Skip to main content Accessibility help
  • Cited by 1
  • Print publication year: 2003
  • Online publication date: December 2009

1 - The need for compact blue-green lasers



For years after its invention in 1961, the laser was described as a remarkable tool in search of an application. However, by the late 1970s and early 1980s, a variety of applications had emerged that were limited in their implementation by lack of a suitable laser. The common thread running through these applications was the need for a powerful, compact, rugged, inexpensive source of light in the blue-green portion of the spectrum. The details varied greatly, depending on the application: some required tunability, some a fixed wavelength; some required a miniscule amount of optical power, others a great deal; some required continuous-wave (cw) oscillation, others rapid modulation.

In many of these applications, gas lasers – such as argon-ion or helium-cadmium lasers – were initially used to provide blue-green light, and in some cases were incorporated into commercial products; however, they could not satisfy the requirements of every application. The lasing wavelengths available from these lasers are fixed by the atomic transitions of the gas species, and some applications required a laser wavelength that is simply not available from an argon-ion or helium–cadmium laser. Other applications required a degree of tunability that is unavailable from a gas laser. In many of them, the limited lifetime, mechanical fragility, and relatively large size of gas lasers was a problem.

At about the same time, new options for generation of blue-green radiation began to appear, due to developments in other areas of laser science and technology.

Related content

Powered by UNSILO