Skip to main content Accessibility help
  • Print publication year: 2018
  • Online publication date: June 2018

Part II - Possible Chondrule-Forming Mechanisms


Chondrules are the millimeter-scale previously molten droplets found in chondritic meteorites. These pervasive yet enigmatic particles hint at energetic processes at work in the nascent solar system. Chondrules and chondrites are well studied and many of the details about their compositions, ages, and thermal histories are well known. Without the proper context of a formation mechanism, however, we can only imagine what chondrules may reveal about the processes at work in the early solar system. In this chapter, we explore the hypothesis that chondrules were formed by impacts between growing planetary embryos. Specifically, we focus on shock heating associated with accretionary impacts as a means for melting chondrule precursor material. Although we discuss previous work on impact origin for chondrules, much of this chapter focuses on a new incarnation of this old idea, the impact jetting model. We explore the predictions of this model and its implications for our understanding of early solar system history and meteoritics. Throughout the chapter, we discuss potential issues and uncertainties with the model while identifying avenues for further development and testing of the impact origin hypothesis.