Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:01:54.376Z Has data issue: false hasContentIssue false

12 - Spray Combustion in Swirling Flow

from Part III - Complex Mixing Consequences

Published online by Cambridge University Press:  05 June 2016

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lefebvre, A.H., Gas Turbine Combustion, 2nd Edition, Taylor and Francis, 1999.Google Scholar
Huang, Y., Yang, V., “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy. Comb. Sci. 35 (2009) 293364.CrossRefGoogle Scholar
Syred, N., Beér, J. M., “Combustion in swirling flows: A review,” Combust. Flame 23 (1974) 143201.CrossRefGoogle Scholar
Lilley, D., “Swirl flows in combustion: A review,” AIAA Journal 15 (8) (1977) 10631078.CrossRefGoogle Scholar
Kirtas, M., Patel, N., Sankaran, V., Menon, S., “Large-Eddy Simulation of a Swirl-Stabilized, Lean-Direct Injection Spray Combustor,” Proceedings of ASME GT2006 (Barcelona, Spain) GT 2006–91310.CrossRefGoogle Scholar
Patel, N., Menon, S., “Simulation of spray combustion in a lean-direct injection combustor,” Thirty-First Symposium (International) on Combustion 31 (2) (2007) 23272334.Google Scholar
Patel, N., Menon, S., “Simulation of spray-turbulence-flame interactions in a lean direct injection combustor,” Combust. Flame 153 (2008) 228257.CrossRefGoogle Scholar
Luo, K., Pitsch, H., Pai, M. G., Desjardins, O., “Direct numerical simulations and analysis of three-dimensional -heptane spray flames in a model swirl combustor,” Proc. Combust. Inst. 33 (2011) 21432152.CrossRefGoogle Scholar
Yoon, C., Gejji, R., Anderson, W. E., Sankaran, V., “Computational investigation of combustion dynamics in a lean direct injection gas turbine combustor,” AIAA 2013–0166 (2013) 1–20.Google Scholar
Fureby, C., Möller, S.-I., “Large eddy simulation of reacting flows applied to bluff body stabilized flames,” AIAA J. 33 (12) (1995) 23392347.CrossRefGoogle Scholar
Dally, B., Masri, A., Barlow, R., Fiechtner, G., “Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames,” Combust. Flame 114 (1998) 119148.CrossRefGoogle Scholar
Ben-Yakar, A., Hanson, R. K., “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17 (2001) 869877.CrossRefGoogle Scholar
Ghoniem, A.F., Park, S., Wachsman, A., Annaswamy, A., Wee, D., Altay, H.M., “Mechanism of combustion dynamics in a backward-facing step stabilized premixed flame,” Proc. Combust. Inst. 30 (2) (2005) 17831790.CrossRefGoogle Scholar
Wan, J., Fan, A., Maruta, K., Yao, H., Liu, W., “Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body,” International Journal of Hydrogen Energy 37 (24) (2012) 1919019197.CrossRefGoogle Scholar
Terasaki, T., Hayashi, S., “The effects of fuel-air mixing on formation in non-premixed swirl burners,” Symposium (International) on Combustion, Vol. 26, 1996, pp. 27332739.CrossRefGoogle Scholar
Masri, A., Pope, S., Dally, B., “Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner,” Proc. Combust. Inst. 28 (2000) 123131.CrossRefGoogle Scholar
Johnson, M., Littlejohn, D., Nazeer, W., Smith, K., Cheng, R., “A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines,” Proc. Combust. Inst. 30 (2005) 28672874.CrossRefGoogle Scholar
Gosman, A.D., Ioannides, E., “Aspects of computer simulation of liquid-fueled combustors,” Journal of Energy 7 (1983) 482490.CrossRefGoogle Scholar
Luo, K., Pitsch, H., Pai, M.G., “Direct numerical simulation of three-dimensional swirling -heptane spray flames,” Center of Turbulence Research Annual Research Briefs, 2009, pp. 171–183.Google Scholar
