martin, J. S. (1988) Thermoregulation in Vespa simillima xanthoptera (Hymenoptera, Vespidae). Kontyu, 56, 674677.Google Scholar
Martin, J. S. (1992) Nest thermoregulation in Vespa affinis (Hymenoptera, Vespidae). Japanese Journal of Entomology, 60, 483486.Google Scholar
Matsuura, M. (1984) Comparative biology of the five Japanese species of the genus Vespa (Hymenoptera, Vespidae). Bulletin of the Faculty of Agriculture, Mie University, 69, 1131.Google Scholar
Matsuura, M. (1991) Vespa and Provespa. In: Ross, K. G. & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 232262.Google Scholar
Matsuura, M. (1999) Size and composition of swarming colonies in Provespa anomala (Hymenoptera, Vespidae), a nocturnal social wasp. Insectes Sociaux, 46, 219223.Google Scholar
Matsuura, M. & Yamane, S. (1990) Biology of the Vespine Wasps. Berlin: Springer-Verlag.Google Scholar
Matthews, R. W. (1968) Microstigmus comes: Sociality in a sphecid wasp. Science, 160, 787788.Google Scholar
Matthews, R. W. & Naumann, I. D. (1988) Nesting biology and taxonomy of Arpactophilus mimi, a new species of social sphecid (Hymenoptera: Sphecidae). Australian Journal of Zoology, 36, 585597.Google Scholar
Maynard Smith, J. & Szathmáry, E. (1995) The Major Transitions in Evolution. Oxford: W. H. Freeman / Spektrum.Google Scholar
McCorquodale, D. B. & Naumann, I. D. (1988) A new Australian species of communal ground nesting wasp in the genus Spilomena Shuckard (Hymenoptera: Sphecidae: Pemphredoninae). Journal of the Australian Entomological Society, 27, 221231.Google Scholar
Mead, F., Habersetzer, C., Gabouriaut, D., & Gervet, J. (1995) Nest-founding behavior induced in the first descendants of Polistes dominulus Christ (Hymenoptera, Vespidae) colonies. Insectes Sociaux, 42, 385396.Google Scholar
Melo, G. A. R. (2000) Comportamento social em vespas da famîlia Sphecidae (Hymenoptera, Apoidea). In: Martins, R. P., Lewinsohn, T. M., & Barbeitos, M. S. (eds.) Ecologia e Comportamento de Insects. Rio de Janeiro: Oecologia Brasiliensis, pp. 85130.Google Scholar
Michener, C. D. (1974) The Social Behavior of the Bees: A Comparative Study. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Monnin, T. (2006) Chemical recognition of reproductive status in social insects. Annales Zoologici Fennici, 43, 515530.Google Scholar
Muralidharan, K., Shaila, M. S., & Gadagkar, R. (1986) Evidence for multiple mating in the primitively eusocial wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Journal of Genetics, 153, 153158.Google Scholar
Nalepa, C. A. (2015) Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology, 40, 323335.Google Scholar
Nascimento, F. S., Tannure-Nacimento, I. C., & Zucchi, R. (2004) Behavioral mediators of cyclical oligogyny in the Amazonian swarm-founding wasp Asteloeca ujhelyii. Insectes Sociaux, 51, 1723.Google Scholar
Naug, D. & Gadagkar, R. (1998) The role of age in temporal polyethism in a primitively eusocial wasp. Behavioral Ecology and Sociobiology, 42, 3747.Google Scholar
Naumann, M. G. (1970) The nesting behavior of Protopolybia pumila in Panama (Hymenoptera: Vespidae). Ph.D. dissertation, University of Kansas.Google Scholar
Naumann, M. G. (1975) Swarming behavior: Evidence for communication in social wasps. Science, 189, 642644.Google Scholar
Noll, F. B. & Wenzel, J. W. (2008) Caste in the swarming wasps: ‘queenless’ societies in highly social insects. Biological Journal of the Linnean Society, 93, 509522.Google Scholar
Noll, F. B., Wenzel, J. W., & Zucchi, R. (2004) Evolution of caste in Neotropical swarm-founding wasps (Hymenoptera: Vespidae; Epiponini). American Museum Novitates, 3467, 124.Google Scholar
Nonacs, P. & Reeve, H. K. (1993) Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behavioural Processes, 30, 4759.Google Scholar
Nonacs, P., Liebert, A. E., & Starks, P. T. (2006) Transactional skew and assured fitness return models fail to predict patterns of cooperation in wasps. The American Naturalist. 167, 467480.Google Scholar
Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010) The evolution of eusociality. Nature, 466, 10571062.Google Scholar
O’Donnell, S. (1994) Nestmate copulation in the Neotropical eusocial wasp Polistes instabilis De Saussure (Hymenoptera: Vespidae). Psyche, 101, 3336.Google Scholar
O’Donnell, S. (1998a) Dominance and polyethism in the eusocial wasp Mischocyttarus mastigophorus (Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 43, 327331.Google Scholar
O’Donnell, S. (1998b) Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae). Annual Review of Entomology, 43, 323346.Google Scholar
O’Donnell, S. & Jeanne, R. L. (1991) Interspecific occupation of a tropical social wasp colony (Hymenoptera: Vespidae: Polistes). Journal of Insect Behavior, 4, 397400.Google Scholar
O’Donnell, S., Hunt, J. H., & Jeanne, R. L. (1997) Gaster-flagging during colony defense in Neotropical swarm-founding wasps (Hymenoptera: Vespidae, Epiponini). Journal of the Kansas Entomological Society, 70, 175180.Google Scholar
O’Neill, K. M. (2001) Solitary Wasps: Behavior and Natural History. Ithaca NY: Cornell University Press.Google Scholar
Pagden, H. T. (1962) More about Stenogaster. Malayan Nature Journal 12, 131148.Google Scholar
Pallett, M. J. (1984) Nest site selection and survivorship of Dolichovespula arenaria and Dolichovespula maculata (Hymenoptera: Vespidae). Canadian Journal of Zoology, 62, 12681272.Google Scholar
Pardi, L. (1948) Dominance order in Polistes wasps. Physiological Zoology, 21, 113.Google Scholar
Peters, J. M., Queller, D. C., Strassmann, J. E., & Solís, C. R. (1995) Maternity assignment and queen replacement in a social wasp. Proceeding of the Royal Society of London B, 260, 712.Google Scholar
Pickett, K. M. & Carpenter, J. M. (2010) Simultaneous analysis and the origin of eusociality in the Vespidae (Insecta: Hymenoptera). Arthropod Systematics & Phylogeny, 68, 333.Google Scholar
Pickett, K. M., Osborne, D. M., Wahl, D., & Wenzel, J. W. (2001) An enormous nest of Vespula squamosa from Florida, the largest social wasp nest reported from North America, with notes on colony cycle and reproduction. Journal of the New York Entomological Society, 109, 408415.Google Scholar
Piekarski, P., Longair, R., & Rogers, S. (2014) Monophyly of eusocial wasps (Hymenoptera: Vespidae): Molecules and morphology tell opposing histories. Journal of Undergraduate Research in Alberta, 4, 1114.Google Scholar
Polak, M. (1993) Competition for landmark territories among male Polistes canadensis (L.. (Hymenoptera: Vespidae): Large-size advantage and alternative mate-aquisition tactics. Behavioral Ecology, 4, 325331.Google Scholar
Post, D. C. & Jeanne, R. L. (1983) Male reproductive behavior of the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Zeitschrift für Tierpsychologie, 62, 157171.Google Scholar
Premnath, S., Sinha, S., & Gadagkar, R. (1995) Dominance relationship in the establishment of reproductive division of labour in a primitively eusocial wasp (Ropalidia marginata). Behavioral Ecology and Sociobiology, 39, 125132.Google Scholar
Queller, D. C. (1989) The evolution of eusociality: Reproductive head starts of workers. Proceedings of the National Academy of Sciences USA, 86, 32243226.Google Scholar
Queller, D. C. (1996) The origin and maintenance of eusociality: The advantage of extended parental care. In: Turillazzi, S. & West-Eberhard, M. J. (eds.) Natural History and Evolution of Paper-wasps, Oxford: Oxford University Press, pp. 218234.Google Scholar
Queller, D. C., Strassman, J. E., & Hughes, C. R. (1988) Genetic relatedness in colonies of tropical wasps with multiple queens. Science, 242, 11551157.Google Scholar
Queller, D. C., Hughes, C. R., & Strassmann, J. E. (1990) Wasps fail to make distinctions. Nature, 344, 388.Google Scholar
Queller, D. C., Negrón-Sotomayor, J. A., Strassmann, J. E., & Hughes, C. R. (1993) Queen number and genetic relatedness in a neotropical wasp, Polybia occidentalis. Behavioral Ecology, 4, 713.Google Scholar
Queller, D. C., Zacchi, F., Cervo, R. Turillazzi, S., Henshaw, M. T., et al. (2000) Unrelated helpers in a social insect. Nature, 405, 784787.Google Scholar
Ratnieks, F. L. W., Vetter, R. S., & Visscher, P. K. (1996) A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insectes Sociaux, 43, 401410.Google Scholar
Reed, H. C. & Landolt, P. J. (1991) Swarming of paper wasp (Hymenoptera, Vespidae) sexuals at towers in Florida. Annals of the Entomological Society of America, 84, 628635.Google Scholar
Reeve, H. K. (1991) Polistes. In: Ross, K. G. & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 99148.Google Scholar
Reeve, H. K. & Gamboa, G. J. (1983) Colony activity integration in primitively eusocial wasps: The role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 13, 6374.Google Scholar
Reeve, H. K. & Gamboa, G. J. (1987) Queen regulation of worker foraging in paper wasps: A social feedback control mechanism (Polistes fuscatus, Hymenoptera: Vespidae). Behaviour, 102, 147167.Google Scholar
Riabinin, K., Kozhevnikov, M., & Ishay, J. S. (2004) Ventilating activity at the hornet nest entrance. Journal of Ethology, 22, 4953.Google Scholar
Richard, F.-J. & Hunt, J. H. (2013) Intracolony chemical communication in social insects. Insectes Sociaux, 60, 275291.Google Scholar
Richards, O. W. (1978) The Social Wasps of the Americas, Excluding the Vespinae. London: British Museum (Natural History).Google Scholar
Riggs, A. D. (1975) X inactivation, differentiation and DNA methylation. Cytogenetics and Cell Genetics, 14, 925.Google Scholar
Ross, K. G. & Carpenter, J. M. (1991) Population genetic structure, relatedness, and breeding system. In: Ross, K. G., & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 451479.Google Scholar
Ross, K. G., & Matthews, R. W. (1989a) New evidence for eusociality in the sphecid wasp Microstigmus comes. Animal Behaviour, 38, 613619.Google Scholar
Ross, K. G. & Matthews, R. W. (1989b) Population genetic structure and social evolution in the sphecid wasp Microstigmus comes. The American Naturalist, 134, 574598.Google Scholar
Ross, K. G. & Matthews, R. W. (1991) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press.Google Scholar
Roubaud, E. (1916) Recherches biologiques sur les guêpes solitaires et sociales d’Afrique. La genèse de la vie sociale et l’évolution de l’instinct maternel chez les vespides. Annales des Sciences Naturelles, 10e série: Zoologie, 1, 1160.Google Scholar
Sakagami, S. F. & Fukushima, K. (1957) Vespa dybowskii André as a facultative temporary social parasite. Insectes Sociaux, 4, 112.Google Scholar
Santos, B. F., Payne, A., Pickett, K. M., & Carpenter, J. M. (2014) Phylogeny and historical biogeography of the paper wasp genus Polistes (Hymenoptera: Vespidae): Implications for the overwintering hypothesis of social evolution. Cladistics, 31, 535549.Google Scholar
Schmitz, J. & Moritz, R. F. A. (1998) Molecular phylogeny of Vespidae (Hymenoptera) and the evolution of sociality in wasps. Molecular Phylogenetics and Evolution, 9, 183191.Google Scholar
Schmitz, J. & Moritz, R. F. A. (2000) Molecular evolution in social wasps. In: Austin, A. D., & Dowton, M. (eds.) Hymenoptera: Evolution, Biodiversity and Biological Control. Collingwood: CSIRO, pp. 8489.Google Scholar
Seeley, T. D. & Heinrich, B. (1981) Regulation of temperature in the nests of social insects. In: Heinrich, B. (ed.) Insect Thermoregulation. New York: Wiley, pp. 159234.Google Scholar
Seppä, P., Fogelqvist, J., Gyllenstrand, N., & Lorenzi, M. C. (2011) Colony kin structure and breeding patterns in the social wasp, Polistes biglumis. Insectes Sociaux, 58, 345355.Google Scholar
Sheehan, M. J. & Tibbetts, E. A. 2008. Robust long-term social memories in a paper wasp. Current Biology, 18, R851-R852.Google Scholar
Sheehan, M. J., Botero, C. A., Hendry, T. A., et al. (2015) Different axes of environmental variation explain the presence vs. extent of cooperative nest founding associations in Polistes paper wasps. Ecology Letters, 18, 10571067.Google Scholar
Shima, S. N., Noll, F. B., Zucchi, R., & Yamane, S. (1998) Morphological caste differences in the Neotropical swarm-founding polistine wasps IV. Pseudopolybia vespiceps, with preliminary considerations on the role of intermediate females in social organization of the Epiponini (Hymenoptera, Vespidae). Journal of Hymenoptera Research, 7, 280295.Google Scholar
Shreeves, G. & Field, J. (2002) Group size and direct fitness in social queues. The American Naturalist, 159, 8195.Google Scholar
Sledge, M. F., Fortunato, A., Turillazzi, S., Francescato, E., Hasim, R., et al. (2000) Use of Dufour’s gland secretion in nest defense and brood nutrition by hover wasps (Hymenoptera, Stenogastrinae). Journal of Insect Physiology, 46, 753761.Google Scholar
Sledge, M. F., Dani, F. R., Cervo, R., Dapporto, L., & Turillazzi, S. (2001a) Recognition of social parasites as nest-mates: Adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer. Proceeding of the Royal Society of London B, 268, 22532260.Google Scholar
Sledge, M. F., Boscaro, F., & Turillazzi, S. (2001b) Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behavioral Ecology and Sociobiology, 49, 401409.Google Scholar
Smith, A. R., O’Donnell, S., & Jeanne, R. L. (2001) Correlated evolution of colony defence and social structure: A comparative analysis in eusocial wasps (Hymenoptera: Vespidae). Evolutionary Ecology Research, 3, 331344.Google Scholar
Snelling, R. (1952) Notes on nesting and hibernation of Polistes. Pan-Pacific Entomologist, 29, 177.Google Scholar
Spradbery, J. P. (1973) Wasps: An Account of the Biology and Natural History of Solitary and Social Wasps. Seattle, WA: University of Washington Press.Google Scholar
Spradbery, J. P. (1993) Queen brood reared in worker cells by the social wasp, Vespula germanica (F.) (Hymenoptera: Vespidae). Insectes Sociaux, 40, 181190.Google Scholar
Starks, P. T. (1998) A novel ‘sit and wait’ reproductive strategy in social wasps. Proceedings of the Royal Society of London B, 265, 14071410.Google Scholar
Starr, C. K. (1985) Enabling mechanisms in the origin of sociality in the Hymenoptera – the sting’s the thing. Annals of the Entomological Society of America, 78, 836840.Google Scholar
Strassmann, J. E. (1981a) Evolutionary implications of early male and satellite nest production in Polistes exclamans colony cycles. Behavioral Ecology and Sociobiology, 8, 5564.Google Scholar
Strassmann, J. E. (1981b) Kin selection and satellite nests in Polistes exclamans. In: Alexander, R. D. & Tinkle, D. W. (eds.) Natural Selection and Social Behavior: Resent Research and New Theory, New York: Chiron Press, pp. 4558.Google Scholar
Strassmann, J. E. (1981c) Wasp reproduction and kin selection: Reproductive competition and dominance hierarchies among Polistes annularis foundresses. Florida Entomologist, 64, 7488.Google Scholar
Strassmann, J. E. (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Sociaux, 48, 113.Google Scholar
Strassmann, J. E. & Meyer, D. C. (1983) Gerontocracy in the social wasp, Polistes exclamans. Animal Behaviour, 31, 431438.Google Scholar
Strassmann, J. E. & Queller, D. C. (1989) Ecological determinants of social evolution. In: Breed, M. & Page, R. (eds.) The Genetics of Social Evolution. Boulder: Westview Press, pp. 81101.Google Scholar
Strassmann, J. E., Queller, D. C., & Hughes, C. R. (1988) Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology, 69, 14971505.Google Scholar
Strassmann, J. E., Queller, D. C., Solís, C. R., & Hughes, C. R. (1991) Relatedness and queen number in the Neotropical wasp, Parachartergus colobopterus. Animal Behavior, 42, 461470.Google Scholar
Strassmann, J. E., Gastreich, K. R., Queller, D. C., & Hughes, C. R. (1992) Demographic and genetic evidence for cyclical changes in queen number in a Neotropical wasp, Polybia emaciata. The American Naturalist, 140, 363372.Google Scholar
Strassmann, J. E., Solís, C. R., Hughes, C. R., Goodnight, K. F., & Queller, D. C. (1997a). Colony life history and demography of a swarm-founding social wasp. Behavioral Ecology and Sociobiology, 40, 7177.Google Scholar
Strassmann, J. E., Klingler, C. J., Arévalo, E., et al. (1997b) Absence of within-colony kin discrimination in behavioural interactions of swarm-founding wasps. Proceeding of the Royal Society of London B, 264, 15651570.Google Scholar