Sankaran, V., Menon, S., “LES of spray combustion in swirling flows,” Journal of Turbulence 3 (2002) 011.CrossRefGoogle Scholar
Cai, J., Jeng, S.-M., Tacina, R., “The structure of a swirl–stabilized reacting spray issued from an axial swirler,” AIAA Paper 2005-1424 (2005).CrossRefGoogle Scholar
Menon, S., Patel, N., “Subgrid modeling for LES of spray combustion in large-scale combustors,” AIAA Journal 44 (4) (2006) 709723.CrossRefGoogle Scholar
Mongia, H.C., “Taps: A fourth generation propulsion combustor technology for low emissions,” AIAA-03–2657.Google Scholar
Giridharan, M.G., Mongia, H.C., Jeng, S.M., “Swirl cup modelling, part 8: Spray combustion in CFM56 single cup flame tube,” AIAA Paper 2003–0319.CrossRefGoogle Scholar
Colby, J.A., Menon, S., Jagoda, J., “Spray and emission characteristics near lean blow out in a counter-swirl stabilized gas turbine combustor,” Proceedings of the ASME Turbo Exposition GT2006-90974 (2006) 1–10.Google Scholar
Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., “Bérat, LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154 (2008) 222.CrossRefGoogle Scholar
Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T., “Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor,” Int. J. of Multiphase Flow 37 (2011) 514529.CrossRefGoogle Scholar
Terhaar, S., Bobusch, B.C., Paschereit, C.O., “Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions,” Journal of Engineering for Gas Turbines and Power 134 (2012) 111501.CrossRefGoogle Scholar
Hadef, R., Lenze, B., “Measurements of droplets characteristics in a swirl-stabilized spray flame,” Exp. Fluid Thermal Sci. 30 (2005) 117130.CrossRefGoogle Scholar
White, F., Viscous Fluid Flow, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Higher Education, 2006.Google Scholar
Chen, R.-H., Driscoll, J.F., “The role of the recirculation vortex in improving fuel-air mixing within swirling flames,” Symposium (International) on Combustion 22 (1988) 531540.CrossRefGoogle Scholar
Huang, Y., Yang, V., “Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor,” Proc. Combust. Inst. 30 (2005) 17751782.CrossRefGoogle Scholar
Selle, L., Benoit, L., Poinsot, T., Nicoud, F., Krebs, W., “Joint use of compressible large-eddy simulation and helmholtz solvers for the analysis of rotating modes in an industrial swirled burner,” Combust. Flame 145 (2006) 194205.CrossRefGoogle Scholar
Wang, S., Yang, V., Hsiao, G., Hsieh, S.-Y., Mongia, H.C., “Large-eddy simulations of gas-turbine swirl injector flow dynamics,” J. Fluid Mech. 583 (2007) 99122.CrossRefGoogle Scholar
Huang, Y., Sung, H.-G., Hsieh, S.-Y., Yang, V., “Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor,” J. Propul. Power 19 (2003) 782794.CrossRefGoogle Scholar
Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C., “Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations,” Combust. Flame 141 (2005) 4054.CrossRefGoogle Scholar
Kim, S., Menon, S., “Large-eddy simulation of a high-pressure, single-element lean direct-injected gas-turbine combustor,” AIAA 2014–0131.CrossRefGoogle Scholar
Liu, A. B., Reitz, R.D., “Mechanisms of air-assisted liquid atomization,” Atomization and Sprays 3 (1993) 5575.CrossRefGoogle Scholar
Li, X., Soteriou, M.C., “High-fidelity simulation of fuel atomization in a realistic swirling flow injector,” Atomization and Sprays 23 (2013) 10491078.CrossRefGoogle Scholar
Faeth, G.M., Hsiang, L.-P., Wu, P.-K., “Structure and Breakup Properties of Sprays,” Int. J. Multiphase Flow 21 (1995) 99127.CrossRefGoogle Scholar
Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S., “Breakup processes of liquid jets in subsonic crossflows,” J. Propul. Power 13 (1997) 6473.CrossRefGoogle Scholar
Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S., “Spray structures of liquid jets atomized in subsonic crossflows,” J. Propul. Power 14 (1998) 173182.CrossRefGoogle Scholar
Sallam, K.A., Faeth, G.M., “Surface properties during primary breakup of turbulent round liquid jets in still air,” AIAA Journal 41 (2003) 15141524.CrossRefGoogle Scholar
Sommerfeld, M., Qiu, H.-H., “Experimental studies of spray evaporation in turbulent flow,” Int. J. of Heat and Fluid Flow 19 (1998) 1022.CrossRefGoogle Scholar
Apte, S.V., Moin, P., “Spray modeling and predictive simulations in realistic gas-turbine engines,” in Handbook of Atomization and Sprays, Springer, 2011, pp. 811835.CrossRefGoogle Scholar
Reitz, R.D., Bracco, F.V., “Mechanisms of atomization of a liquid jet,” Physics of Fluids 25 (10) (1982) 17301742.CrossRefGoogle Scholar
Chigier, N., Reitz, R. D., “Regimes of jet breakup and breakup mechanisms,” AIAA Progress in Astronautics and Aeronautics, Recent Advances in Spray Combustion, K. Kuo, Ed. Volume 166, 1995, pp. 109135.Google Scholar
Wu, P.K., Miranda, R.F., Faeth, G.M., “Effects of initial flow conditions on primary breakup of non-turbulent and turbulent round jets,” Atomization and Sprays 5 (1995) 175196.CrossRefGoogle Scholar
Tanner, F.X., “Liquid jet atomization and droplet breakup modelling of non-evaporating diesel fuel sprays,” Society of Automotive Engineers, SAE 97-0050.Google Scholar
Trinh, H.P., Chen, C.P., “Modelling of turbulence effects on liquid jet atomization and breakup,” AIAA 2005–0154.CrossRefGoogle Scholar
Renardy, Y., “Effect of startup conditions on drop breakup under shear with inertia,” Int. J. of Multiphase Flow 34 (2008) 11851189.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J., “On the physics of aerobreakup,” Phys. Fluids 20 (2008) 052103.CrossRefGoogle Scholar
Gadgil, H.P., Raghunandan, B.N., “Some features of spray breakup in effervescent atomizers,” Exp. in Fluids 50 (2011) 329338.CrossRefGoogle Scholar
Arienti, M., Shedd, T.A., Herrmann, M., Wang, L., Corn, M., Li, X., Soteriou, M.C., “Modeling wall film formation and breakup using an integrated interface-tracking/discrete-phase approach,” Journal of Engineering for Gas Turbines and Power 133 (3) (2011) 031501.CrossRefGoogle Scholar
Desjardins, O., Moureau, V., Pitsch, H., “An accurate conservative level set/ghost fluid method for simulating turbulent atomization,” J. Comp. Phys. 227 (2008) 83958416.CrossRefGoogle Scholar
Lebas, R., Menard, T., Beau, P.A., Berlemont, A., Demoulin, F.X., “Numerical simulation of primary break-up and atomization: DNS and modelling study,” Int. J. of Multiphase Flow 35 (2009) 247260.CrossRefGoogle Scholar
Zeng, P., Sarholz, S., Iwainsky, C., Binninger, B., Peters, N., Herrmann, M., “Simulation of primary breakup for diesel spray with phase transition,” in Recent Advances in Parallel Virtual Machine and Message Passing Interface, 2009, pp. 313–320.CrossRefGoogle Scholar
Shinjo, J., Umemura, A., “Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation,” Int. J. of Multiphase Flow 36 (2010) 513532.CrossRefGoogle Scholar