Sugden, E. A. & McAllen, R. L. (1994) Observations on foraging, population and nest biology of the Mexican honey wasp, Brachygastra mellifica (Say) in Texas [Vespidae: Polybiinae]. Journal of the Kansas Entomological Society, 67, 141155.Google Scholar
Sumana, A. & Gadagkar, R. (2001) The structure of dominance hierarchies in the primitively eusocial wasp Ropalidia marginata. Ethology Ecology & Evolution, 13, 273281.Google Scholar
Suryanarayanan, S. & Jeanne, R. L. (2008) Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespida). Ethology, 114, 12011209.Google Scholar
Suryanarayanan, S., Hantschel, A. E., Torres, C. G., & Jeanne, R. L. (2011a) Changes in the temporal pattern of antennal drumming behavior across the Polistes fuscatus colony cycle (Hymenoptera, Vespidae). Insectes Sociaux, 58, 97106.Google Scholar
Suryanarayanan, S., Hermanson, J. C., & Jeanne, R. L. (2011b) A mechanical signal biases caste development in a social wasp. Current Biology, 21, 231235.Google Scholar
Suzuki, T. (2003) Queen replacement without gerontocracy in the paper wasp Parapolybia indica in temperate Japan. Ethology Ecology & Evolution, 15, 191196.Google Scholar
Suzuki, T. & Ramesh, M. (1992) Colony founding in the social wasp, Polistes stigma (Hymenoptera Vespidae), in India. Ethology Ecology & Evolution, 4, 333341.Google Scholar
Thornhill, R. & Alcock, J. (1983) The Evolution of Insect Mating Systems. Cambridge MA: Harvard University Press.Google Scholar
Tibbetts, E. A. (2002) Visual signals of individual identity in the wasp Polistes fuscatus. Proceedings of the Royal Society of London B, 269, 14231428.Google Scholar
Tibbetts, E. A. (2004) Complex social behaviour can select for variability in visual features: A case study in Polistes wasps. Proceeding of the Royal Society of London B, 271, 19551960.Google Scholar
Tibbetts, E. A. (2006) Badges of status in worker and gyne Polistes dominulus wasps. Annales Zoolgici Fennici, 43, 575582.Google Scholar
Tibbetts, E. A. (2010) The condition dependence and heritability of signaling and nonsignaling color traits in paper wasps. The American Naturalist, 175, 495503.Google Scholar
Tibbetts, E. A. & Curtis, T. R. (2007) Rearing conditions influence quality signals but not individual identity signals in Polistes wasps. Behavioral Ecology 18, 602607.Google Scholar
Tibbetts, E. A. & Dale, J. (2004) A socially enforced signal of quality in a paper wasp. Nature, 432, 218222.Google Scholar
Tibbetts, E. A. & Lindsay, R. (2008) Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biology Letters, 4, 237239.Google Scholar
Tibbetts, E. A. & Reeve, H. K. (2003) Benefits of foundress associations in the paper wasp Polistes dominulus: Increased productivity and survival, but no assurance of fitness returns. Behavioral Ecology, 14, 510514.Google Scholar
Tibbetts, E. A. & Sheehan, M. J. (2012) The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior. Hormones and Behavior, 61, 559564.Google Scholar
Tibbetts, E. A., Skaldina, O., Zhao, V., et al. (2011) Geographic variation in the status signals of Polistes dominulus wasps. PLoS ONE, 6, e28173.Google Scholar
Tindo, M., D’Agostino, P., Francescato, E., Dejean, A., & Turillazzi, S. (1997) Associative colony foundation in the tropical wasp Belonogaster juncea juncea (Vespidae, Polistinae). Insectes Sociaux, 44, 365377.Google Scholar
Tindo, M., Kenne, M., & Dejean, A. (2008) Advantages of multiple foundress colonies in Belonogaster juncea juncea L.: Greater survival and increased productivity. Ecological Entomology, 33, 15.Google Scholar
Toth, A. L., Varala, K., Henshaw, M. T., et al. (2010) Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proceedings of the Royal Society of London B, 277, 21392148.Google Scholar
Toth, A. L., Tooker, J. F., Radhakrishnan, S., Henshaw, M. T., & Grozinger, C. M. (2014) Shared genes related to aggression, rather than chemical communication, are associated with reproductive dominance in paper wasps (Polistes metricus). BMC Genomics, 15, 75.Google Scholar
Toth, A. L., Sumner, S., & Jeanne, R. L. (2016) Patterns of longevity across a sociality gradient in vespid wasps. Current Opinion in Insect Science, 16, 2835.Google Scholar
Trostle, G. E. & Torchio, P. F. (1986) Notes on the nesting biology and immature development of Euparagia scutellaris Cresson (Hymenoptera, Masaridae). Journal of the Kansas Entomological Society, 59, 641647.Google Scholar
Turillazzi, S. (1983) Patrolling behaviour in males of Parischnogaster nigricans serrei (Du Buysson) and P. mellyi (Saussure) (Hymenoptera, Stenogastrinae). Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze fisiche, matematiche e naturali, Serie VIII, 72, 153157.Google Scholar
Turillazzi, S. (1985) Colonial cycle of Parischnogaster nigricans serrei (Du Buysson) in West Java (Hymenoptera, Stenogastrinae). Insectes Sociaux, 32, 4360.Google Scholar
Turillazzi, S. (1987) Colony defense in Stenogastrinae wasps (Hymenoptera). Monitore zoologico italiano – Italian Journal of Zoology, 21:205205.Google Scholar
Turillazzi, S. (1988) Social biology of Parischnogaster jacobsoni (Du Buysson) (Hymenoptera, Stenogastrinae). Insectes Sociaux, 35, 133143.Google Scholar
Turillazzi, S. (1991) The Stenogastrinae. In: Ross, K. G., & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 7498.Google Scholar
Turillazzi, S. (1996) Polistes in perspcetive: Comparative social biology and evolution in Belonogaster and Stenogastrinae. In: Turillazzi, S., & West-Eberhard, M. J. (eds.) Natural History and Evolution of Paper-Wasps. Oxford: Oxford University Press, pp. 235247.Google Scholar
Turillazzi, S. (2012) The Biology of Hover Wasps. Heidelberg: Springer.Google Scholar
Turillazzi, S. & Francescato, E. (1990) Patrolling behavior and related secretory structures in the males of some stenogastrine wasps (Hymenoptera, Vespidae). Insectes Sociaux, 37, 146157.Google Scholar
Turillazzi, S. & Pardi, L. (1981) Ant guards on nests of Parischnogaster nigricans serrei (Buysson) (Stenogastrinae). Monitore zoologico italiano (Nuova serie), 15, 17.Google Scholar
Turillazzi, S. & West-Eberhard, M. J. (1996) Natural History and Evolution of Paper-Wasps. Oxford: Oxford University Press.Google Scholar
Turillazzi, S., Francescato, E., Tosi, A. B., & Carpenter, J. M. (1994) A distinct caste difference in Polybioides tabidus (Fabricius) (Hymenoptera, Vespidae). Insectes Sociaux, 41, 327330.Google Scholar
Tuschida, K., & Itô, Y. (1987) Internidal drifting and dominance behaviour in Polistes jadwigae Dalla Torre workers (Hymenoptera: Vespidae). Journal of Ethology, 5, 8385.Google Scholar
Vesy-Fitzgerald, D. (1938) Social wasps (Hym. Vespidae) from Trinidad, with a note on the genus Trypoxylon Latreille. Transactions of the Royal Entomological Society of London A, 25, 8186.Google Scholar
Velthuis, H. H. W., Roeling, A., Imperatriz-Fonseca, V. L. (2001) Repartition of reproduction among queens in the polygynous stingless bee Melipona biocolor. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society. 12, 4549.Google Scholar
Vetter, R. S. & Visscher, P. K. (1997) Plasticity of annual cycle in Vespula pensylvanica shown by a third year polygynous nest and overwintering of queens inside nests. Insectes Sociaux, 44, 353364.Google Scholar
Wcislo, W. & Tierney, S. M. (2009) The evolution of communal behavior in bees and wasps: An alternative route to sociality. In: Gadau, J. & Fewell, J. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge, MA: Harvard University Press, pp. 148169.Google Scholar
Wcislo, W., West-Eberhard, M. J., & Eberhard, W. G. (1988) Natural history and behavior of a primitively social wasp, Auplopus semialatus and its parasite, Irenangelus eberhardi (Hymenoptera: Pompilidae) Journal of Insect Behavior, 1, 247260.Google Scholar
Weiner, S. A., Upton, C. T., Noble, K., Woods, W. A., & Starks, P. T. (2010) Thermoregulation in the primitively eusocial paper wasp, Polistes dominulus. Insectes Sociaux, 57, 157162.Google Scholar
Wenzel, J. W. (1987a) Ropalidia formosa, a nearly solitary paper wasp from Madagascar (Hymenoptera: Vespidae). Journal of the Kansas Entomological Society, 60, 679699.Google Scholar
Wenzel, J. W. (1987b). Male reproductive behavior and mandibular glands in Polistes major (Hymenoptera: Vespidae). Insectes Sociaux, 34, 4457.Google Scholar
Wenzel, J. W. (1989) Endogenous factors, external cues, and eccentric construction in Polistes annularis (Hymenoptera: Vespidae). Journal of Insect Behavior, 2, 679699.Google Scholar
Wenzel, J. W. (1991) Evolution of nest architecture. In: Ross, K. G., & Matthews, R. W. (eds.) The Social Biology of Wasps. Ithaca NY: Comstock Publishing Associates, Cornell University Press, pp. 480519.Google Scholar
Wenzel, J. W. (1992) Extreme queen-worker dimorphism in Ropalidia ignobilis, a small-colony wasp (Hymenoptera: Vespidae). Insectes Sociaux, 39, 3143.Google Scholar
West-Eberhard, M. J. (1969) The social biology of polistine wasps. Miscellaneous Publications, Museum of Zoology, University of Michigan, 140, 1101.Google Scholar
West-Eberhard, M. J. (1978) Temporary queens in Metapolybia wasps: Nonreproductive helpers without altruism? Science, 200, 441443.Google Scholar
West-Eberhard, M. J. (1981) Intragroup selection and the evolution of insect societies. In: Alexander, R. D., and Tinkle, D. W. (eds.) Natural Selection and Social Behavior: Recent Research and New Theory. New York: Chiron Press, pp. 317.Google Scholar
West-Eberhard, M. J. (1982) The nature and evolution of swarming in tropical social wasps (Vespidae, Polistinae, Polybiini). In: Jaisson, P. (ed.) Social Insects in the Tropics, Vol. 1. Paris: Université Paris-Nord, pp. 97128.Google Scholar
West-Eberhard, M. J. (1987a) Flexible strategy and social evolution. In: Itô, Y., Brown, J. L., & Kikkawa, J. (eds.) Animal Societies: Theories and Facts. Tokyo: Scientific Societies Press Ltd., pp. 3551.Google Scholar
West-Eberhard, M. J. (1987b) Observations of Xenorhynchium nitidulum (Fabricious) (Hymenoptera, Eumeninae), a primitively social wasp. Psyche, 94, 317324.Google Scholar
West-Eberhard, M. J. (2005) Behavior of the primitively social wasp Montezumia cortesioides Willink (Vespidae Eumeninae) and the origins of vespid sociality. Ethology Ecology & Evolution, 17, 201215.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge MA: Belknap Press of Harvard University Press.Google Scholar
Wilson, E. O. (2008) One giant leap: How insects achieved altruism and colonial life. BioScience, 58, 1725.Google Scholar
Wilson, E. O. & Hölldobler, B. (2005) Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences USA, 102, 1336713371.Google Scholar
Yamane, S. (1985) Social relation among females in pre- and post-emergence colonies of a subtropical paper wasp, Parapolybia varia (Hymenoptera: Vespidae). Journal of Ethology, 2, 2738.Google Scholar
Yamane, S. (1996) Ecological factors influencing the colony cycle of Polistes wasps. In: Turillazzi, S. & West-Eberhard, M. J. (eds.) Natural History and Evolution of Paper Wasps. Oxford: Oxford University Press.Google Scholar
Yamane, S. & Kawamichi, T. (1975) Bionomic comparison of Polistes biglumis (Hymenoptera, Vespidae) at two different localities in Hokkaido, northern Japan, with reference to its probable adaptation to cold climate. Kontyu, 43, 214232.Google Scholar
Yamane, S., Kojima, J., & Yamane, S. (1983) Queen/worker size dimorphism in an Oriental wasp, Ropalidia montana Carl (Hymenoptera: Vespidae). Insectes Sociaux, 30, 416422.Google Scholar
Yoshikawa, K. (1955) A polistine colony usurped by a foreign queen. Ecological studies of Polistes wasps II. Insectes Sociaux, 2, 255260.Google Scholar
Yoshikawa, K., Ohgushi, R., & Sakagami, S. F. (1969) Preliminary report on entomology of the Osaka City University 5th scientific expedition to southeast Asia 1966 - with descriptions of two new genera of stenogastrine wasps by J. van der Vecht. Nature and Life in Southeast Asia, 6, 153182.Google Scholar
Zucchi, R., Yamane, S., & Sakagami, S. F. (1976) Preliminary notes on the habits of Trimeria howardii, a Neotropical communal masarid wasp, with description of the mature larva (Hymenoptera: Vespoidea). Insecta Matsumarana, new series, 8, 4757.Google Scholar
Zucchi, R., Sakagami, S. F., Noll, F. B., et al. (1995) Agelaia vicina, a swarm-founding polistine with the largest colony size among wasps and bees (Hymenoptera: Vespidae). Journal of the New York Entomological Society, 103, 129137.Google Scholar

References

Abe, T. (1987) Evolution of life types in termites. In: Kawano, S., Connell, J. H., & Hidaka, T. (eds.) Evolution and Coadaptation in Biotic Communities. Tokyo: University of Tokyo Press, pp. 125148.Google Scholar
Abensperg-Traun, M. & Steven, D. (1997) Latitudinal gradients in the species richness of Australian termites (Isoptera). Australian Journal of Ecology, 22, 471476.Google Scholar
Adams, E. S. & Atkinson, L. (2007) Queen fecundity and reproductive skew in the termite Nasutitermes corniger. Insectes Sociaux, 55, 2836.Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Reviews of Ecology and Systematics, 5, 325383.Google Scholar
Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991) The evolution of eusociality. In: Sherman, P. W., Jarvis, J. U. M., & Alexander, R. D. (eds.) The Biology of the Naked Mole-rat. Princeton, New Jersey: Princeton University Press, pp. 344.Google Scholar
Abensperg Traun, M. & Steven, D. (1997) Latitudinal gradients in the species richness of Australian termites (Isoptera). Austral Ecology, 22, 471476.Google Scholar
Atkinson, L. & Adams, E. S. (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proceedings of the Royal Society of London B, 264, 11311136.Google Scholar
Baudisch, A. (2005) Hamilton’s indicators of the force of selection. Proceedings of the National Academy of Sciences USA, 102, 82638268.Google Scholar
Bagnères, A.-G. & Hanus, R. (2015) Communication and social regulation in termites. In: Aquiloni, L. & Tricarico, E. (eds.) Social Regulation in Invertebrates. Heidelberg: Springer, pp. 193248.Google Scholar
Bignell, D. E. & Eggleton, P. (2000) Termites in ecosystems. In: Abe, T., Bignell, D. E. & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbiosis and Ecology. Dordrecht, NL: Kluwer Academic Publishers, pp. 363387.Google Scholar
Bordereau, C. & Pasteels, J. M. (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 279320.Google Scholar
Bouillon, A. (1970) Termites of the Ethiopian region. In: Krishna, K. & Weesner, F. M. (eds.) Biology of Termites II. New York: New York Academic Press.Google Scholar
Bourguignon, T., Leponce, M., & Roisin, Y. (2009) Insights into the termite assemblage of a neotropical rainforest from the spatio-temporal distribution of flying alates. Insect Conservation and Diversity, 2, 153162.Google Scholar
Bourguignon, T., Hayashi, Y., & Miura, T. (2012) Skewed soldier sex ratio in termites: Testing the size-threshold hypothesis. Insectes Sociaux, 59, 557563.Google Scholar
Brauman, A., Bignell, D. E., & Tayasu, I. (2000) Soil-feeding termites: Biology, microbial associations and digestive mechanisms. In: Abe, T., Bignell, D. E., & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Press, pp. 233259.Google Scholar
Brent, C. S. (2009) Control of termite caste differentiation. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies. From Genome to Sociocomplexity. Cambridge, MA: Harvard University Press, pp. 105127.Google Scholar
Brune, A. & Ohkuma, M. (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 439476.Google Scholar
Bulmer, M. S., Eldridge, A. S., & Traniello, J. F. (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behavioral Ecology and Sociobiology, 49, 236243.Google Scholar
Clément, J.-L. & Bagnères, A.-G. (1998) Nestmate recognition in termites. In: Vander Meer, R. K., Breed, M. D., Winston, M. L., & Espelie, K. (eds.) Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Boulder: Westview Press, pp. 125155.Google Scholar
Cleveland, L. R., Hall, S. K., Sanders, E. P., & Collier, J. (1934) The wood- feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences, 17, 185382.Google Scholar
Collins, N. M. (1981) Populations, age structure and survivorship of colonies of Macrotermes bellicosus (Isoptera: Macrotermitinae). Journal of Animal Ecology, 50, 293311.Google Scholar
Crespi, B. J. (1994) Three conditions for the evolution of eusociality: Are they sufficient? Insectes Sociaux, 41, 395400.Google Scholar
Darlington, J. P. E. C. (1984) A method for sampling for populations of large termite nests. Annals of Applied Biology, 104, 427436.Google Scholar