Pascaud, S., Boileau, M., Cuenot, B., Poinsot, T., “Large eddy simulation of turbulent spray combustion in aeronautical gas turbines,” in ECCOMAS Thematic Conference on computational combustion, 2005, pp. 149–167.Google Scholar
Linne, M., Paciaroni, M., Hall, T., Parker, T., “Ballistic imaging of the near field in a diesel spray,” Exp Fluids 40 (2006) 836846.CrossRefGoogle Scholar
Desantes, J., Salvador, F., López, J., De la Morena, J., “Study of mass and momentum transfer in diesel sprays based on x-ray mass distribution measurements and on a theoretical derivation,” Exp Fluids 50 (2011) 233246.CrossRefGoogle Scholar
Reddemann, M.A., Mathieu, F., Kneer, R., “Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet,” Exp Fluids 54 (2013) 110.CrossRefGoogle Scholar
Presser, C., Gupta, A.K., Semerjian, H.G., “Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer,” Combust. Flame 92 (1993) 2544.CrossRefGoogle Scholar
Sornek, R.J., Dobashi, R., Hirano, T., “Effect of turbulence on vaporization, mixing, and combustion of liquid-fuel sprays,” Combust. Flame 120 (2000) 479491.CrossRefGoogle Scholar
Wang, H.Y., McDonell, V.G., Sowa, W.A., Samuelsen, G.S., “Scaling of the two-phase flow downstream of a gas turbine combustor swirl cup: Part I- mean quantities,” J. Eng. Gas Turbines Power 115 (1993) 453460.CrossRefGoogle Scholar
Bulzan, D.L., “Structure of a swirl-stabilized combusting spray,” J. Propul. Power 11 (1995) 10931102.CrossRefGoogle Scholar
Soltani, M.R., Ghorbanian, K., Ashjaee, M., Morad, M.R., “Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates,” Aero. Sci. Tech. 9 (2005) 592604.CrossRefGoogle Scholar
Cai, J., Jeng, S.-M., Tacina, R., “The structure of a swirl-stabilized reacting spray issued from an axial swirler,” AIAA 2005-1424 (2005) 1–16.Google Scholar
Hadef, R., Lenze, B., “Effects of co- and counter-swirl on the droplet characteristics in a spray flame,” Chem. Engg. Process. 47 (2008) 22092217.CrossRefGoogle Scholar
Tratnig, A., Brenn, G., “Drop size spectra in sprays from pressure-swirl atomizers,” Int. J. of Multiphase Flow 36 (2010) 349363.CrossRefGoogle Scholar
Takahashi, F., Schmoll, W.J., Switzer, G.L., Shouse, D.T., “Structure of a spray flame stabilized on a production engine combustor swirl cup,” Symposium (International) on Combustion 25 (1994) 183191.CrossRefGoogle Scholar
Al-Abdeli, Y.M., Masri, A.R., “Turbulent swirling natural gas flames: Stability characteristics, unsteady behavior and vortex breakdown,” Combust. Sci. Technol. 179 (2007) 207225.CrossRefGoogle Scholar
Sommerfeld, M., Qiu, H.-H., “Detailed measurements in a swirling particulate two-phase flow by a phase-doppler anemometer,” Int. J. of Heat and Fluid Flow 12 (1991) 2028.CrossRefGoogle Scholar
Zurlo, J., Presser, C., Semerjian, H., Gupta, A., “Determination of droplet characteristics in spray flames using three different sizing techniques,” in AIAA, SAE, ASME, and ASEE, 27th Joint Propulsion Conference, Vol. 1, 1991.Google Scholar
Kenny, R.J., Hulka, J.R., Moser, M.D., Rhys, N.O., “Effect of chamber backpressure on swirl injector fluid mechanics,” J. Propul. Power 25 (2009) 902913.CrossRefGoogle Scholar
Albrecht, H.-E., Laser Doppler and Phase Doppler Measurement Techniques, Springer, 2003.CrossRefGoogle Scholar
Stenberg, J., Frederick, W., Boström, S., Hernberg, R., Hupa, M., “Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor,” Review of Scientific Instruments 67 (1996) 19761984.CrossRefGoogle Scholar