Darlington, J. P. E. C. (1990) Populations in nests of the termite Macrotermes subhyalinus in Kenya. Insectes Sociaux, 37, 158168.Google Scholar
Darlington, J. P. E. C. (1991) Turnover in the populations within mature nests of the termite Macrotermes michaelseni in Kenya. Insectes Sociaux, 38, 251262.Google Scholar
Darlington, J. P. E. C. & Dransfield, R. D. (1987) Size relationships in nest populations and mound parameters in the termite Macrotermes michaelseni in Kenya. Insectes Sociaux, 34, 165180.Google Scholar
Darlington, J. P. E. C., Zimmerman, P. R., & Wandiga, S. O. (1992) Populations in nests of the termite Macrotermes jeanneli in Kenya. Journal of Tropical Ecology, 8, 7385.Google Scholar
Deshmukh, I. (1989). How important are termites in the production ecology of African savannas? Sociobiology, 15, 155168.Google Scholar
Donovan, S. E., Jones, D. T., Sands, W. A., & Al., E. (2000). Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society, 70, 467513.Google Scholar
Dosso, K., Konate, S., Aidara, D., & Linsenmair, K. E. (2010) Termite diversity and abundance across fire-induced habitat variability in a tropical moist savanna (Lamto, Central Côte d’Ivoire). Journal of Tropical Ecology, 26, 323334.Google Scholar
Eggleton, P. (1994) Termites live in a pear-shaped world: A response to platnick. Journal of Natural History, 28, 12091212.Google Scholar
Eggleton, P. (2000) Global patterns of termite diversity. In: Abe, T., Bignell, D. E., & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbiosis and Ecology. Netherlands: Kluwer Academic Publishers, pp. 2551.Google Scholar
Eggleton, P. & Tayasu, I. (2001) Feeding groups, lifetypes and the global ecology of termites. Ecological Research, 16, 941960.Google Scholar
Eggleton, P., Williams, P. H., & Gaston, K. J. (1994) Explaining global termite diversity: Productivity or history? Biodiversity and Conservation, 3, 318330.Google Scholar
Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009) Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 127.Google Scholar
Evans, T. A., Inta, R., Lai, J. C. S., Prueger, S., Foo, N. W., Fu, E. W., & Lenz, M. (2009) Termites eavesdrop to avoid competitors. Proceedings of the Royal Society of London B, 276, 40354041.Google Scholar
Evans, T. A., Lai, J. C. S., Toledano, E., Mcdowall, L., Rakotonarivo, S., & Lenz, M. (2005) Termites assess wood size by using vibration signals. Proceedings of the National Academy of Science USA, 102, 37323737.Google Scholar
Gay, F. J. & Calaby, J. H. (1970) Termites of the Australian region. In: Krishna, K. & Weesner, F. M. (eds.) Biology of Termites II. New York: Academic Press, pp. 393448.Google Scholar
Gerber, C., Badertscher, S., & Leuthold, R. H. (1988) Polyethism in Macrotermes bellicosus (Isoptera). Insectes Sociaux, 35, 226240.Google Scholar
Grandcolas, P. & D’Haese, C. (2004) The origin of a ‘true’ worker caste in termites: Phylogenetic evidence is not decisive. Journal of Evolutionary Biology, 15, 885888.Google Scholar
Grasse, P. P. (1949) Ordre des Isopteres ou termites. In: Grasse, P. P. (ed.) Traite de Zoologie. Paris: Masson, pp. 408544Google Scholar
Grasse, P. P. (1982) Termitologia: Anatomie-Physiologie-Biologie-Systematique des Termites. Tome I, Paris: Masson.Google Scholar
Grasse, P. P. (1984) Termitologia. Fondation des Societes-Construction. Tome II, Paris: Masson.Google Scholar
Grasse, P. P. (1986) Termitologia. Comportement-Socialité-Écologie-Évolution-Systématique. Tome III, Paris: Masson.Google Scholar
Grasse, P. P. & Noirot, C. (1947) Le polymorphisme social du termite à cou jaune (Kalotermes flavicollis) les faux-ouvriers ou pseudergates et les mues regressives. Comptes Rendus de l’Academie des Sciences, 224, 219221.Google Scholar
Grasse, P. P. & Noirot, C. (1948) La “climatisation” de la termitière par ses habitants et le transport de l’eau. Comptes Rendus de l’Academie des Sciences, 227, 869871.Google Scholar
Grasse, P. P. & Noirot, C. (1951) Nouvelles recherches sur la biologie de divers termites champignonnistes (Macrotermitinae). Annales des Sciences Naturelles Zoologie et Biologie Animale, 11, 13, 291342.Google Scholar
Hamilton, W. D. & May, R. M. (1977) Dispersal in stable habitats. Nature, 269, 578581.Google Scholar
Han, S. H. & Bordereau, C. (1992) From colony foundation to dispersal flight in a higher fungus-growing termite, Macrotermes subhyalinus, (Isoptera, Macrotermitinae). Sociobiology, 20, 219231.Google Scholar
Hausberger, B., Van Neer, A., Kimpel, D., & Korb, J. (2011) Uncovering cryptic species diversity of a termite community in a West African savanna. Molecular Phylogenetics and Evolution, 61, 964969.Google Scholar
Haverty, M. I. & Howard, R. W. (1981) Production of soldiers and maintenance of soldier proportions by laboratory experimental groups of Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). Insectes Sociaux, 28, 3239.Google Scholar
Haverty, M. I., Page, M., Nelson, L. J., & Blomquist, G. J. (1988) Cuticular hydrocarbons of dampwood termites, Zootermopsis: Intra- and intercolony variation and potential as taxonomic characters. Journal of Chemical Ecology, 14, 10351058.Google Scholar
Heath, H. (1903) The habits of California termites. Biological Bulletin, 4, 4763.Google Scholar
Heath, H. (1907) The longevity of members of different castes of Termopsis angusticollis. Biological Bulletin, 13, 161164.Google Scholar
Heath, H. (1927) Caste formation in the termite genus Termopsis. Journal of Morphology and Physiology, 43, 387423.Google Scholar
Heinze, J. & Schrempf, A. (2008) Aging and reproduction in social insect: A mini-review. Gerontology, 54, 160167.Google Scholar
Higashi, M., Abe, T., & Burns, T. P. (1992) Carbo-nitrogen balance and termite ecology. Proceedings of the Royal Society of London B, 249, 303308.Google Scholar
Hoffmann, K., Gowin, J., Hartfelder, K., & Korb, J. (2014) The scent of royalty: A P450 gene signals reproductive status in a social insect. Molecular Biology and Evolution, 31, 26892696.Google Scholar
Howard, K. J. & Thorne, B. L. (2011) Eusocial evolution in termites and hymenoptera. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 97132.Google Scholar
Howard, K. J., Johns, P. M., Breisch, N. L., & Thorne, B. L. (2013) Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis. Behavioural Ecology and Sociobiology, 67, 15751585.Google Scholar
Inward, D., Beccaloni, G., & Eggleton, P. (2007a) Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331335.Google Scholar
Inward, D. J. G., Vogler, A. P., & Eggleton, P. (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953967.Google Scholar
Johns, P. M., Howard, K. J., Breisch, N. L., Rivera, A., & Thorne, B. L. (2009) Nonrelatives inherit colony resources in a primitive termite. Proceedings of the National Academy of Sciences USA, 106, 1745217456.Google Scholar
Johnson, R. A. (1981) Colony development and establishment of the fungus comb in Microtermes sp. nr. umbaricus (Sjöstedt) (Isoptera: Macrotermitinae) from Nigeria. Insectes Sociaux, 28, 312.Google Scholar
Jones, D. T. & Eggleton, P. (2011) Global biogeography of termites: A compilation of sources. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 477498.Google Scholar
Josens, G. (1982) Adaptive strategies in colony foundations of two Termitidae. In: Breed, M. D., Michener, C., & Evans, H. E. (eds.) IUSSI, 1982 Boulder CO: Westview Press, pp. 66.Google Scholar
Josens, G. (1983) The soil fauna of tropical savannas III: The termites. In: Bourliere, F. (ed.) Tropical Savannas. Amsterdam: Elsevier, pp. 505524.Google Scholar
Kaib, M., Hacker, M., & Brandl, R. (2001) Egg laying in monogynous and polygynous colonies of the termite Macrotermes michaelseni (Isoptera, Macrotermitinae). Insectes Sociaux, 48, 231237.Google Scholar
Kambhampati, S. & Eggleton, P. (2000) Taxonomy and phylogeny of termites. In: Abe, T., Bignell, D. E., & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbiosis and Ecology. Netherlands: Kluwer Academic Publishers, pp. 123.Google Scholar
Keller, L. (1998) Queen lifespan and colony characteristics in ants and termites. Insectes Sociaux, 45, 235246.Google Scholar
Keller, L. & Genoud, M. (1997) Extraordinary lifespans in ants: A test of evolutionary theories of ageing. Nature, 389, 958960.Google Scholar
Korb, J. (2007a) Termites. Current Biology, 17, R995–999.Google Scholar
Korb, J. (2007b) Workers of a drywood termite do not work. Frontiers in Zoology, 4, e7.Google Scholar
Korb, J. (2008) The ecology of social evolution in termites. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin, Heidelberg: Springer, pp. 151174.Google Scholar
Korb, J. (2009) Termites: An alternative road to eusociality and the importance of group benefits in social insects. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies. From Genome to Sociocomplexity. Cambridge, MA: Harvard University Press, pp. 128147.Google Scholar
Korb, J. (2011) Termite mound architecture, from function to construction. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 349374.Google Scholar
Korb, J. (2016) Towards a more pluralistic view of termite social evolution. Ecological Entomology, 41, 3436.Google Scholar
Korb, J. & Hartfelder, K. (2008) Life history and development: A framework for understanding the ample developmental plasticity in lower termites. Biological Reviews, 83, 295313.Google Scholar
Korb, J. & Heinze, J. (2008a) Ecology of Social Evolution. Heidelberg: Springer.Google Scholar
Korb, J. & Heinze, J. (2008b) The ecology of social life: A synthesis. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Heidelberg: Springer, pp. 245260.Google Scholar
Korb, J. & Linsenmair, K. E. (2000) Thermoregulation of termite mounds: What role does ambient temperature and metabolism of the colony play? Insectes Sociaux, 47, 357363.Google Scholar
Korb, J. & Linsenmair, K. E. (2001) Resource availability and distribution patterns, indicators of competition between Macrotermes bellicosus and other macro-detritivores in the Comoé National Park, Côte d’Ivoire. African Journal of Ecology, 39, 257265.Google Scholar
Korb, J. & Linsenmair, K. E. (2002) Evaluation of predation risk in the collectively foraging termite Macrotermes bellicosus. Insectes Sociaux, 49, 264269.Google Scholar
Korb, J. & Roux, E. A. (2012) Why join a neighbour: Fitness consequences of colony fusions in termites. Journal of Evolutionary Biology, 25, 21612170.Google Scholar
Korb, J. & Schmidinger, S. (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behavioral Ecology and Sociobiology, 56, 8995.Google Scholar
Korb, J. & Schneider, K. (2007) Does kin structure explain the occurrence of workers in a lower termite? Evolutionary Ecology, 21, 817828.Google Scholar
Korb, J., Buschmann, M., Schafberg, S., Liebig, J., & Bagneres, A. G. (2012) Brood care and social evolution in termites. Proceedings of the Royal Society of London B, 279, 26622671.Google Scholar
Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013) Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 12704.Google Scholar
Lacey, M. J., Lenz, M., & Evans, T. A. (2010) Cryoprotection in dampwood termites (Termopsidae, Isoptera). Journal of Insect Physiology, 56, 17.Google Scholar
LaFage, J. P. & Nutting, W. L. (1978) Nutrient dynamics of termites. In: Brian, M. V. (ed.) Production Ecology of Ants and Termites. Cambridge: Cambridge University Press.Google Scholar
Legendre, F., Whiting, M. F., Bordereau, C., Cancello, E. M., Evans, T. A., & Grandcolas, P. (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution, 48, 615627.Google Scholar
Lenz, M. (1987) Brood production by imaginal and neotenic pairs of Cryptotermes brevis (Walker): The significance of helpers (Isoptera: Kalotermitidae). Sociobiology, 13, 5966.Google Scholar
Lenz, M. (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt, J. & Nalepa, C. A. (eds.) Nourishment and Evolution in Insect Societies. New Delhi: Oxford and IBH Publishing Co. Prt. Ltd, pp. 159209.Google Scholar
Lepage, M. (1989) Ecologie et adaptations des sociétés de termites en Afrique tropicale aride. Bulletin d’Ecologie, 20, 5963.Google Scholar
Leuthold, R. H. (1979) Chemische Kommunikation als Grundlage des Soziallebens bei Termiten. In: Lüscher, M. (ed.) Insektenstaaten. Neuere Erkenntnisse. Bern: Naturhistorisches Museum.Google Scholar
Leuthold, R. H. (1990) L’organisation sociale chez des termites championnistes du genre. Macrotermes. Actes de Coloques Insectes Sociaux, 6, 920.Google Scholar
Liebig, J., Eliyahu, D., & Brent, C. S. (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behavioral Ecology and Sociobiology, 63, 17991807.Google Scholar
Lo, N., Engel, M. S., Cameron, S., Nalepa, C. A., et al. (2007) Save Isoptera: A comment on Inward, et al. Biology Letters, 3, 564565.Google Scholar
Lo, N., Tokuda, G., & Watanabe, H. (2011) Evolution and function of endogenous termite cellulases. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 5168.Google Scholar
Long, C. E. & Thorne, B. L. (2006) Resource fidelity, brood distribution and foraging dynamics in complete laboratory colonies of Reticulitermes flavipes (Isoptera, Rhinotermitidae). Ethology, Ecology & Evolution, 18, 113125.Google Scholar
Luchetti, A., Dedeine, F., Velona, A., & Mantovani, B. (2013) Extreme genetic mixing within colonies of the wood-dwelling termite Kalotermes flavicollis (Isoptera, Kalotermitidae). Molecular Ecology, 22, 33913402.Google Scholar
Lüscher, M. (1952) Untersuchungen über das individuelle Wachstum bei der Termite Kalotermes flavicollis Fabr. (Ein Beitrag zum Kastenbildungsproblem). Biologisches Zentralblatt, 71, 529543.Google Scholar
Lüscher, M. (1974) Kasten und Kastendifferenzierung bei Niederen Termiten. In: Schmidt, G. H. (ed.) Sozialpolymorphismus bei Insekten. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp. 694739.Google Scholar
Luykx, P. (1993) Turnover in termite colonies: A genetic study of colonies of Incisitermes schwarzi headed by replacement reproductives. Insectes Sociaux, 40, 191205.Google Scholar
Lys, J. A. & Leuthold, R. H. (1991) Task-specific distribution of the worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): Observations of behaviour during food acquisition. Insectes Sociaux, 38, 161170.Google Scholar
Matsuura, K. (2006) A novel hypothesis for the origin of the sexual division of labor in termites: Which sex should be soldiers? Evolutionary Ecology, 20, 565574.Google Scholar
Matsuura, K. (2011) Sexual and asexual reproduction in termites. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 255278.Google Scholar
Matsuura, K., Himuro, C., Yokoi, T., Yamamoto, Y., Vargo, E. L., & Keller, L. (2010) Identification of a pheromone regulating caste differentiation in termites. Proceedings of the National Academy of Science USA, 107, 1296312968.Google Scholar
Minnick, D. R. (1973) The flight and courtship behavior of the drywood termite, Cryptotermes brevis. Environmental Entomology, 2, 587591.Google Scholar
Miura, T. (2004) Proximate mechanisms and evolution of caste polyphenism in social insects: From sociality to genes. Ecological Research, 19, 141148.Google Scholar
Muller, H. & Korb, J. (2008) Male or female soldiers? An evaluation of several factors on soldier sex ratio in lower termites. Insectes Sociaux, 55, 213219.Google Scholar
Myles, T. (1988) Resource inheritance in social evolution from termite to man. In: Slobodchikoff, C. N. (ed.) The Ecology of Social Behavior. New York: Academic Press, pp. 379423.Google Scholar
Myles, T. G. (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology, 33, 191.Google Scholar
Nalepa, C. & Bandi, C. (2000) Characterizing the ancestors: Paedomorphosis and termite evolution. In: Abe, T., D. E. B. a. M. H. (eds.) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Press, pp. 5376.Google Scholar
Nalepa, C. A. (1984) Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioural Ecology and Sociobiology, 14, 273279.Google Scholar
Nalepa, C. A. (1988) Cost of parental care in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioural Ecology and Sociobiology, 23, 135140.Google Scholar
Nalepa, C. A. (1994) Nourishment and the origin of termite eusociality. In: Hunt, J. H. & Nalepa, C. A. (eds.) Nourishment and Evolution in Insect Societies. Westview Press, Inc, pp. 57104.Google Scholar
Nalepa, C. A. (2011) Altricial development in wood-feeding cockroaches: The key antecedent to termite eusociality. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 6996.Google Scholar
Nalepa, C. A. (2015) Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology, 40, 323335.Google Scholar
Neoh, K. B. & Lee, C. Y. (2011) Developmental stages and caste composition of a mature and incipient colony of the drywood termite, Cryptotermes dudleyi (Isoptera: Kalotermitidae). Journal of Economic Entomology, 104, 622628.Google Scholar
Nobre, T., Rouland-Lefevre, C., & Aanen, D. K. (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 193210.Google Scholar
Noirot, C. (1969) Formation of castes in the higher termites. In: Krishna, K. & Weesner, F. M. (eds.) Biology of Termites Vol. 1. New York: Academic Press.Google Scholar
Noirot, C. (1970) The nests of termites. In: Krishna, K. & Weesner, F. M. (eds.) Biology of Termites Vol. 2. New York: Academic Press.Google Scholar
Noirot, C. (1985a) The caste system in higher termites. In: Watson, J. A. L., Okot-Kotber, B. M., & Noirot, C. (eds.) Caste Differentiation in Social Insects. Oxford: Pergamon Press, pp. 7586.Google Scholar
Noirot, C. (1985b) Pathways of caste development in the lower termites. In: Watson, J. A. L., Okot-Kotber, B. M. & Noirot, C. (eds.) Caste Differentiation in Social Insects. Oxford: Pergamon Press, pp. 4158.Google Scholar
Noirot, C. (1990) Sexual castes and reproductive strategies in termites. In: Engels, W. (ed.) An Evolutionary Approach to Castes and Reproduction. Berlin: Springer Verlag, pp. 335.Google Scholar
Noirot, C. & Bordereau, C. (1988) Termite polymorphism and morphogenetic hormones. In: Gupta, A. P. (ed.) Morphogenetic Hormones of Arthropods. New Brunswick: Rutgers University Press, pp. 293324.Google Scholar
Noirot, C. & Darlington, J. P. E. C. (2000) Termite nests: Architecture, regulation and defence. In: Abe, T., Bignell, D. E., & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbiosis and Ecology. Netherlands: Kluwer Academic Publishers, pp. 121139.Google Scholar
Noirot, C. & Pasteels, J. M. (1987) Ontogenic development and evolution of the worker caste in termites. Experientia, 43, 851860.Google Scholar
Noirot, C. & Pasteels, J. M. (1988) The worker caste is polyphyletic in termites. Sociobiology, 14, 1520.Google Scholar
Noirot, C. & Thorne, B. L. (1988) Ergatoid reproductives in Nasutitermes columbicus (Isoptera, Termitidae). Journal of Morphology, 195, 8393.Google Scholar
Nutting, W. L. (1969) Flight and colony foundation. In: Krishna, K. & Weesner, F. M. (eds.) Biology of Termites Vol. 1. New York: Academic Press.Google Scholar
Ohkuma, M. & Brune, A. (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 413438.Google Scholar
Okot-Kotber, B. M. (1985) Mechanisms of caste determination in a higher termite, Macrotermes michaelseni (Isoptera, Macrotermitidae). In: Watson, J. A. L., Okot-Kotber, B. M., & Noirot, C. (eds.) Caste Differentiation in Social Insects. Oxford: Pergamon Press, pp. 267306.Google Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and Ecology of Social Insects. Princeton, Princeton University Press.Google Scholar
Pickens, A. L. (1934) The biology and economic significance of the Western subterranean termite, Reticulitermes hesperus. In: Kofoid, C. A. (ed.) Termites and Termite Control. Berkeley: University of California Press, pp. 157183.Google Scholar
Poulsen, M., Hu, H., Li, C., Chen, Z., Nygaard, S., et al. (2014) Holobiomic division of labor in fungus-farming termites. Proceedings of the National Academy of Sciences USA, 111, 1450014505.Google Scholar
Queller, D. C. & Strassmann, J. E. (1998) Kin selection and social insects. Bioscience, 48, 165178.Google Scholar
Rohrig, A., Kirchner, W. H., & Leuthold, R. H. (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Sociaux, 46, 7177.Google Scholar
Roisin, Y. (2000) Diversity and evolution of caste patterns. In: Abe, T., Bignell, D. E., & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 95119.Google Scholar
Roisin, Y. (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Sociaux, 48, 224230.Google Scholar
Roisin, Y. & Korb, J. (2011) Social organisation and the status of workers in termites. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 133164.Google Scholar
Roisin, Y. & Pasteels, J. M. (1987) Caste developmental potentialities in the termite Nasutitermes novarumhebridarum. Entomologia Experimentalis et Applicata, 44, 277287.Google Scholar
Rosengaus, R. B., Moustakas, J. E., Calleri, D. V., & Traniello, J. F. A. (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, Schwarzi, Cryptotermes cavifrons). Journal of Insect Science, 3, e31.Google Scholar
Rosengaus, R. B., Traniello, J. F. A., & Bulmer, M. S. (2011) Ecology, behavior and evolution of disease resistance in termites. In: Bignell, D. E., Roisin, Y., & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 165192.Google Scholar
Rouland-Lefèvre, C. (2000) Symbiosis with fungi. In: Abe, T, B. D., Higashi, M (ed.) Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Publishers, pp. 289306.Google Scholar
Rupf, T. & Roisin, Y. (2008) Coming out of the woods: Do termites need a specialized worker caste to search for new food sources? Naturwissenschaften, 95, 811819.Google Scholar
Sands, W. A. (1961) Foraging behavior and feeding habits in five species of Trinervitermes in West Africa. Entomologia Experimentalis et Applicata, 4, 277288.Google Scholar
Sands, W. A. (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bulletin of the British Museum (Natural History) Entomology, S18, 1244.Google Scholar
Scharf, M. E., Buckspan, C. E., Grzymala, T. L., & Zhou, X. (2007) Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. Journal of Experimental Biology, 210, 43904398.Google Scholar
Schmidt, A. M., Jacklyn, P., & Korb, J. (2013) Isolated in an ocean of grass: Low levels of gene flow between termite subpopulations. Molecular Ecology, 22, 20962105.Google Scholar
Schmidt, A. M., Jacklyn, P. & Korb, J. (2014) ‘Magnetic’ termite mounds: Is their unique shape an adaptation to facilitate gas exchange and improve food storage? Insectes Sociaux, 41, 6169.Google Scholar
Seelinger, G. & Seelinger, U. (1983) On the social organisation, alarm and fighting in the primitive cockroach Cryptocercus punctulatus Scudder. Zeitschrift für Tierpsychologie, 61, 315333.Google Scholar
Shellman-Reeve, J. S. (1997) The spectrum of eusociality in termites. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 5293.Google Scholar
Snyder, T. E. (1956) Annotated, Subject-Heading Bibliography of Termites 1350 B.C. to A.D. 1954. Washington D.C.: Smithsonian Institution.Google Scholar
Stearns, S. C. (1992) The Evolution of Life Histories. Oxford, Oxford University Press.Google Scholar
Thorne, B. & Traniello, J. (2003) Comparative social biology of basal taxa of ants and termites. Annual Reviews of Entomology, 48, 283306.Google Scholar
Thorne, B., Breisch, N., & Haverty, M. I. (2002) Longevity of kings and queens and first time of reproduction of fertile progeny in dampwood termite (Isoptera; Termopsidae; Zootermopsis) colonies with different reproductive structures. Journal of Animal Ecology, 71, 10301041.Google Scholar
Thorne, B. L. (1982) Polygyny in termites: Multiple primary queens in colonies of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae). Insectes Sociaux, 29, 102107.Google Scholar
Thorne, B. L. (1983) Alate production and sex ratio in colonies of the Neotropical termite Nasutitermes corniger (Isoptera; Termitidae). Oecologia, 58, 103109.Google Scholar
Thorne, B. L. (1984) Polygyny in the Neotropical termite Nasutitermes corniger: Life history consequences of queen mutualism. Behavioral Ecology and Sociobiology, 14, 117136.Google Scholar
Thorne, B. L. (1997) Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 2754.Google Scholar
Thorne, B.L. & Haverty, M. I. (2000) Nest growth and survivorship in three species of Neotropical Nasutitermes (Isoptera: Termitidae). Environmental Entomology, 29, 256264.Google Scholar
Thorne, B. L., Traniello, J. F. A., Adams, E. S., & Bulmer, M. (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera, Rhinotermitidae): A review of the evidence from behavioral, ecological, and genetic studies. Ethology Ecology Evolution, 11, 149169.Google Scholar
Thorne, B. L., Breisch, N., & Muscedere, M. (2003) Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proceedings of the National Academy of Sciences USA, 100, 1280812813.Google Scholar
Traniello, J. F. & Leuthold, R. H. (2000) Behavior and ecology of foraging in termites. In: Abe, T., Bignell, D. E. & Higashi, M. (eds.) Termites: Evolution, Sociality, Symbiosis and Ecology. Netherlands: Kluwer Academic Publishers, pp. 141168.Google Scholar
Vargo, E. (2003) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution, 57, 28052818.Google Scholar
Vargo, E. L. & Husseneder, C. (2009) Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54, 379403.Google Scholar
Vargo, E. L. & Husseneder, C. (2011) Genetic structure of termite colonies and populations. In: Bignell, D. E., Roisin, Y. & Lo, N. (eds.) Biology of Termites: A Modern Synthesis. Dordrecht, Heidelberg, London, New York: Springer, pp. 321348.Google Scholar
Waller, D. A. (1988) Ecological similarities of fungus-growing ants (Attini) and termites (Macrotermitinae). In: Troger, J. C. (ed.) Advances in Myrmecology. New York: E.J. Bill, pp. 337345.Google Scholar
Waller, D. A. & La Fage, J. P. (1987) Nutritional ecology of termites. In: Slansky, F. & Rodriguez, J. G. (eds.) Nutritional Ecology of Insects, Mites, and Spiders. Chichester, New York: John Wiley, pp. 487532.Google Scholar
Watson, J. A. L. & Abbey, H. M. (1989) A 17-year old primary reproductive of Mastotermes darwiniensis (Isoptera). Sociobiology, 15, 279284.Google Scholar
Watson, J. A. L. & Sewell, J. J. (1981) The origin and evolution of caste systems in termites. Sociobiology, 6, 101118.Google Scholar
Weil, T., Hoffmann, K., Kroiss, J., Strohm, E., & Korb, J. (2009) Scent of a queen-cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften, 96, 315319.Google Scholar
Wilkinson, W. (1962) Dispersal of alates and establishment of new colonies in Cryptotermes havilandi (Sjöstedt) (Isoptera, Kalotermitidae). Bulletin of Entomological Research, 53, 265286.Google Scholar
Wilkinson, W. (1963) The alate flight and colony foundation of Cryptotermes havilandi (Sjöstedt) (Isoptera, Kalotermitidae). Symposium of Genetics and Biologie Italy, 11, 269275.Google Scholar
Wilson, E. (1971) Insect Societies. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Wood, T. G. & Thomas, R. J. (1989) The mutualistic association between macrotermitinae and termitomyces. In: Wilding, N., Collins, N. M., Hammond, P. M., & Webber, J. F. (eds.) Insect-fungus Interactions. New York: Academic Press, pp. 6992.Google Scholar
Wood, T. G., Johnson, R. A., & Ohiagu, C. E. (1977) Populations of termites (Isoptera) in natural and agricultural ecosystems in Southern Guinea savanna near Mokwa, Nigeria. GeoEcoTrop, 1, 139148.Google Scholar

References

Abbot, P. (2009) On the evolution of dispersal and altruism in aphids. Evolution, 63, 26872696.Google Scholar
Abbot, P. (2011) A closer look at the spatial architecture of aphid clones. Molecular Ecology, 20, 45874589.Google Scholar
Abbot, P. (2015) The physiology and genomics of social transitions in aphids. In: Zayed, A. & Kent, C.F. (eds.) Genomics, Physiology and Behavior of Social Insects. Advances in Insect Physiology, Volume 48. New York: Academic Press, pp. 163188.Google Scholar
Abbot, P. & Chhatre, V. (2007) Kin structure provides no explanation for intruders in social aphids. Molecular Ecology, 16, 36593670.Google Scholar
Abbot, P. & Withgott, J. H. (2004) Phylogenetic and molecular evidence for allochronic speciation in gall-forming aphids (Pemphigus). Evolution, 58, 539553.Google Scholar
Abbot, P., Withgott, J. H., & Moran, N. A. (2001) Genetic conflict and conditional altruism in social aphid colonies. Proceedings of the National Academy of Sciences of the United States of America, 98, 1206812071.Google Scholar
Akimoto, S. (1989) Gall-invading behavior of Eriosoma aphids (Homoptera, Pemphigidae) and its significance. Japanese Journal of Entomology, 57, 210220.Google Scholar
Akimoto, S. (1996) Ecological factors promoting the evolution of colony defense in aphids: Computer simulations. Insectes Sociaux, 43, 115.Google Scholar
Akimoto, S., & Yamaguchi, Y. (1997) Gall usurpation by the gall-forming aphid, Tetraneura sorini (Insecta Homoptera). Ethology Ecology and Evolution, 9, 159168.Google Scholar
Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991) The evolution of eusociality. In: Sherman, P.W., Jarvis, J. U. M., & Alexander, R.D. (eds.) The Biology of the Naked Mole Rat. Princeton: Princeton University Press, pp. 344.Google Scholar
Alton, K. (1999) The biology of Pemphigus spyrothecae galls on poplar leaves. PhD thesis, Nottingham: University of Nottingham.Google Scholar
Aoki, S. (1976) Occurrence of dimorphism in the first instar larva of Colophina clematis (Homoptera, Aphidoidea) Kontyû, 44, 130137.Google Scholar
Aoki, S. (1979) Dimorphic first instar larvae produced by the fundatrix of Pachypappa marsupialis (Homoptera: Aphidoidea) Kontyû, 47, 390398.Google Scholar
Aoki, S. & Kurosu, U. (2004) How many soldiers are optimal for an aphid colony? Journal of Theoretical Biology, 230, 313317.Google Scholar
Aoki, S. & Kurosu, U. (2010) A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche: A Journal of Entomology, 2010, 134.Google Scholar
Aoki, S., Yamane, S., & Kiuchi, M. (1977) On the biters of Astegopteryx styracicola (Homoptera, Aphidoidea). Kontyû, 45, 563570.Google Scholar
Aoki, S., Kurosu, U., & Stern, D. L. (1991) Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Animal Behaviour, 42, 865866.Google Scholar
Aoki, S., Kurosu, U., & Buranapanichpan, S. (2007) Female production within the gall and male production on leaves by individual alates of a social aphid. Insectes Sociaux, 54, 356362.Google Scholar
Benton, T. G. & Foster, W. A. (1992) Altruistic housekeeping in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 247, 199202.Google Scholar
Blackman, R. L. & Eastop, V. F. (1994) Aphids on the World’s Trees: An Identification and Information Guide. London: University Press.Google Scholar
Boomsma, J. J., Huszár, D. B., & Pedersen, J. S. (2014) The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Animal Behaviour, 92, 241252.Google Scholar
Bono, J. M. (2007) Patterns of kleptoparasitism and inquilinism in social and non-social Dunatothrips on Australian Acacia. Ecological Entomology, 32, 411418.Google Scholar
Bono, J. M. & Crespi, B. J. (2006) Costs and benefits of joint colony founding in Australian Acacia thrips. Insectes Sociaux, 53, 489495.Google Scholar
Bono, J. M. & Crespi, B. J. (2008) Cofoundress relatedness and group productivity in colonies of social Dunatothrips (Insecta: Thysanoptera) on Australian Acacia. Behavioral Ecology and Sociobiology, 62, 14891498.Google Scholar
Cappuccino, N. (1987) Comparative population dynamics of two goldenrod aphids: Spatial patterns and temporal constancy. Ecology, 68, 16341646.Google Scholar
Chapman, T. W. & Crespi, B. J. (1998) High relatedness and inbreeding in two species of haplodiploid eusocial thrips (Insecta: Thysanoptera) revealed by microsatellite analysis. Behavioral Ecology and Sociobiology, 43, 301306.Google Scholar
Chapman, T. W. & Perry, S. P. (2006) Evolution of fighting ability in soldiers of Australian gall thrips. In: Kipyatkov, V. (ed.) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg: St. Petersburg University Press, pp. 113120.Google Scholar
Chapman, T. W., Crespi, B. J., Kranz, B. D., & Schwarz, M. P. (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proceedings of the National Academy of Sciences of the United States of America, 97, 16481650.Google Scholar
Chapman, T. W., Kranz, B. D., Bejah, K. L., & Crespi, B. J. (2002) The evolution of soldier reproduction in social thrips. Behavioral Ecology, 13, 519525.Google Scholar
Chapman, T. W., Geyer, K. F., & Schwarz, M. P. (2006) The impact of kleptoparasitic invasions on the evolution of gall-size in social and solitary Australian Acacia thrips. Insect Science, 13, 391400.Google Scholar
Chapman, T. W., Crespi, B. J., & Perry, S. P. (2008) The evolutionary ecology of eusociality in Australian gall thrips: A “model clades” approach. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin: Springer-Verlag, pp. 5783.Google Scholar