Sutton, J.A., Driscoll, J.F., “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp Fluids 41 (2006) 603627.CrossRefGoogle Scholar
Roy, S., Gord, J.R., Patnaik, A.K., “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy. Comb. Sci. 36 (2010) 280306.CrossRefGoogle Scholar
Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L., Poinsot, T., “Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines,” Flow Turbulence Combust. 80 (2008) 351373.CrossRefGoogle Scholar
Riber, E., Moureau, V., García, M., Poinsot, T., Simonin, O., “Evaluation of numerical strategies for large eddy simulation of particulate two-phase reacting flows,” J. Comp. Phys. 228 (2009) 539564.CrossRefGoogle Scholar
Desantes, J.M., Pastor, J.V., Garciá-Oliver, J.M., Pastor, J.V., “A 1D model for the description of mixing-controlled reacting diesel sprays,” Combust. Flame 156 (2009) 234249.CrossRefGoogle Scholar
Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., Garćia, M., Riber, E., Cuenot, N., Gicquel, L., Pitsch, H., Poinsot, T., “Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow,” C. R. Mecanique 337 (2009) 458468.CrossRefGoogle Scholar
Sanjosé, M., Riber, E., Gicquel, L., Cuenot, B., Poinsot, T., “Large eddy simulation of a two-phase reacting flow in an experimental burner,” in Direct and Large-Eddy Simulation VII, Springer, 2010, pp. 345351.CrossRefGoogle Scholar
Hank, S., Saurel, R., Metayer, O.L., “A hyperbolic Eulerian model for dilute two-phase suspensions,” J. Modern Phys. 2 (2011) 9971011.CrossRefGoogle Scholar
Kollmann, W., Kennedy, I.M., “Les model for the particulate phase in sprays,” AIAA 97-0369 (1997) 111.Google Scholar
Caraeni, D., Bergström, C., Fuchs, L., “Modeling of liquid fuel injection, evaporation and mixing in a gas turbine burner using large eddy simulations,” Flow Turbulence Combust. 65 (2000) 223244.CrossRefGoogle Scholar
Sankaran, V., Menon, S., “Vorticity-scalar alignments and small-scale structures in swirling spray combustion,” Proc. Combust. Inst. 29 (2002) 577584.CrossRefGoogle Scholar
James, S., Zhu, J., Anand, M.S., “Large-eddy simulation as a design tool for gas turbine combustion systems,” AIAA J. 44 (2006) 674686.CrossRefGoogle Scholar
Menon, S., Patel, N., “Subgrid modeling for simulation of spray combustion in large-scale combustors,” AIAA J. 44 (2006) 709723.CrossRefGoogle Scholar
Kuang, S.B., Yu, A.B., Zou, Z.S., “A new point-locating algorithm under three-dimensional hybrid meshes,” Int. J. of Multiphase Flow 34 (2008) 10231030.CrossRefGoogle Scholar
Yan, Y., Zhao, J., Zhang, J., Liu, Y., “Large-eddy simulation of two-phase spray combustion for gas turbine combustors,” Applied Thermal Engineering 28 (11) (2008) 13651374.CrossRefGoogle Scholar
Lederlin, T., Pitsch, H., “Large-eddy simulation of an evaporating and reacting spray,” in Center for Turbulence Research: Annual Research Briefs, 2008, pp. 479–490.Google Scholar
Pozorski, J., Apte, S.V., “Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion,” Int. J. of Multiphase Flow 35 (2009) 118128.CrossRefGoogle Scholar
Srinivasan, S., Smith, A.G., Menon, S., “Accuracy, reliability and performance of spray combustion models in LES,” in Quality and Reliability of Large-Eddy Simulations II, Springer, 2011, pp. 211220.CrossRefGoogle Scholar
Li, K., Zhou, L.X., “Studies of the effect of spray inlet conditions on the flow and flame structures of ethanol-spray combustion by large-eddy simulation,” Numerical Heat Transfer, Part A: Applications 62 (1) (2012) 4459.Google Scholar