Childers, C. C., Beshear, R. J., Frantz, G., & Nelms, M. (2005) A review of thrips species biting man including records in Florida and Georgia between 1986–1997. Florida Entomologist, 88, 447451.Google Scholar
Choe, J. C. & Crespi, B. J. (1997) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press.Google Scholar
Clutton-Brock, T. (2009) Cooperation between non-kin in animal societies. Nature, 462, 5157.Google Scholar
Costa, J. T. (2006) The Other Social Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Costa, J. T. & Fitzgerald, T. D. (2005) Social terminology revisited: Where are we ten years later? Annales Zoologici Fennici, 2, 559564.Google Scholar
Crespi, B. J. (1986) Territoriality & fighting in a colonial thrips, Hoplothrips pedicularius, and sexual dimorphism in Thysanoptera. Ecological Entomology, 11, 119130.Google Scholar
Crespi, B. J. (1988) Alternative male mating tactics in a thrips: Effects of sex ratio variation and body size. American Midland Naturalist, 119, 8392.Google Scholar
Crespi, B. J. (1992a) Eusociality in Australian gall thrips. Nature, 359, 724726.Google Scholar
Crespi, B. J. (1992b) Behavioral ecology of Australian gall thrips (Insecta, Thysanoptera). Journal of Natural History, 26, 769809.Google Scholar
Crespi, B. J. (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Sociaux, 41, 395400.Google Scholar
Crespi, B. J. (1996) Comparative analysis of the origins and losses of eusociality: Causal mosaics and historical uniqueness. In: Martins, E. (ed.) Phylogenies and the Comparative Method in Animal Behavior. Oxford: Oxford University Press, pp. 253287.Google Scholar
Crespi, B. J. & Abbot, P. (1999) The behavioral ecology and evolution of kleptoparasitism in Australian gall thrips. The Florida Entomologist, 82, 147.Google Scholar
Crespi, B. J. & Worobey, M. (1998) Comparative analysis of gall morphology in Australian gall thrips: The evolution of extended phenotypes. Evolution, 52, 1686.Google Scholar
Crespi, B. J. & Yanega, D. (1995) The definition of eusociality. Behavioral Ecology, 6: 109115.Google Scholar
Crespi, B. J., Carmean, D. A., & Chapman, T. W. (1997) Ecology and evolution of galling thrips and their allies. Annual Review Of Entomology, 42, 5171.Google Scholar
Crespi, B. J., Carmean, D. A., Mound, L. A., & Worobey, M. (1998) Phylogenetics of social behavior in Australian gall-forming thrips: Evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. Molecular Phylogenetics and Evolution, 9, 163180.Google Scholar
Crespi, B. J., Morris, D. C., & Mound, L. A. (2004) Evolution of ecological and behavioral diversity: Australian Acacia thrips as model organisms. CSIRO, Canberra: Australian Biological Resources Study & Australian National Insect Collection.Google Scholar
de Bruijn, P. J. A. & Egas, M. (2014) Effects of kinship or familiarity? Small thrips larvae experience lower predation risk only in groups of mixed-size siblings. Behavioral Ecology and Sociobiology, 68, 10291035.Google Scholar
De Facci, M., Svensson, G. P., Chapman, T. W., & Anderbrant, O. (2013) Evidence for caste differences in anal droplet alarm pheromone production and responses in the eusocial thrips Kladothrips intermedius. Ethology, 119, 11181125.Google Scholar
De Facci, M., Wang, H-L., Yuvaraj, J. K., et al. (2014) Chemical composition of anal droplets of the eusocial gall-inducing thrips Kladothrips intermedius. Chemoecology, 24, 8594.Google Scholar
de Kogel, W. J., Bosco, D., Van der Hoek, M., & Mollema, C. (1999) Effect of host plant on body size of Frankliniella occidentalis (Thysanoptera: Thripidae) and its correlation with reproductive capacity. European Journal of Entomology, 96, 365368.Google Scholar
Dixon, A. F. G. (1998) Aphid Ecology. 2nd Edn. London: Chapman & Hall.Google Scholar
Emlen, S. T. (1982) The evolution of helping. I. An ecological constraints model. American Naturalist, 119, 2939.Google Scholar
Fernandes, G. W. & Price, P. W. (1988) Biogeographical gradients in galling species richness. Oecologia, 76, 161167.Google Scholar
Foster, W. A. (1990) Experimental evidence for effective and altruistic colony defense against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae). Behavioral Ecology and Sociobiology 27, 421430.Google Scholar
Foster, W. A. (1996) Duelling aphids: Intraspecific fighting in Astegopteryx minuta (Homoptera: Hormaphididae). Animal Behavior, 51, 645655.Google Scholar
Foster, W. A. (2009) Aphid sex ratios. In: Hardy, I.C.W. (ed.) Sex Ratios Concepts and Research Methods. Cambridge: Cambridge University Press, pp. 254265.Google Scholar
Foster, W. A. & Benton, T. G. (1992) Sex ratio, local mate competition and mating behavior in the aphid Pemphigus spyrothecae. Behavioral Ecology and Sociobiology, 30, 297307.Google Scholar
Foster, W. A., & Northcott, N. A. (1994) Galls and the evolution of social behavior in aphids. In: Williams, M.A.J. (ed.) Plant Galls: Organisms, Interactions, Populations. Oxford: Oxford University Press, pp. 161182.Google Scholar
Foster, W. A. & Rhoden, P. (1998) Soldiers effectively defend aphid colonies against predators in the field. Animal Behaviour, 55, 761765.Google Scholar
Gilbert, J. D. J. (2014) Thrips domiciles protect larvae from desiccation in an arid environment. Behavioral Ecology, 25, 13381346.Google Scholar
Gilbert, J. D. J. & Mound, L. A. (2012) Biology of a new species of socially parasitic thrips (Thysanoptera: Phlaeothripidae) inside Dunatothrips nests, with evolutionary implications for inquilinism in thrips. Biological Journal of the Linnean Society, 107, 112122.Google Scholar
Gilbert, J. D. J. & Simpson, S. J. (2013) Natural history and behavior of Dunatothrips aneurae Mound (Thysanoptera: Phlaeothripidae), a phyllode-gluing thrips with facultative pleometrosis. Biological Journal of the Linnean Society, 109, 802816.Google Scholar
Gonsalves, G. (2010) Host exploitation and fidelity in Acacia gall-invading parasites. Masters thesis, Memorial University of Newfoundland. Newfoundland: St. Johns.Google Scholar
Grimaldi, D. & Engels, M. S. (2005) Evolution of the Insects. New York: Cambridge University Press, pp. 755.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behavior. II. Journal of Theoretical Biology 7, 152.Google Scholar
Hamilton, W. D. (1972) Altruism and related phenomena, mainly in social insects. Annual Review of Ecology and Evolution, 3, 193232.Google Scholar
Hamilton, W. D. (1996) Narrow Roads of Gene Land, Vol. 1. Oxford: Oxford University Press.Google Scholar
Hattori, M. & Itino, T. (2008) Soldiers’ armature changes seasonally and locally in an eusocial aphid (Homoptera: Aphididae). Sociobiology, 52, 429436.Google Scholar
Hattori, M., Kishida, O., & Itino, T. (2012) Buying time for colony mates: The anti-predatory function of soldiers in the eusocial aphid Ceratovacuna japonica (Homoptera, Hormaphidinae). Insectes Sociaux, 60, 1521.Google Scholar
Ijichi, N., Shibao, H., Miura, T., Matsumoto, T., & Fukatsu, T. (2005) Analysis of natural colonies of a social aphid Colophina arma: Population dynamics, reproductive schedule, and survey for ecological correlates with soldier production. Applied Entomology and Zoology, 40, 239245.Google Scholar
Inbar, M. (1998) Competition, territoriality & maternal defense in a gall-forming aphid. Ethology Ecology and Evolution, 10, 159170.Google Scholar
Inbar, M., Eshel, A., & Wool, D. (1995) Interspecific competition among phloem-feeding insects mediated by induced host-plant sinks. Ecology, 76, 15061515.Google Scholar
Jaquiery, J., Stoeckel, S., Rispe, C., Mieuzet, L., Legeai, F., & Simon, J. C. (2012) Accelerated evolution of sex chromosomes in aphids, an X0 system. Molecular Biology and Evolution, 29, 837847.Google Scholar
Jedličková, V., Jedlička, P., & Lee, H.-J. (2015) Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. General and Comparative Endocrinology, 223, 19.Google Scholar
Kiester, A. R., & Strates, E. (1984) Social behavior in a thrips from Panama. Journal of Natural History, 18, 303314.Google Scholar
Kranz, B. D. (2005) Egg size and reproductive allocation in eusocial thrips. Behavioral Ecology, 16, 779787.Google Scholar
Kranz, B. D., Schwarz, M. P., Mound, L. A., & Crespi, B. J. (1999) Social biology and sex ratios of the eusocial gall-inducing thrips Kladothrips hamiltoni. Ecological Entomology, 24, 432442.Google Scholar
Kranz, B. D., Schwarz, M. P., Giles, L. C., & Crespi, B. J. (2000) Split sex ratios and virginity in a gall-inducing thrips. Journal of Evolutionary Biology, 13, 700706.Google Scholar
Kranz, B. D., Schwarz, M. P., Mound, L. A., & Crespi, B. J. (2001a) Social biology and sex ratios of the eusocial gall-inducing thrips Kladothrips hamiltoni. Ecological Entomology, 24, 432442.Google Scholar
Kranz, B. D., Chapman, T. W., Crespi, B. J., & Schwarz, M. P. (2001b) Social biology and sex ratios in the gall-inducing thrips, Oncothrips waterhousei and Oncothrips habrus. Insectes Sociaux, 48, 315323.Google Scholar
Kranz, B. D., Schwarz, M. P., Wills, T., Chapman, T. W., Morris, D. C., & Crespi, B. J. (2001c) A fully reproductive fighting morph in a soldier clade of gall-inducing thrips (Oncothrips morrisi). Behavioral Ecology and Sociobiology, 50, 151161.Google Scholar
Kranz, B. D., Schwarz, M. P., Morris, D. C., & Crespi, B. J. (2002) Life history of Kladothrips ellobus and Oncothrips rodwayi: Insight into the origin and loss of soldiers in gall-inducing thrips. Ecological Entomology, 27, 4957.Google Scholar
Kurosu, U. & Aoki, S. (2009) Extremely long-closed galls of a social aphid. Psyche: A Journal of Entomology, 2009, 19.Google Scholar
Kurosu, U., Buranapanichpan, S., & Aoki, S. (2006) Astegopteryx spinocephala (Hemiptera: Aphididae), a new aphid species producing sterile soldiers that guard eggs laid in their gall. Entomological Science, 9, 181190.Google Scholar
Kutsukake, M., Shibao, H., Nikoh, N., et al. (2004) Venomous protease of aphid soldier for colony defense. Proceedings of the National Academy of Sciences of the United States of America, 101, 1133811343.Google Scholar
Kutsukake, M., Shibao, H., Uematsu, K., & Fukatsu, T. (2009) Scab formation and wound healing of plant tissue by soldier aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 276, 15551563.Google Scholar
Lamb, R. J., MacKay, P. A., & Migui, S. M. (2012) Measuring the performance of aphids: Fecundity versus biomass. The Canadian Entomologist, 141, 401405.Google Scholar
Lawson, S. P., Legan, A. W., Graham, C., & Abbot, P. (2014a) Comparative phenotyping across a social transition in aphids. Animal Behaviour, 96, 117125.Google Scholar
Lawson, S. P., Christian, N., and Abbot, P. (2014b) Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. Fungal Diversity, 66, 8997.Google Scholar
Lewis, T. (1973) Thrips, Their Biology, Ecology and Economic Importance. New York: Academic Press.Google Scholar
McLeish, M. J., Perry, S. P., Gruber, D., & Chapman, T. W. (2003) Dispersal patterns of an Australian gall-forming thrips and its host tree (Oncothrips tepperi and Acacia oswaldii). Ecological Entomology, 28, 243246.Google Scholar
McLeish, M. J., Chapman, T. W., & Crespi, B. J. (2006) Inbreeding ancestors: The role of sibmating in the social evolution of gall thrips. Journal of Heredity, 97, 3138.Google Scholar
McLeish, M. J., Crespi, B. J., Chapman, T. W., & Schwarz, M. P. (2007) Parallel diversification of Australian gall-thrips on Acacia. Molecular Phylogenetics and Evolution, 43, 714725.Google Scholar
Michener, C. D. (1969) Comparative social behavior of bees. Annual Review Of Entomology, 14, 299342.Google Scholar
Miller, D. G. III (1998) Consequences of communal gall occupation and a test for kin discrimination in the aphid Tamalia coweni (Cockerell) (Homoptera: Aphididae). Behavioral Ecology and Sociobiology, 43, 95103.Google Scholar
Miller, D. G. III (2005) Ecology and radiation of galling aphids (Tamalia; Hemiptera: Aphididae) on their host plants (Ericaceae). Basic and Applied Ecology, 6, 463469.Google Scholar
Miller, N. J., Kift, N. B., & Tatchell, G. M. (2005) Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.). Heredity, 94, 556564.Google Scholar
Minaei, K. (2014) New record of predatory thrips, Aeolothrips melaleucus (Thysanoptera, Aeolothripidae). Linzer Biologische Beitraege, 46, 637642.Google Scholar
Moran, N. A. (1992) The evolution of aphid life cycles. Annual Review of Entomology, 37, 321348.Google Scholar
Moran, N. A. (1993a) Defenders in the North American aphid Pemphigus obesinymphae. Insectes Sociaux, 40, 391402.Google Scholar
Moran, N. A. (1993b) Evolution of sex ratio variation in aphids. In: Wrensch, D. L. & Ebbert, M. A. (eds.) Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 346368.Google Scholar
Morris, D. C. & Schwarz, M. P. (2002) Pleometrosis in phyllode-glueing thrips (Thysanoptera: Phlaeothripidae) on Australian Acacia. Biological Journal of the Linnean Society, 75, 467474.Google Scholar
Morris, D. C., Schwarz, M. P., Crespi, B. J., & Cooper, S. J. B. (2001) Phylogenetics of gall-inducing thrips on Australian Acacia. Biological Journal of the Linnean Society, 74, 7386.Google Scholar
Morris, D. C., Schwarz, M. P., Cooper, S. J. B., & Mound, L. A. (2002) Phylogenetics of Australian Acacia thrips: The evolution of behavior and ecology. Molecular Phylogenetics and Evolution, 25, 278292.Google Scholar
Mound, L. A. (2005) Thysanoptera: Diversity and interactions. Annual Review of Entomology, 50, 247269.Google Scholar
Mound, L. A. & Morris, D. C. (2007) The insect order Thysanoptera: Classification versus systematics. Zootaxa, 1668, 395411.Google Scholar
Perry, S. P., McLeish, M. J., Schwarz, M. P., & Boyette, A. H. (2003) Variation in propensity to defend by reproductive gall morphs in two species of gall-forming thrips. Insectes Sociaux, 50, 5458.Google Scholar
Perry, S. P., Chapman, T. W., Schwarz, M. P., & Crespi, B. J. (2004) Proclivity and effectiveness in gall defense by soldiers in five species of gall-inducing thrips: Benefits of morphological caste dimorphism in two species (Kladothrips intermedius and K. habrus). Behavioral Ecology and Sociobiology, 56, 602610.Google Scholar
Pike, N. & Foster, W. A. (2008) The ecology of altruism in a clonal insect. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin: Springer-Verlag, pp. 3756.Google Scholar
Pike, N., Richard, D., Foster, W., & Mahadevan, L. (2002) How aphids lose their marbles. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 12111215.Google Scholar
Pike, N., Braendle, C., & Foster, W. A. (2004) Seasonal extension of the soldier instar as a route to increased defense investment in the social aphid Pemphigus spyrothecae. Ecological Entomology, 29, 8995.Google Scholar
Pike, N., Whitfield, J.A., & Foster, W. A. (2007) Ecological correlates of sociality in Pemphigus aphids, with a partial phylogeny of the genus. BMC Evolutionary Biology, 7, 185.Google Scholar
Pope, R. D. (1983) Some aphid waxes, their form and function (Homoptera: Aphididae). Journal of Natural History, 17, 489506.Google Scholar
Prokopy, R. J. & Roitberg, B. D. (2001) Joining and avoidance behavior in nonsocial insects. Annual Review Of Entomology, 46, 631665.Google Scholar
Queller, D. C. & Strassmann, J. E. (1998) Kin selection and social Insects. Bioscience, 48, 165175.Google Scholar
Rhoden, P. K. & Foster, W. A. (2002) Soldier behavior and division of labour in the aphid genus Pemphigus (Hemiptera, Aphididae). Insectes Sociaux, 49, 257263.Google Scholar
Roisen, Y. (2006) Life history, life types and caste evolution in termites. In: Kipyatkov, V. (ed.) Life Cycles in Social Insects: Behaviour, Ecology and Evolution. St. Petersburg: St. Petersburg University Press, pp. 8595.Google Scholar
Rubenstein, D. R. & Lovette, I. J. (2007) Temporal environmental variability drives the evolution of cooperative breeding in birds. Current Biology, 17, 14141419.Google Scholar
Schütze, M. & Maschwitz, U. (1991) Enemy recognition and defense within trophobiotic associations with ants by the soldier caste of Pseudoregma sundanica (Homoptera: Aphidoidea). Entomologia Generalis, 16, 112.Google Scholar
Shibao, H. (1999) Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). Journal of Ethology, 17, 1724.Google Scholar
Shibao, H., Lee, J.-M., Kutsukake, M., & Fukatsu, T. (2003) Aphid soldier differentiation: Density acts on both embryos and newborn nymphs. Naturwissenschaften, 90, 501504.Google Scholar
Shibao, H., Kutsukake, M., & Fukatsu, T. (2004a) The proximate cue of density-dependent soldier production in a social aphid. Journal of Insect Physiology, 50, 143147.Google Scholar
Shibao, H., Kutsukake, M., & Fukatsu, T. (2004b) Density triggers soldier production in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, Suppl, 3, S71S74.Google Scholar
Shibao, H., Kutsukake, M., Matsuyama, S., Fukatsu, T., & Shimada, M. (2010) Mechanisms regulating caste differentiation in an aphid social system. Communicative and Integrative Biology, 3, 15.Google Scholar
Shingleton, A. W. & Foster, W. A. (2000) Ant tending influences soldier production in a social aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 18631868.Google Scholar
Shingleton, A. W. & Foster, W. A. (2001) Behavior, morphology and the division of labour in two soldier-producing aphids. Animal Behaviour, 62, 671679.Google Scholar
Stern, D. L. (1994) A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proceedings of the Royal Society of London. Series B: Biological Sciences, 256, 203209.Google Scholar
Stern, D. L. (1998) Phylogeny of the tribe Cerataphidini (Homoptera) and the evolution of the horned soldier aphids. Evolution, 52, 155.Google Scholar
Stern, D. L. & Foster, W. A. (1996) The evolution of soldiers in aphids, Biological Reviews of the Cambridge Philosophical Society, 71, 2779.Google Scholar
Strassmann, J. E. & Queller, D. C. (2010) The social organism: Congresses, parties, and committees. Evolution, 64, 605616.Google Scholar
Stone, G. N. & Schönrogge, K. (2003) The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18, 512522.Google Scholar
Toth, A. L., Varala, K., Newman, T. C., et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318, 441444.Google Scholar
Turnbull, C., Hoggard, S., Gillings, M., et al. (2011) Antimicrobial strength increases with group size: Implications for social evolution. Biology Letters, 7, 249252.Google Scholar
Turnbull, C., Caravan, H., Chapman, T., et al. (2012) Antifungal activity in thrips soldiers suggests a dual role for this caste. Biology Letters, 8, 526529.Google Scholar
Wcislo, W. T. (1997) Are behavioral classifications blinders to studying natural variation? In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. London: Cambridge University Press, pp. 813.Google Scholar
Wcislo, W. T. & Tierney, S. M. (2009) The evolution of communal behavior in bees and wasps: An alternative to eusociality. In: Gadau, J. & Fewell, J. (eds.) Organization of Insect Societies. Cambridge: Harvard University Press, pp. 148169.Google Scholar
Whitham, T. G. (1979) Territorial behavior of Pemphigus gall aphids. Nature, 279, 324325.Google Scholar
Whitham, T. G. (1986) Cost of benefits of territoriality: Behavioral and reproductive release by competing aphids. Ecology, 67, 139147.Google Scholar
Wilch, M. H. (1999) Predation and prey response in the galls of Pemphigus populi-ramulorum. Masters thesis, Tucson: University of Arizona.Google Scholar
Wills, T. E., Chapman, T. W., Kranz, B. D., & Schwarz, M. P. (2001) Reproductive division of labour coevolves with gall size in Australian thrips with soldiers. Naturwissenschaften, 88, 526529.Google Scholar
Wills, T. E., Chapman, T. W., & Mound, L. A. (2004) Natural history and description of Oncothrips kinchega, a new species of gall-inducing thrips with soldiers (Thysanoptera: Phlaeothripidae). Australian Journal of Entomology, 43, 169176.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge: Harvard University Press.Google Scholar
Wilson, E. O. (1975) Sociobiology: The New Synthesis. Cambridge, MA: Harvard University Press, Belknap Press.Google Scholar
Withgott, J. H., Abbot, D. K., &. Moran, N. A (1997) Maternal death relaxes developmental inhibition in nymphal aphid defenders. Proceedings of the Royal Society B: Biological Sciences, 264, 11971202.Google Scholar

References

Agnarsson, I. (2006) A revision of the New World eximius lineage of Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis using worldwide exemplars. Zoological Journal of the Linnean Society, 146, 453593.Google Scholar
Agnarsson, I., Avilés, L., Coddington, J., & Maddison, W. (2006) Sociality in Theridiid spiders: Repeated origins of an evolutionary dead end. Evolution, 60, 23422351.Google Scholar
Agnarsson, I., Maddison, W. P., & Avilés, L. (2010) Complete separation along matrilines in a social spider metapopulation inferred from hypervariable mitochondrial DNA region. Molecular Ecology, 19, 30523063.Google Scholar
Agnarsson, I., Avilés, L., & Maddison, W. P. (2013) Loss of genetic variability in social spiders: Genetic and phylogenetic consequences of population subdivision and inbreeding. Journal of Evolutionary Biology, 26, 2737.Google Scholar
Agnarsson, I., Gotelli, N. J., Agostini, D., & Kuntner, M. (2015) Limited role of character displacement in the coexistence of congeneric Anelosimus spiders in a Madagascan montane forest. Ecography, 38, 001011.Google Scholar
Amir, N., Whitehouse, M. E. A., & Lubin, Y. (2000) Food consumption rates and competition in a communally feeding social spider, Stegodyphus dumicola (Eresidae) Journal of Arachnology, 28, 195200.Google Scholar
Avilés, L. (1993a) Interdemic selection and the sex-ratio - a social spider perspective. American Naturalist, 142, 320345.Google Scholar
Avilés, L. (1993b) Newly-discovered sociality in the neotropical spider Aebutina binotata Simon (Dictynidae) Journal of Arachnology, 21, 184193.Google Scholar
Avilés, L. (1994) Social behavior in a web-building lynx spider, Tapinillus sp (Araneae, Oxyopidae). Biological Journal of the Linnean Society, 52, 163176.Google Scholar
Avilés, L. (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe, J. C. & Crespi, B. J. (eds.) Evolution of Social Behavior in Insects and Arachnids. Cambridge, MA: Cambridge University Press, pp. 476498.Google Scholar
Avilés, L. (1999) Cooperation & non-linear dynamics: An ecological perspective on the evolution of sociality. Evolutionary Ecology Research, 1, 459477.Google Scholar
Avilés, L. (2000) Nomadic behaviour and colony fission in a cooperative spider: Life history evolution at the level of the colony? Biological Journal of the Linnean Society, 70, 325339.Google Scholar
Avilés, L. & Bukowski, T. C. (2006) Group living and inbreeding depression in a subsocial spider. Proceedings of the Royal Society of London B, 273, 157163.Google Scholar
Avilés, L. & Gelsey, G. (1998) Natal dispersal and demography of a subsocial Anelosimus species and its implications for the evolution of sociality in spiders. Canadian Journal of Zoology, 76, 21372147.Google Scholar
Avilés, L. & Harwood, G. (2012) A quantitative index of sociality and its application to group-living spiders and other social organisms. Ethology, 118, 12191229.Google Scholar
Avilés, L. & Maddison, W. (1991) When is the sex ratio biased in social spiders?: Embryo and male meiosis chromosome studies in Anelosimus spp. Journal of Arachnology, 19, 126135.Google Scholar
Avilés, L. & Purcell, J. (2012) The evolution of inbred social systems in spiders and other organisms: From short-term gains to long-term evolutionary dead ends?. Advances in the Study of Behavior, 44, 99133.Google Scholar
Avilés, L. & Salazar, P. (1999) Notes on the social structure, life cycle, and behavior of Anelosimus rupununi. Journal of Arachnology, 27, 497502.Google Scholar
Avilés, L. & Tufiño, P. (1998) Colony size and individual fitness in the social spider Anelosimus eximius. The American Naturalist, 152, 403418.Google Scholar
Avilés, L., Maddison, W. P., Salazar, P. A., Estevez, G., Tufino, P., & Cañas, G. (2001) Social spiders of the Ecuadorian Amazonia, with notes on six previously undescribed social species, Revista Chilena De Historia Natural, 74, 619638.Google Scholar
Avilés, L., Maddison, W., & Agnarsson, I. (2006) A new independently derived social spider with explosive colony proliferation and a female size dimorphism. Biotropica, 38, 743753.Google Scholar
Avilés, L., Agnarsson, I., Salazar, P. A., Purcell, J., Iturralde, G., et al. (2007) Natural history miscellany - Altitudinal patterns of spider sociality and the biology of a new midelevation social Anelosimus species in Ecuador. The American Naturalist, 170, 783792.Google Scholar
Berger-Tal, R., Berner-Aharon, N., Aharon, S., Cristina Tuni, C., & Lubin, Y. (2016). Good reasons to leave home: proximate dispersal cues in a social spider. Journal of Animal Ecology, 85, 10351042.Google Scholar
Bernard, A. & Krafft, B. (2002) Silk attraction: Base of group cohesion and collective behaviours in social spiders. Comptes Rendus Biologies, 325, 11531157.Google Scholar
Bilde, T., Coates, K. S., Birkhofer, K., et al. (2007) Survival benefits select for group living in a social spider despite reproductive costs. Journal of Evolutionary Biology, 20, 24122426.Google Scholar
Bilde, T., Lubin, Y., Smith, D., Schneider, J. M., Maklakov, A. A. (2005) The transition to social inbred mating systems in spiders: Role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160174.Google Scholar
Bilde, T. & Lubin, Y. (2011) Group living in spiders: Cooperative breeding and coloniality. In: Herberstein, M.E. (ed.) Spider Behavior, Flexibility and Versatility. New York: Cambridge University, pp. 275307.Google Scholar
Bilde, T., Lubin, Y., Smith, D., Schneider, J., & Maklakov, A. (2005) The transition to social inbred mating systems in spiders: Role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160174.Google Scholar
Binford, G. J. & Rypstra, A. L. (1992) Foraging behavior of the communal spider, Philoponella-republicana (Araneae, Uloboridae). Journal of Insect Behavior, 5, 321335.Google Scholar
Bowden, K. (1991) The evolution of sociality in the spitting spider, Scytodes-fusca (Araneae, Scytodidae): Evidence from observations of intraspecific interactions. Journal of Zoology, 223, 161172.Google Scholar
Breitwisch, R. (1989) Prey capture by a West-African social spider (Uloboridae, Philoponella sp). Biotropica, 21, 359363.Google Scholar
Brett, R. A. (1991) The population structure of naked mole-rat colonies. In: Sherman, P.W., Jarvis, J. U. M., & Alexander, R.D. (eds.) The Biology of the Naked Mole-Rat. Princeton: Princeton University Press, pp. 97136.Google Scholar
Buschinger, A. (1989) Evolution, speciation, and inbreeding in the parasitic ant genus Epimyrma (Hymenoptera, Formicidae). Journal of Evolutionary Biology, 2, 265283.Google Scholar
Buskirk, R. E. (1975) Coloniality, activity patterns and feeding in a tropical orb-weaving spider. Ecology, 56, 13141328.Google Scholar
Chapman, T. W., Crespi, B. J., Kranz, B. D., & Schwarz, M. P. (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proceedings of the National Academy of Sciences USA, 97, 16481650.Google Scholar
Corcobado, G., Rodriguez-Girones, M. A., Moya-Larano, J., & Avilés, L. (2012) Sociality level correlates with dispersal ability in spiders. Functional Ecology, 26, 794803.Google Scholar
Crouch, T. & Lubin, Y. (2000) Effects of climate and prey availability on foraging in a social spider, Stegodyphus mimosarum (Araneae, Eresidae). Journal of Arachnology, 28, 158168.Google Scholar
Crouch, T. & Lubin, Y. (2001) Population stability and extinction in a social spider Stegodyphus mimosarum (Araneae: Eresidae). Biological Journal of the Linnean Society, 72, 409417.Google Scholar
Darchen, R. (1967) Une nouvelle araignée sociale du Gabon Agelena republicana Darchen (Aranéide labidognathe). Biologia Gabonica, 3, 3142.Google Scholar
Duncan, S. I., Riechert, S. E., Fitzpatrick, B. M., & Fordyce, J. A. (2010) Relatedness and genetic structure in a socially polymorphic population of the spider Anelosimus studiosus. Molecular Ecology, 19, 810818.Google Scholar
D’Andrea, M. (1987) Social behavior in spiders (Arachnida, Araneae). Italian Journal of Zoology, Monograph, 3, 1156.Google Scholar
Ebert, D. (1998) Behavioral asymmetry in relation to body weight and hunger in the tropical social spider Anelosimus eximius (Araneae, Theridiidae). Journal of Arachnology, 26, 7080.Google Scholar
Emlen, S. T. (1982) The evolution of helping. I. An ecological constraints model. The American Naturalist, 119, 2939.Google Scholar
Evans, T. (1998) Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society, 63, 205219.Google Scholar
Evans, T. & Goodisman, M. (2002) Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular Ecology, 11, 23072316.Google Scholar
Evans, T. A. & Main, B. Y. (1993) Attraction between social crab spiders - silk pheromones in Diaea-socialis. Behavioral Ecology, 4, 99105.Google Scholar
Evans, T. A., Wallis, E. J., & Elgar, M. A. (1995) Making a meal of mother. Nature, 376, 299299.Google Scholar
Fernández-Campón, F. (2007) Group foraging in the colonial spider Parawixia bistriata (Araneidae): Effect of resource levels and prey size. Animal Behaviour, 74, 15511562.Google Scholar
Fernández-Campón, F. (2010) Cross-habitat variation in the phenology of a colonial spider: Insights from a reciprocal transplant study. Naturwissenschaften, 97, 279289.Google Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Dover, New York.Google Scholar
Fowler, H. G. & Diehl, J. (1978) Biology of a Paraguayan colonial orb-weaver, Eriophora bistriata (Rengger) (Araneae, Araneidae). Bulletin of the British Arachnological Society, 4, 241250.Google Scholar
Gonzaga, M. O. and Vasconcellos-Neto, J. (2001) Female body size, fecundity parameters and foundation of new colonies in Anelosimus jabaquara (Araneae, Theridiidae). Insectes Sociaux, 48, 94100.Google Scholar
Grinsted, L., Bilde, T., & d’Ettorre, P. (2011) Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider. Behavioral Ecology, 22, 11871194.Google Scholar
Grinsted, L., Pruitt, J. N., Settepani, V., & Bilde, T. (2013) Individual personalities shape task differentiation in a social spider. Proceedings of the Royal Society of London B, 280, 20131407.Google Scholar
Grinsted, L., Breuker, C. J., & Bilde, T. (2014) Cooperative breeding favors maternal investment in size over number of eggs in spiders. Evolution, 68, 19611973.Google Scholar
Guevara, J. & Avilés, L. (2007) Multiple techniques confirm elevational differences in insect size that may influence spider sociality. Ecology, 88, 20152023.Google Scholar
Guevara, J. & Avilés, L. (2011) Sociality and resource use: Insights from a community of social spiders in Brazil. Behavioral Ecology, 22, 630638.Google Scholar
Guevara, J. & Avilés, L. (2015) Ecological predictors of spider sociality in the Americas. Global Ecology and Biogeography, 24, 11811191.Google Scholar
Gundermann, J. L., Horel, A., & Krafft, B. (1993) Experimental manipulations of social tendencies in the subsocial spider Coelotes-terrestris. Insectes Sociaux, 40, 219229.Google Scholar
Hart, E. M. & Avilés, L. (2014) Reconstructing local population dynamics in noisy metapopulations: The role of random catastrophes and Allee effects. Plos ONE, 9, e110049.Google Scholar
Harwood, G. & Avilés, L. (2013) Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders. Biology Letters, 9, 20130621.Google Scholar
Henschel, J. R. (1998) Predation on social and solitary individuals of the spider Stegodyphus dumicola (Araneae, Eresidae). Journal of Arachnology, 26, 6169.Google Scholar
Hoffman, C. R. & Avilés, L. (2017). Rain, predators, and spider sociality: a manipulative experiment. Behavioral Ecology, in press.Google Scholar
Hoogland, J. L. (1981) The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae, Cynomyus leucurus and Cynomus ludovicianus). Ecology, 62, 252272.Google Scholar
Jackson, R. R. (1977) Comparative studies of Dictyna and Mallos (Araneae:Dictynidae): III. Prey and feeding behavior. Psyche, 83, 267280.Google Scholar
Jackson, R. R., Nelson, X. J., & Salm, K. (2008) The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. New Zealand Journal of Zoology, 35, 225235.Google Scholar
Jakob, E. M. (2004) Individual decisions and group dynamics: Why pholcid spiders join and leave groups. Animal Behavior, 68, 920.Google Scholar
Jarvis, J. U. M., Oriain, M. J., Bennet, N. C., & Sherman, P. W. (1994) Mammalian eusociality - a family affair. Trends in Ecology and Evolution, 9, 4751.Google Scholar
Johannesen, J. & Lubin, Y. (2001) Evidence for kin-structured group founding and limited juvenile dispersal in the sub-social spider Stegodyphus lineatus (Araneae, Eresidae). Journal of Arachnology, 29, 413422.Google Scholar
Johannesen, J., Hennig, A., Dommermuth, B., & Schneider, J. M. (2002) Mitochondrial DNA distributions indicate colony propagation by single matri-lineages in the social spider Stegodyphus dumicola (Eresidae). Biological Journal of the Linnean Society, 76, 591600.Google Scholar