Franzelli, B., V.A., Fiorina, B., Darabiha, N., “Large eddy simulation of swirling kerosene/air spray flame using tabulated chemistry,” Proceedings of the ASME Turbo Exposition GT2006-90974 (2013) 1–10.Google Scholar
Chrigui, M., Masri, A.R., Sadiki, A., Janicka, J., “Large eddy simulation of a polydisperse ethanol spray flame,” Flow Turbulence Combust. 90 (2013) 813832.CrossRefGoogle Scholar
Jones, W.P., Marquis, A.J., Vogiatzaki, K., “Large-eddy simulation of spray combustion in a gas turbine combustor,” Combust. Flame 161 (2014) 222239.CrossRefGoogle Scholar
Arienti, M., Li, X., Soteriou, M.C., Eckett, C.A., Jensen, R., “Coupled level-set/volume-of-fluid method for the simulation of liquid atomization in propulsion device injectors,” AIAA 2010–7136 (2010) 1–10.Google Scholar
Li, X., Arienti, M., Soteriou, M.C., Sussman, M.M., “Towards an efficient, high-fidelity methodology for liquid jet atomization computations,” AIAA 2010–210 (2010) 1–16.Google Scholar
Mortensen, M., Bilger, R.W., “Derivation of the conditional moment closure equations for spray combustion,” Combust. Flame 156 (2009) 6272.CrossRefGoogle Scholar
Laurent, C., Lavergne, G., Villedieu, P., “Quadrature method of moments for modeling multi-component spray vaporization,” Int. J. of Multiphase Flow 36 (2010) 5159.CrossRefGoogle Scholar
Jones, W.P., Lyra, S., Navarro-Martinez, S., “Large eddy simulation of a swirl stabilized spray flame,” Proc. Combust. Inst. 33 (2011) 21532160.CrossRefGoogle Scholar
Jones, W.P., Lyra, S., Navarro-Martinez, S., “Numerical investigation of swirling kerosene spray flames using large eddy simulation,” Combust. Flame 159 (2012) 15391561.CrossRefGoogle Scholar
Vié, A., Jay, S., Cuenot, B., Massot, M., “Accounting for polydispersion in the Eulerian large eddy simulation of the two-phase flow in an aeronautical-type burner,” Flow Turbulence Combust. 90 (2013) 545581.CrossRefGoogle Scholar
Elghobashi, S., “On predicting particle-laden turbulent flows,” Appl. Sci. Res. 52 (1994) 309329.CrossRefGoogle Scholar
Loth, E., “Numerical approaches for motion of dispersed particles, droplets and bubbles,” Prog Energy Combust Sci 26 (2000) 161223.CrossRefGoogle Scholar
Balachandar, S., Eaton, J.K., “Turbulent dispersed multiphase flow,” Annual Review of Fluid Mechanics 42 (2010) 111133.CrossRefGoogle Scholar
Druzhinin, O.A., Elghobashi, S., “Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation,” Phys. Fluids 10 (1998) 685697.CrossRefGoogle Scholar
Druzhinin, O.A., Elghobashi, S., “On the decay rate of isotropic turbulence laden with microparticles,” Phys. Fluids 11 (1999) 602610.CrossRefGoogle Scholar
Réveillon, J., Massot, M., Péra, C., “Analysis and modeling of the dispersion of vaporizing polydispersed sprays in turbulent flows,” in Proceedings of the Summer Program, 2002, pp. 393–404.Google Scholar
Riley, J.J., Patterson, G.S., “Diffusion experiments with numerically integrated isotropic turbulence,” Phys. Fluids 17 (1974) 292297.CrossRefGoogle Scholar
Dukowicz, K., J., “A particle-fluid numerical model for liquid sprays,” J. Comp. Phys. 35 (1980) 229253.CrossRefGoogle Scholar
Maxey, M.R., “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech. 174 (1987) 441465.CrossRefGoogle Scholar
Elghobashi, S., “Particle-laden turbulent flows: Direct simulation and closure models,” Appl. Sci. Res. 48 (1991) 301314.CrossRefGoogle Scholar