Johannesen, J., Lubin, Y., Smith, D., Bilde, T., & Schneider, J. (2007) The age and evolution of sociality in Stegodyphus spiders: A molecular phylogenetic perspective. Proceedings of the Royal Society of London B, 274, 231237.Google Scholar
Johannesen, J., Wickler, W., Seibt, U., & Moritz, R. F. A. (2009) Population history in social spiders repeated: Colony structure and lineage evolution in Stegodyphus mimosarum (Eresidae). Molecular Ecology, 18, 28122818.Google Scholar
Johannesen, J., Wennmann, J. T., & Lubin, Y. (2012) Dispersal behaviour and colony structure in a colonial spider. Behavioral Ecology and Sociobiology, 66, 13871398.Google Scholar
Jones, T. C. & Parker, P. G. (2000) Costs and benefits of foraging associated with delayed dispersal in the spider Anelosimus studiosus (Araneae, Theridiidae). Journal of Arachnology, 28, 6169.Google Scholar
Jones, T. C., Riechert, S. E., Dalrymple, S. E., & Parker, P. G. (2007) Fostering model explains variation in levels of sociality in a spider system. Animal Behaviour, 73, 195204.Google Scholar
Kaspari, M., Alonso, L., & O’Donnell, S. (2000) Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society of London B, 267, 485489.Google Scholar
Keiser, C. N., Jones, D. K., Modlmeier, A. P., & Pruitt, J. N. (2014) Exploring the effects of individual traits and within-colony variation on task differentiation and collective behavior in a desert social spider. Behavioral Ecology, 68, 839850.Google Scholar
Keiser, C. N., Wright, C.M., & Pruitt, J. N. (2015) Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size. Behavioral Processes, 119, 1421.Google Scholar
Kim, K., Roland, C., & Horel, A. (2000) Functional value of matriphagy in the spider Amaurobius ferox. Ethology, 106, 729742.Google Scholar
Kirkendall, L. R. (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society, 77, 293352.Google Scholar
Kirkendall, L. R. (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In: Wrench, D.L. & Ebbert, M.A. (eds.) Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 235345.Google Scholar
Krafft, B. & Pasquet, A. (1991) Synchronized and rhythmic activity during the prey capture in the social spider Anelosimus-eximius (Araneae, Theridiidae). Insectes Sociaux, 38, 8390.Google Scholar
Kraus, O. & Kraus, M. (1988) The genus Stegodyphus (Arachnida, Araneae). Sibling species, species groups, and parallel origin of social living. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 30, 151254.Google Scholar
Kraus, O. & Kraus, M. (1990) The genus Stegodyphus: Systematics, biogeography and sociality (Araneidae, Eresidae). Acta Zoologica Fennica, 190, 223228.Google Scholar
Krause, J. & Ruxton, G. (2002) Living in Groups. Oxford: Oxford University Press.Google Scholar
Kullman, E. (1972) Evolution of social behavior in spiders. American Zoologist, 12, 419426.Google Scholar
Leborgne, R., Cantarella, T. and Pasquet, A. (1998) Colonial life versus solitary life in Cyrtophora citricola (Araneae, Araneidae). Insectes Sociaux, 45, 125134.Google Scholar
Lubin, Y. (1995) Is there division-of-labor in the social spider Achaearanea wau (Theridiidae). Animal Behaviour, 49, 13151323.Google Scholar
Lubin, Y. & Bilde, T. (2007) The evolution of sociality in spiders. Advances in the Study of Behavior, 37, 83145.Google Scholar
Lubin, Y. D. (1974) Adaptive advantages and evolution of colony formation in Cyrtophora (Araneae-Araneidae). Zoological Journal of the Linnean Society, 54, 321.Google Scholar
Lubin, Y. D. & Crozier, R. H. (1985) Electrophoretic evidence for population differentiation in a social spider Achaearanea-wau (Theridiidae). Insectes Sociaux, 32, 297304.Google Scholar
Lubin, Y. D. & Robinson, M. H. (1982) Dispersal by swarming in a social spider. Science, 216, 319321.Google Scholar
Lubin, Y. D., Birkhofer, K., Berger-Tal, R., & Bilde, T. (2009) Limited male dispersal in a social spider with extreme inbreeding. Biological Journal of the Linnean Society, 97, 227234.Google Scholar
Majer, M., Svenning, J. C., & Bilde, T. (2013) Habitat productivity constrains the distribution of social spiders across continents: Case study of the genus Stegodyphus. Frontiers in Zoology, 10, 9.Google Scholar
Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005) Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos, 111, 425436.Google Scholar
Marques, E., Vasconcelos-Netto, J., & de Mello, M. (1998) Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). Journal of Arachnology, 26, 227237.Google Scholar
Masumoto, T. (1998) Cooperative prey capture in the communal web spider, Philoponella raffrayi (Araneae, Uloboridae). Journal of Arachnology, 26, 392396.Google Scholar
Mestre, L. & Lubin, Y. (2011) Settling where the food is: Prey abundance promotes colony formation and increases group size in a web-building spider. Animal Behaviour, 81, 741748.Google Scholar
Miller, J. (2006) Web-sharing sociality and cooperative prey capture in a Malagasy spitting spider (Araneae: Scytodidae). Proceedings of the California Academy of Sciences, 57, 2538.Google Scholar
Mitchell, R. (1973) Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology, 54, 13491355.Google Scholar
Mockford, E.L. (1957) Life history studies on some Florida insects of the genus Archipsocus (Psocoptera). Bulletin of the Florida State Museum, Biological Sciences, 1, 253274.Google Scholar
Mori, K. & Saito, Y. (2005) Variation in social behavior within a spider mite genus, Stigmaeopsis (Acari: Tetranychidae). Behavioral Ecology, 16, 232238.Google Scholar
Nentwig, W. (1985) Social spiders catch larger prey: A study of Anelosimus-eximius (Araneae, Theridiidae). Behavioral Ecology and Sociobiology, 17, 7985.Google Scholar
New, T.R. (1973) The Archipsocidae of South America (Psocoptera). Transactions of the Royal Entomological Society of London, 125, 57105.Google Scholar
Norton, R. A., Kethley, J. B., Johnston, D. E., & O’Connor, B. M. (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrench, D.L. & Ebbert, M.A. (eds.). Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 899.Google Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and Ecology in the Social Insects. Princeton University Press, Princeton.Google Scholar
Park, T. S., Namkung, J., & Choe, J. C. (1999) Life history of a colonial spider Philoponella prominens (Araneae: Uloboridae) in Korea. Korean Journal of Biological Sciences, 3, 167172.Google Scholar
Pasquet, A., Trabalon, M., Bagneres, A. G., & Leborgne, R. (1997) Does group closure exist in the social spider Anelosimus eximius? Behavioural and chemical approach. Insectes Sociaux, 44, 159169.Google Scholar
Powers, K. S. & Avilés, L. (2003) Natal dispersal patterns of a subsocial spider Anelosimus cf. jucundus (Theridiidae). Ethology, 109, 725737.Google Scholar
Powers, K. S. & Avilés, L. (2007) The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76, 9951003.Google Scholar
Pruitt, J. N. (2012) Behavioural traits of colony founders affect the life history of their colonies. Ecology Letters, 15, 10261032.Google Scholar
Pruitt, J. N., Oufiero, C. E., Avilés, L., & Riechert, S. E. (2012) Iterative evolution of increased behavioral variation characterizes the transition to sociality in spiders and proves advantageous. The American Naturalist, 180, 496510.Google Scholar
Purcell, J. (2011) Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews, 86, 475491.Google Scholar
Purcell, J. & Avilés, L. (2007) Smaller colonies and more solitary living mark higher elevation populations of a social spider. Journal of Animal Ecology, 76, 590597.Google Scholar
Purcell, J. & Avilés, L. (2008) Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: Insights from a transplant experiment. Proceedings of the Royal Society of London B, 275, 26172625.Google Scholar
Purcell, J., Vasconcellos-Neto, J., Gonzaga, M. O., Fletcher, J. A., & Avilés, L. (2012) Spatio-temporal differentiation and sociality in spiders. PLoS ONE, 7, e34592.Google Scholar
Riechert, S. E. & Jones, T. C. (2008) Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Animal Behaviour, 75, 18931902.Google Scholar
Riechert, S. E., Roeloffs, R., & Echternacht, A. C. (1986) The ecology of the cooperative spider Agelena-consociata in equatorial africa (Araneae, Agelenidae). Journal of Arachnology, 14, 175191.Google Scholar
Roeloffs, R. & Riechert, S. E. (1988) Dispersal and population-genetic structure of the cooperative spider, Agelena-consociata, in west-african rainforest. Evolution, 42, 173183.Google Scholar
Rolland, C., Danchin, E., & de Fraipont, M (1998) The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. The American Naturalist, 151, 514529.Google Scholar
Rowell, D. M. & Main, B. Y. (1992) Sex-ratio in the social spider Diaea-socialis (Araneae, Thomisidae). Journal of Arachnology, 20, 200206.Google Scholar
Ruch, J., Heinrich, L., Bilde, T., & Schneider, J. M. (2009) The evolution of social inbreeding mating systems in spiders: Limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biological Journal of the Linnean Society, 98, 851859.Google Scholar
Rypstra, A. L. (1979) Foraging flocks of spiders: Study of aggregate behavior in Cyrtophora-citricola forskal (Araneae, Araneidae) in West-Africa. Behavioral Ecology and Sociobiology, 5, 291300.Google Scholar
Rypstra, A. L. (1990) Prey capture and feeding efficiency of social and solitary spiders: A comparison. Acta Zoologica Fennica, 190, 339343.Google Scholar
Rypstra, A. L. (1993) Prey size, social competition, and the development of reproductive division-of-labor in social spider groups. The American Naturalist, 142, 868880.Google Scholar
Salomon, M. & Lubin, Y. (2007) Cooperative breeding increases reproductive success in the social spider Stegodyphus dumicola (Araneae, Eresidae). Behavioural Ecology and Sociobiology, 61, 17431750.Google Scholar
Salomon, M., Sponarski, C., Larocque, A., & Avilés, L. (2010) Social organization of the colonial spider Leucauge sp in the Neotropics: Vertical stratification within colonies. Journal of Arachnology, 38, 446451.Google Scholar
Samuk, K. & Avilés, L. (2013) Indiscriminate care of offspring predates the evolution of sociality in alloparenting social spiders. Behavioral Ecology and Sociobiology, 67, 12751284.Google Scholar
Samuk, K. M., LeDue, E. E., & Avilés, L. (2012) Sister clade comparisons reveal reduced maternal care behavior in social cobweb spiders. Behavioral Ecology, 23, 3543.Google Scholar
Schneider, J. M. (1995) Survival and growth in groups of a subsocial spider (Stegodyphus lineatus). Insectes Sociaux, 42, 237248.Google Scholar
Schneider, J. (2002) Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63, 649658.Google Scholar
Schneider, J. M. & Lubin, Y. (1996) Infanticidal male eresid spiders. Nature, 381, 655656.Google Scholar
Schneider, J. M., Roos, J., Lubin, Y., & Henschel, J. R. (2001) Dispersal of Stegodyphus dumicola (Araneae, Eresidae): They do balloon after all! Journal of Arachnology, 29, 114116.Google Scholar
Seibt, U. & Wickler, W. (1988) Bionomics and social structure of ‘Family spiders’ of the genus Stegodyphus, with special reference to the African species S. dumicola and S. mimosarum (Araneida, Eresidae). Verh. naturwiss. Ver. Hamburg, 30, 255303.Google Scholar
Settepani, V., Grinsted, L., Granfeldt, J., Jensen, J. L., & Bilde, T. (2013) Task specialization in two social spiders, Stegodyphus sarasinorum (Eresidae) and Anelosimus eximius (Theridiidae), Journal of Evolutionary Biology, 26, 5162.Google Scholar
Settepani, V., Bechsgaard, J., & Bilde, T. (2014) Low genetic diversity and strong but shallow population differentiation suggests genetic homogenization by metapopulation dynamics in a social spider. Journal of Evolutionary Biology, 27, 28502855.Google Scholar
Sharpe, R. V. & Avilés, L. (2016) Prey size and scramble vs. contest competition in a social spider: Implications for population dynamics. Journal of Animal Ecology, 85, 14011410.Google Scholar
Simon, E. (1891) Observations biologiques sur les arachnides. Annales de la Societé Entomologique Française, 60, 514.Google Scholar
Smith, D., van Rijn, S., Henschel, J., Bilde, T., & Lubin, Y. (2009) Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations. Biological Journal of the Linnean Society, 97, 235246.Google Scholar
Smith, D. R. (1982) Reproductive success of solitary and communal Philoponella-oweni (Araneae, Uloboridae). Behavioral Ecology and Sociobiology, 11, 149154.Google Scholar
Smith, D. R. (1997) Notes on the reproductive biology and social behavior of two sympatric species of Philoponella (Araneae, Uloboridae). Journal of Arachnology, 25, 1119.Google Scholar
Smith, D. R. & Engel, M. S. (1994) Population-structure in an Indian cooperative spider, Stegodyphus-sarasinorum karsch (Eresidae). Journal of Arachnology, 22, 108113.Google Scholar
Smith, D. R. & Hagen, R. H. (1996) Population structure and interdemic selection in the cooperative spider Anelosimus eximius. Journal of Evolutionary Biology, 9, 589608.Google Scholar
Smith, D. R. R. (1983) Ecological costs and benefits of communal behavior in a presocial spider. Behavioral Ecology and Sociobiology, 13, 107114.Google Scholar
Smith, D. R. R. (1985) Habitat use by colonies of Philoponella-republicana (Araneae, Uloboridae). Journal of Arachnology, 13, 363373.Google Scholar
Stern, D. L. & Foster, W. A. (1996) The evolution of soldiers in aphids. Biological Reviews of the Cambridge Philosophical Society, 71, 2779.Google Scholar
Trabalon, M. & Assi-Bessekon, D. (2008) Effects of web chemical signatures on intraspecific recognition in a subsocial spider, Coelotes terrestris (Araneae). Animal Behaviour, 76, 15711578.Google Scholar
Uetz, G. W. (1989) The ricochet effect and prey capture in colonial spiders. Oecologia, 81, 154159.Google Scholar
Uetz, G. W. & Hieber, C. S. (1997) Colonial web-building spiders: Balancing the costs and benefits of group living. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 458475.Google Scholar
Uetz, G. W., Kane, T. C., & Stratton, G. E. (1982) Variation in the social grouping tendency of a communal web-building spider. Science, 217, 547549.Google Scholar
Uetz, G. W., Boyle, J., Hieber, C. S., & Wilcox, R. S. (2002) Antipredator benefits of group living in colonial web-building spiders: The “early warning effect”. Animal Behaviour, 63, 445452.Google Scholar
Viera, C., Ghione, S., & Costa, F. G. (2006) Regurgitation among penultimate juveniles in the subsocial spider Anelosimus cf. studiosus (Theridiidae): Are males favored? Journal of Arachnology, 34, 258260.Google Scholar
Viera, C., Costa, F. G., Ghione, S., & Benamu-Pino, M. A. (2007) Progeny, development and phenology of the sub-social spider Anelosimus cf. studiosus (Araneae, Theridiidae) from Uruguay. Studies on Neotropical Fauna and Environment, 42, 145153.Google Scholar
Vollrath, F. (1982) Colony formation in a social spider. Zietschrift für Tierpsychologie, 60, 313324.Google Scholar
Ward, P. I. (1986) Prey availability increases less quickly than nest size in the social spider stegodyphus-mimosarum. Behaviour, 97, 34.Google Scholar
Waser, P. M., Austad, S. N., & Keane, B. (1986) When should animals tolerate inbreeding. The American Naturalist, 128, 529537.Google Scholar
Whitehouse, M. E. A. & Lubin, Y. (2005) The functions of societies and the evolution of group living: Spider societies as a test case. Biological Reviews, 80, 347361.Google Scholar
Wickler, W. & Seibt, U. (1993) Pedogenetic sociogenesis via the sibling-route and some consequences for Stegodyphus spiders. Ethology, 95, 118.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge, MA: Belknap Press.Google Scholar
Yip, E. C. & Rayor, L. S. (2011) Do social spiders cooperate in predator defense and foraging without a web? Behavioral Ecology and Sociobiology, 65, 19351947.Google Scholar
Yip, E. C. & Rayor, L. S. (2014) Maternal care and subsocial behaviour in spiders. Biological Reviews, 89, 427449.Google Scholar
Yip, E. C., Powers, K. S., & Avilés, L. (2008) Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Sciences USA, 105, 1181811822.Google Scholar
Yip, E. C., Rowell, D. M., & Rayor, L. S. (2012) Behavioural and molecular evidence for selective immigration and group regulation in the social huntsman spider, Delena cancerides. Biological Journal of the Linnean Society, 106, 749762.Google Scholar

References