Selle, L., Lartigue, G., Poinsot, T., Kaufman, P., Krebs, W., Veynante, D., “Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry,” in Proceedings of the Summer Program, 2002, pp. 333–344.Google Scholar
Ham, F., Apte, S., Iaccarino, G., Wu, X., Herrmann, M., Constantinescu, G., Mahesh, K., Moin, P., “Unstructured LES of reacting multiphase flows in realistic gas turbine combustors,” in Center of Turbulence Research Annual Research Briefs, 2003, pp. 139–160.Google Scholar
Williams, F.A., “Spray, combustion and atomization,” Physics of Fluids 1 (1958) 541545.CrossRefGoogle Scholar
Ranjan, R., “A novel state-space based method for direct numerical simulation of particle-laden turbulent flows,” Ph.D. thesis, University of Illinois at Urbana-Champaign (2013).Google Scholar
Candy, J., “A numerical method for solution of the generalized liouville equation,” J. Comp. Phys. 129 (1) (1996) 160169.CrossRefGoogle Scholar
Mura, A., Borghi, R., “Introducing a new partial PDF approach for turbulent combustion modeling,” Combust. Flame 136 (2004) 377382.CrossRefGoogle Scholar
Xiu, D.B., Karniadakis, G.E., “The wiener-askey polynomial chaos for stochastic differential equations,” SIAM J. Scientific Computing 24 (2002) 619644.CrossRefGoogle Scholar
Marchisio, D.L., Fox, R., “Solution of population balance equations using the direct quadrature method of moments,” Journal of Aerosol Science 36 (2005) 4373.CrossRefGoogle Scholar
Pantano, C., Shotorban, B., “Least-squares dynamic approximation method for evolution of uncertainty in initial conditions of dynamical systems,” Physical Review E 76 (2007) 066705.CrossRefGoogle ScholarPubMed
Beale, J.C., Reitz, R.D., “Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model,” Atomization and Sprays 9 (6).Google Scholar
O’Rourke, P.J., Amsden, A.A., “The TAB method for numerical calculation of spray droplet breakup,” Society of Automotive Engineers, SAE 87-2089.Google Scholar
Ra, Y., Reitz, R.D., “A vaporization model for discrete multi-component fuel sprays,” Int. J. of Multiphase Flow 35 (2009) 101117.CrossRefGoogle Scholar
Amsden, A.A., “KIVA-3V: Release 2, improvements to KIVA-3V,” Los Alamos Report No. LA-UR-99-915, 1999.Google Scholar
Reitz, R.D., “Modelling atomization processes in high-pressure vaporizing sprays,” Atomization and Spray Technology 3 (1987) 309337.Google Scholar
Rachner, M., Becker, J., Hassa, C., Doerr, T., “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerospace Science and Technology 6 (7) (2002) 495506.CrossRefGoogle Scholar
Faeth, G.M., “Spray combustion phenomena,” Proc. Combust. Inst. 26 (1996) 15931612.CrossRefGoogle Scholar
Liu, A.B., Mather, D., Reitz, R.D., “Modeling the effects of drop drag and breakup on fuel sprays,” NASA STI/Recon Technical Report N 93 (1993) 29388.Google Scholar
Abgrall, R., Saurel, R., “Discrete equations for physical and numerical compressible multiphase mixtures,” J. Comp. Phys. 186 (2) (2003) 361396.CrossRefGoogle Scholar
Chinnayya, A., Daniel, E., Saurel, R., “Modelling detonation waves in heterogeneous energetic materials,” J. Comp. Phys. 196 (2) (2004) 490538.CrossRefGoogle Scholar
Papalexandris, M.V., “Numerical simulation of detonations in mixtures of gases and solid particles,” J. Fluid Mech. 507 (2004) 95142.CrossRefGoogle Scholar
Oefelein, J.C., “Large eddy simulation of turbulent combustion processes in propulsion and power systems,” Progress in Aerospace Sciences 42 (1) (2006) 237.CrossRefGoogle Scholar