Aviles, L. & Purcell, J. (2012) The evolution of inbred social systems in spiders and other organisms: From short-term gains to long-term evolutionary dead ends? Advances in the Study of Behavior, 44, 99133.Google Scholar
Banner, D. M. & Banner, A. H. (1975) The alpheid shrimp of Australia. Part 2: The genus Synalpheus. Records of the Australian Museum, 29, 267389.Google Scholar
Banner, A. H. & Banner, D. M. (1981) Annotated checklist of the alpheid shrimp of the Red Sea and Gulf of Aden. Zoologische Verhandelingen, 190, 199.Google Scholar
Banner, A. H. & Banner, D. M. (1983) An annotated checklist of the alpheid shrimp from the Western Indian Ocean. Travaux et Documents de l’ORSTOM, 158, 2164.Google Scholar
Bauer, R. T. (2011) Chemical communication in decapod shrimps: The influence of mating and social systems on the relative importance of olfactory and contact pheromones. In: Breithaupt, T. & Thiel, M. (eds.) Chemical Communication in Crustaceans. New York: Springer, pp. 277296.Google Scholar
Bertness, M., Garrit, S., & Levings, S. (1981) Predation pressure and gastropod foraging: A tropical-temperate comparison. Evolution, 35, 9951007.Google Scholar
Boomsma, J. J. (2007) Kin selection vs. sexual selection: Why the ends do not meet. Current Biology, 17, R673-R683.Google Scholar
Boomsma, J. J. (2009) Lifetime monogamy and the evolution of eusociality. Philosophical Transactions of the Royal Society of London B, 364, 31913207.Google Scholar
Boomsma, J. J. (2013) Beyond promiscuity: Mate-choice commitments in social breeding. Philosophical Transactions of the Royal Society of London B, 368, 20120050.Google Scholar
Bourke, A. (1999) Colony size, social complexity and reproductive conflict in social insects. Journal of Evolutionary Biology, 12, 245257.Google Scholar
Bruce, A. (1988) Synalpheus dorae, a new commensal alpheid shrimp from the Australian Northwest shelf. Proceedings of the Biological Society of Washington, 101, 843852.Google Scholar
Chace, F. A. J. (1972) The shrimps of the Smithsonian-Bredin Caribbean Expeditions with a summary of the West Indian shallow-water species (Crustacea: Decapoda: Natantia). Smithsonian Contributions to Zoology, 98, 1179.Google Scholar
Chak, T. C. S, Duffy, J. E., & Rubenstein, D. R. (2015a) Reproductive skew drives patterns of sexual dimorphism in sponge-dwelling snapping shrimps. Proceedings of the Royal Society of London B, 282, 20150342.Google Scholar
Chak, T. C. S, Rubenstein, D. R., & Duffy, J. E. (2015b) Social control of reproduction and breeding monopolization in the eusocial snapping shrimp Synalpheus elizabethae. The American Naturalist, 186, 660668.Google Scholar
Chak, S. C., Bauer, R., & Thiel, M. (2015c) Social behaviour and recognition in decapod shrimps, with emphasis on the Caridea. In: Aquiloni, L. & Tricarico, E. (eds.) Social Recognition in Invertebrates, Switzerland: Springer International Publishing, pp. 5784.Google Scholar
Cockburn, A. (2003) Cooperative breeding in oscine passerines: Does sociality inhibit speciation? Proceedings of the Royal Society of London B, 270, 22072214.Google Scholar
Coutière, H. (1909) The American species of snapping shrimps of the genus Synalpheus. Proceedings of the United States National Museum, 36, 193.Google Scholar
Crespi, B. J. & Mound, L. A. (1997) Ecology and evolution of social behavior among Australian gall thrips and their allies. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 166180.Google Scholar
Dardeau, M. (1984) Synalpheus shrimps (Crustacea: Decapoda: Alpheidae). I. The Gambarelloides group, with a description of a new species. Memoirs of the Hourglass Cruises, 7 (part 2), 1125.Google Scholar
Didderen, K., Fransen, C., & deVoogd, N. (2006) Observations on sponge-dwelling colonies of Synalpheus (Decapoda, Alpheidae) of Sulawesi, Indonesia. Crustaceana, 79, 961975.Google Scholar
Diesel, R. (1997) Maternal control of calcium concentration in the larval nursery of the bromeliad crab, Metopaulias depressus (Grapsidae). Proceedings of the Royal Society of London B, 264, 14031406.Google Scholar
Dobkin, S. (1965) The first post-embryonic stage of Synalpheus brooksi Coutière. Bulletin of Marine Science, 15, 450462.Google Scholar
Dobkin, S. (1969) Abbreviated larval development in caridean shrimps and its significance in the artificial culture of these animals. FAO Fisheries Reports, 57, 935946.Google Scholar
Duffy, J. E. (1993) Genetic population-structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Marine Biology, 116, 459470.Google Scholar
Duffy, J. E. (1996a) Eusociality in a coral-reef shrimp. Nature, 381, 512514.Google Scholar
Duffy, J. E. (1996b) Species boundaries, specialization, and the radiation of sponge-dwelling Alpheid shrimp. Biological Journal of the Linnean Society, 58, 307324.Google Scholar
Duffy, J. E. (1996c) Resource-associated population subdivision in a symbiotic coral-reef shrimp. Evolution, 50, 360373.Google Scholar
Duffy, J. E. (2003) The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi, T., T., Higashi, S. and Azuma, N. (eds.) Genes, Behaviour and Evolution in Social Insects. Sapporo, Japan: University of Hokkaido Press, pp. 138.Google Scholar
Duffy, J. E. (2007) Ecology and evolution of eusociality in sponge-dwelling shrimp. In: Duffy, J. E. & Thiel, M. (eds.) Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms. New York: Oxford University Press, pp. 387409.Google Scholar
Duffy, J. E. (2010) Social biology of crustacea. In: Breed, M. & Moore, J. (eds.) Encyclopedia of Animal Behavior. Oxford: Elsevier, pp. 421429.Google Scholar
Duffy, J. E. & Thiel, M. (eds). (2007) Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms. New York: Oxford University Press.Google Scholar
Duffy, J. E. & Macdonald, K. (1999) Colony structure of the social snapping shrimp Synalpheus filidigitus in Belize. Journal of Crustacean Biology, 19, 283292.Google Scholar
Duffy, J. E. & Macdonald, K. S. (2010) Kin structure, ecology and the evolution of social organization in shrimp: A comparative analysis. Proceedings of the Royal Society of London B, 277, 113.Google Scholar
Duffy, J. E., Morrison, C., & Rios, R. (2000) Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution, 54, 503516.Google Scholar
Duffy, J. E., Morrison, C., & Macdonald, K. (2002) Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis. Behavioral Ecology and Sociobiology, 51, 488495.Google Scholar
Duffy, J. E., Macdonald, K. S. III, Hultgren, K. M., et al. (2013) Decline and local extinction of Caribbean eusocial shrimp. PLOS ONE, 8, e54637.Google Scholar
Emlen, S. T. (1982) The evolution of helping. 1. An ecological constraints model. The American Naturalist, 119, 2939.Google Scholar
Freestone, A. L., Osman Richard, W., Ruiz, G. M., & Torchin, M. E. (2011) Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology, 92, 983993.Google Scholar
Greenwood, P. J. (1980) Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour, 28, 11401162.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7, 1752.Google Scholar
Hartnoll, R. G. (2001) Growth in crustacea. Hydrobiologia, 449, 111122.Google Scholar
Hernáez, P., Martínez-Guerrero, B., Anker, A., & Wehrtmann, I. S. (2010) Fecundity and effects of bopyrid infestation on egg production in the Caribbean sponge-dwelling snapping shrimp Synalpheus yano (Decapoda: Alpheidae). Journal of the Marine Biological Association of the United Kingdom, 90, 691698.Google Scholar
Hughes, M. (1996a) Size assessment via a visual signal in snapping shrimp. Behavioral Ecology and Sociobiology, 38, 5157.Google Scholar
Hughes, M. (1996b) The function of concurrent signals: Visual and chemical communication in snapping shrimp. Animal Behaviour, 52, 247257.Google Scholar
Hughes, M., Williamson, T., Hollowell, K., & Vickery, R. (2014) Sex and weapons: Contrasting sexual dimorphisms in weaponry and aggression in snapping shrimp. Ethology, 120, 982994.Google Scholar
Hultgren, K. M. (2014) Variable effects of symbiotic snapping shrimps on their sponge hosts. Marine Biology 161, 12171227.Google Scholar
Hultgren, K. M. & Brandt, A. (2015) Taxonomy and phylogenetics of the Synalpheus paraneptunus-species-complex (Decapoda: Alpheidae), with a description of two new species. Journal of Crustacean Biology, 35, 547558.Google Scholar
Hultgren, K. M. & Duffy, J. E. (2011) Multi-locus phylogeny of sponge-dwelling snapping shrimp (Caridea: Alpheidae: Synalpheus). supports morphology-based species concepts. Journal of Crustacean Biology, 31, 352360.Google Scholar
Hultgren, K. M. & Duffy, J. E. (2010) Sponge host characteristics shape the community structure of their shrimp associates. Marine Ecology Progress Series, 407, 112.Google Scholar
Hultgren, K. M. & Duffy, J. E. (2012) Phylogenetic community ecology and the role of social dominance in sponge-dwelling shrimp. Ecology Letters, 15, 704713.Google Scholar
Hultgren, K., Macdonald, K. S., & Duffy, J. E. (2010) Sponge-dwelling snapping shrimps of Curaçao, with descriptions of three new species, Zootaxa, 2372, 221262.Google Scholar
Hultgren, K. M., Macdonald, K. S., & Duffy, J. E. (2011) Sponge-dwelling snapping shrimps (Alpheidae: Synalpheus) of Barbados, West Indies, with a description of a new eusocial species. Zootaxa, 2834, 116.Google Scholar
Hultgren, K. M., Hurt, C., & Anker, A. (2014) Phylogenetic relationships within the snapping shrimp genus Synalpheus (Decapoda: Alpheidae). Molecular Phylogenetics and Evolution, 77, 116125.Google Scholar
Jeffrey, N. W., Hultgren, K. M., Chak, T. C. S, Gregory, T. R., & Rubenstein, D. R. (2016) Patterns of genome size variation in snapping shrimps. Genome, 59, 393402.Google Scholar
Kakui, K. & Hiruta, C. (2013) Selfing in a malacostracan crustacean: Why a tanaidacean but not decapods. Naturwissenschaften, 100, 891894.Google Scholar
Karplus, I. & Thompson, A. (2011) The partnership between gobiid fishes and burrowing alpheid shrimps. In: Patzner, R. A., Van Tassell, J. L., Kovacic, M., & Kapoor, B. G. (eds.) The Biology of Gobies. Boca Raton: Science Publishers, pp. 559608.Google Scholar
Keller, L. & Genoud, M. (1997) Extraordinary lifespans in ants: A test of evolutionary theories of ageing. Nature, 389, 958960.Google Scholar
Keller, L. & Perrin, N. (1995) Quantifying the level of eusociality, Proceedings of the Royal Society of London B, 260, 311315.Google Scholar
Knowlton, N. (1980) Sexual selection and dimorphism in two demes of a symbiotic, pair-bonding snapping shrimp, Evolution, 34, 161173.Google Scholar
Koenig, W. D., Pitelka, F. A., Carmen, W. J., Mumme, R. L., & Stanback, M. T. (1992) The evolution of delayed dispersal in cooperative breeders. Quarterly Review of Biology, 67, 111150.Google Scholar
Korb, J. (2008) The ecology of social evolution in termites. In: Korb, J. & Heinze, J. (eds.) Ecology of Social Evolution. Berlin: Springer-Verlag, pp. 151174.Google Scholar
Kough, A. S., Paris, C. B., & Butler, M. J. IV. (2013) Larval connectivity and the international management of fisheries. PLOS ONE, 8, e64970.Google Scholar
Linsenmair, K. E. (1987) Kin recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri. In: Fletcher, D. & Michener, C. (eds.) Kin Recognition in Animals. Chichester: John Wiley & Sons, Ltd., pp. 121207.Google Scholar
Macdonald, K. S., Rios, R., & Duffy, J. E. (2006) Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef, Diversity and Distributions, 12, 165178.Google Scholar
Macdonald, K. S., Hultgren, K., & Duffy, J. E. (2009) The sponge-dwelling snapping shrimps (Crustacea, Decapoda, Alpheidae, Synalpheus) of Discovery Bay, Jamaica, with descriptions of four new species. Zootaxa, 2199, 157.Google Scholar
Martin, J. & Davis, G. (2001) An Updated Classification of the Recent Crustacea. Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
Mathews, L. (2002) Tests of the mate-guarding hypothesis for social monogamy: Does population density, sex ratio, or female synchrony affect behavior of male snapping shrimp (Alpheus angulatus)? Behavioral Ecology and Sociobiology, 51, 426432.Google Scholar
McMurry, S. E., Blum, J. E., & Pawlik, J. R. (2008) Redwood of the reef: Growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology, 155, 159171.Google Scholar
Morrison, C., Rios, R., & Duffy, J. E. (2004) Phylogenetic evidence for an ancient rapid radiation of Caribbean sponge-dwelling snapping shrimps (Synalpheus). Molecular Phylogenetics and Evolution, 30, 563581.Google Scholar
Nolan, B. & Salmon, N. (1970) The behavior and ecology of snapping shrimp (Crustacea: Alpheus heterochaelis and Alpheus normanni). Forma et Functio, 2, 289335.Google Scholar
Obermeier, M. & Schmitz, B. (2003) Recognition of dominance in the big-clawed snapping shrimp (Alpheus heterochaelis Say 1818), Part I: Individual or group recognition? Marine and Freshwater Behavior and Physiology, 36, 116.Google Scholar
Ory, N. C., Dudgeon, D., Duprey, N., & Thiel, M. (2014) Effects of predation on diel activity and habitat use of the coral-reef shrimp Cinetorhynchus hendersoni (Rhynchocinetidae). Coral Reefs, 33, 639650.Google Scholar
Pawlik, J., Chanas, B., Toonen, R., & Fenical, W. (1995) Defenses of Caribbean sponges against predatory reef fish. 1. Chemical deterrency. Marine Ecology Progress Series, 127, 183194.Google Scholar
Queller, D. & Strassmann, J. (1998) Kin selection and social insects, Bioscience, 48, 165175.Google Scholar
Ríos, R. & Duffy, J. E. (2007) A review of the sponge-dwelling snapping shrimp from Carrie Bow Cay, Belize, with description of Zuzalpheus, new genus, and six new species (Crustacea: Decapoda: Alpheidae). Zootaxa, 1602, 189Google Scholar
Roberts, C.M. (1997) Connectivity and management of Caribbean coral reefs. Science, 278, 14541456.Google Scholar
Rubenstein, D. R. (2012) Sexual and social competition: Broadening perspectives by defining female roles. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 22482252.Google Scholar
Rubenstein, D. R., McCleery, B., & Duffy, J. E. (2008) Microsatellite development suggests evidence of polyploidy in the social sponge-dwelling snapping shrimp Zuzalpheus brooksi. Molecular Ecology Resources, 8, 890894.Google Scholar
Shellman-Reeve, J. S. (1997) The spectrum of eusociality in termites. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 5293.Google Scholar
Sherman, P. W., Lacey, E. A., Reeve, H. K., & Keller, L. (1995) The eusociality continuum. Behavioral Ecology, 6, 102108.Google Scholar
Shuster, S. M. & Wade, M. J. (1991) Equal mating success among male reproductive strategies in a marine isopod. Nature, 350, 608610.Google Scholar
Spanier, E., Cobb, J. S., & James, M. J. (1993) Why are there no reports of eusocial marine crustaceans? Oikos, 67, 573576.Google Scholar
Stern, D. L. & Foster, W. A. (1997) The evolution of sociality in aphids: A clone’s-eye view. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 150165.Google Scholar
Sun, S.-J., Rubenstein, D.R., Liu, J.-N., et al. (2014) Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440.Google Scholar
Tóth, E. & Bauer, R. T. (2007) Gonopore sexing technique allows determination of sex ratios and helper composition in eusocial shrimps. Marine Biology, 151, 18751886.Google Scholar
Tóth, E. & Bauer, R. T. (2008) Synalpheus paraneptunus (Crustacea: Decapoda: Caridea) populations with intersex gonopores: A sexual enigma among sponge-dwelling snapping shrimps. Invertebrate Reproduction and Development, 51, 4959.Google Scholar
Tóth, E. & Duffy, J. E. (2005) Coordinated group response to nest intruders in social shrimp. Biology Letters, 1, 4952.Google Scholar
Tóth, E. & Duffy, J. E. (2008) Influence of sociality on allometric growth and morphological differentiation in sponge-dwelling alpheid shrimp. Biological Journal of the Linnean Society, 94, 527540.Google Scholar
Vehrencamp, S. (1983) Optimal degree of skew in cooperative societies. American Zoologist, 23, 327335.Google Scholar
Versluis, M., Schmitz, B., Heydt, , von der, A., & Lohse, D. (2000) How snapping shrimp snap: Through cavitating bubbles. Science, 289, 21142117.Google Scholar
Vollmer, S. V. & Palumbi, S. R. (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: Implications for the recovery of endangered reefs. Journal of Heredity, 98, 4050.Google Scholar
Wilson, E. (1971) The Insect Societies. Cambridge, MA: Belknap Press of Harvard University.Google Scholar
Woodward, G., Ebenman, B., Emmerson, M., J., et al. (2005) Body size in ecological networks. Trends in Ecology and Evolution, 20, 402409.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×