Balakrishnan, K., Nance, D.V., Menon, S., “Simulation of impulse effects from explosive charges containing metal particles,” Shock Waves 20 (3) (2010) 217239.CrossRefGoogle Scholar
Gottiparthi, K., Menon, S., “A study of interaction of clouds of inert particles with detonation in gases,” Combust. Sci. Technol. 184 (3) (2012) 406433.CrossRefGoogle Scholar
Jenny, P., Roekaerts, D., Beishuizen, N., “Modeling of turbulent dilute spray combustion,” Prog. Energy. Comb. Sci. 38 (2012) 846887.CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y., Multiphase Flows with Droplets and Particles, CRC Press, 2011.CrossRefGoogle Scholar
Balakrishnan, K., Menon, S., “Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges,” Flow Turbulence Combust. 87 (4) (2011) 639671.CrossRefGoogle Scholar
Baer, M.R., Nunziato, J.W., “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials,” Int. J. of Multiphase Flow 12 (6) (1986) 861889.CrossRefGoogle Scholar
Bini, M., Jones, W., “Particle acceleration in turbulent flows: A class of nonlinear stochastic models for intermittency,” Phys. Fluids 19 (2007) 035104.CrossRefGoogle Scholar
Génin, F., Menon, S., “Studies of shock/turbulent shear layer interaction using large-eddy simulation,” Computers & Fluids 39 (5) (2010) 800819.CrossRefGoogle Scholar
Smagorinsky, J., “General circulation experiments with the primitive equations,” Monthly Weather Review 91 (3) (1993) 99164.2.3.CO;2>CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., Cabot, W.H., “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A 3 (11) (1991) 17601765.CrossRefGoogle Scholar
Menon, S., Kim, W.-W., “High reynolds number flow simulations using the localized dynamic subgrid-scale model,” AIAA-96-0425.Google Scholar
Kim, W.-W., Menon, S., A new incompressible solver for large-eddy simulations, International Journal of Numerical Fluid Mechanics 31 (1999) 9831017.3.0.CO;2-Q>CrossRefGoogle Scholar
Kim, W.-W., Menon, S., Mongia, H. C., Large-eddy simulation of a gas turbine combustor flow, Combustion Science and Technology 143 (1999) 2562.CrossRefGoogle Scholar
Faeth, G. M., Mixing, transport and combustion in sprays, Progress in Energy and Combustion Science 13 (1987) 293345.CrossRefGoogle Scholar
Menon, S., Pannala, S., Subgrid modeling of unsteady two-phase turbulent flows, AIAA Paper No. 97-3113.Google Scholar
Kerstein, A. R., Linear-eddy model of turbulent scalar transport and mixing, Combustion Science and Technology 60 (1988) 391421.CrossRefGoogle Scholar
Menon, S., McMurtry, P., Kerstein, A. R., A linear eddy mixing model for large eddy simulation of turbulent combustion, in: Galperin, B., Orszag, S. (Eds.), LES of Complex Engineering and Geophysical Flows, Cambridge University Press, 1993, pp. 287314.Google Scholar
Menon, S., Kerstein, A. R., The linear-eddy model, Turbulent Combustion Modeling 95 (2011) 175222.Google Scholar
Apte, S. V., Moin, P., Large-eddy simulation of realistic gas turbine combustor, AIAA J. 44 (2006) 698708.Google Scholar
Knudsen, E., Pitsch, H., Large-eddy simulation for combustion systems: Modeling approaches for partially premixed flows, The Open Thermodynamics Journal 4 (2010) 7685.Google Scholar
Hicks, Y. R., Anderson, R. C., Locke, R. J., Optical measurements in a combustor using a 9-point swirl-venturi fuel injector, Isabe 2007-1280 (2007).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×